伍冬睿

姓名:伍冬睿

职称:教授

职务:图像信息处理与智能控制教育部重点实验室副主任

电子邮件:drwu@hust.edu.cn

个人主页http://faculty.hust.edu.cn/drwu

个人博客http://blog.sciencenet.cn/u/drwuHUST

研究领域:脑机接口、机器学习、智慧医疗、计算智能、情感计算

教育经历:

2003,中国科学技术大学,自动化专业,学士

2006,新加坡国立大学,电子与计算机工程专业,硕士

2009,美国南加州大学,电子工程专业,博士

主要项目:

  1. 脑机接口和情感计算中的机器学习研究, 人才引进基金,2017.01-2019.12,主持
  2. 机器学习模型泛化能力启发的区间二型鲁棒模糊控制研究,国家自然科学基金面上项目,61873321,2019.01-2022.12,主持
  3. 脑机接口中的迁移学习,湖北省杰出青年基金,2020-2023,主持
  4. 可穿戴智慧医疗,横向合作,2020.04-2021.10,主持
  5. 面向特殊、高危、重大行业的智能穿戴系统研究,湖北省技术创新专项,2019AEA171,2019.09-2022.08,子课题负责人
  6. 智慧社会下我国新型社会信用体系构建研究, 国家社科基金重大项目, 19ZDA104, 2020-2022, 子课题负责人
  7. 市域社会治理智能化模式研究, 国家社科基金重点项目, 20AZD089, 2020-2022,子课题负责人
  8. 智能行走辅助机器人关键技术合作研究,科技部政府间国际科技创新合作重点专项,2017YFE0128300,2019.08-2022.07,参与
  9. 面向偏瘫患者运动辅助的外肢体机器人基础研究,NSFC-深圳机器人基础研究中心重点项目,U1913207,2020.01-2023.12,参与
  10. 智能医疗研究中心建设,华中科技大学自主创新研究基金,2019-2021,参与
  11. 人工智能对知识产权制度挑战与对策研究, 华中科技大学自主创新研究基金(人文社科), 2020-2021, 参与

奖励荣誉:

  1. 2020 湖北省杰出青年基金
  2. 2019 USERN Prize in Formal Sciences(Top 5)
  3. 2019 第三届中国脑机接口比赛技术赛 全国一等奖
  4. 2018 IEEE人机系统汇刊 最佳副编奖
  5. 2017 ICONIP最佳学生论文奖入围
  6. 2017 IEEE系统、人和控制论学会 青年科学家奖
  7. 2016 IEEE脑计划 最佳论文奖入围
  8. 2015 德国-美国工程前沿论坛
  9. 2015 美国国家科学院、工程院、医学院Kech未来计划
  10. 2015 IEEE情感计算汇刊 最有影响力论文奖入围
  11. 2014 首席信息官100项目奖
  12. 2014 北美模糊信息处理学会 青年科学家奖
  13. 2014 IEEE模糊系统汇刊 最佳论文奖
  14. 2013 海德堡阿贝尔、图灵、菲尔兹获奖者论坛
  15. 2012 首席信息官100项目奖
  16. 2012 IEEE计算智能协会 最佳博士论文奖
  17. 2005 IEEE模糊系统国际会议 最佳学生论文奖

学术任职:

  1. IEEE模糊系统汇刊 (IF=9.518) 副编 (2011–2018; 2020-)
  2. IEEE人机系统汇刊 (IF=3.374) 副编 (2014–)
  3. IEEE计算智能杂志 (IF=9.083) 副编 (2017–)
  4. IEEE神经系统和康复工程汇刊 (IF=3.340) 副编 (2019–)
  5. 2013年客座主编IEEE计算智能杂志“计算智能与情感计算”特刊
  6. 2016年客座主编IEEE模糊系统汇刊“脑机接口”特刊
  7. 2018年客座主编IEEE计算智能新兴主题汇刊 “深度迁移学习进展”特刊
  8. 海德堡阿贝尔、图灵、菲尔兹获奖者论坛评委
  9. IEEE计算智能学会武汉分会主席
  10. IEEE系统、人和控制论学会武汉分会副主席
  11. IEEE计算智能学会情感计算工作组主席

科研成果:

出版英文学术专著《Perceptual Computing》一部 (Wiley-IEEE Press),在国际学术期刊和会议上发表论文150余篇,其中SCI 68篇 (一作32篇,IEEE汇刊51篇),ESI高引4篇,Google Scholar总引用6600余次 (H=39)。1篇IEEE模糊系统汇刊最佳论文,3篇IEEE计算智能学会亮点论文,1篇IEEE神经系统和康复工程汇刊封面论文,1篇在1997-2017年间共1288篇二型模糊系统SCI论文中引用排名12,1篇在Engineering Applications of Artificial Intelligence (IF=4.201) 1988-2018年间发表的2960篇论文中引用排名13。研究成果进入Matlab Fuzzy Logic工具箱。被DigitalTrends、TechXplore、Geeks、中新网、长江日报等多个网站和媒体报道。

学术专著:

  1. J. M. Mendel and D. Wu, “Perceptual Computing: Aiding People in Making Subjective Judgments,” Wiley-IEEE Press, April 2010. (Matlab code) (Book Review)(Google Books)

代表性论文:

Brain-Computer Interfaces:

  1. X. Zhang, D. Wu*, L. Ding*, H. Luo, C-T Lin, T-P Jung and R. Chavarriaga, “Tiny noise, big mistakes: Adversarial perturbations induce errors in Brain-Computer Interface spellers,” National Science Review, 2020, accepted.
  2. D. Wu*, Y. Xu and B.-L. Lu, “Transfer Learning for EEG-Based Brain-Computer Interfaces: A Review of Progress Made Since 2016,” IEEE Trans. on Cognitive and Developmental Systems, 2020, accepted.
  3. W. Zhang and D. Wu*, “Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 28(5), pp. 1117-1127, 2020. (Python)
  4. H. He and D. Wu*, “Different Set Domain Adaptation for Brain-Computer Interfaces: A Label Alignment Approach,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 28(5), pp. 1091-1108, 2020. (MatlabIEEE Brain)
  5. H. He and D. Wu*, “Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach,” IEEE Trans. on Biomedical Engineering, 67(2), pp. 399-410, 2020. (MatlabIEEE Brain)
  6. Y. Cui, Y. Xu and D. Wu*, “EEG-Based Driver Drowsiness Estimation Using Feature Weighted Episodic Training,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 27(11), pp. 2263-2273, 2019. (IEEE TNSRE Cover ArticlePython
  7. X. Zhang and D. Wu*, “On the Vulnerability of CNN Classifiers in EEG-Based BCIs,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 27(5), pp. 814-825, 2019. (Python)
  8. D. Wu*, J-T King, C-C Chuang, C-T Lin and T-P Jung, “Spatial Filtering for EEG-Based Regression Problems in Brain-Computer Interface (BCI),” IEEE Trans. on Fuzzy Systems, 26(2), pp. 771-781, 2018.
  9. D. Wu*, B. J. Lance, V. J. Lawhern, S. Gordon, T-P Jung and C-T Lin, “EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features”, IEEE Trans. on Neural Systems and Rehabilitation Engineering, 25(11), pp. 2157-2168, 2017.
  10. D. Wu, V. Lawhern, S. Gordon, B. Lance and C-T Lin, “Driver Drowsiness Estimation from EEG Signals Using Online Weighted Adaptation Regularization for Regression (OwARR),” IEEE Trans. on Fuzzy Systems, 25(6), pp. 1522-1535, 2017.
  11. D. Wu*, “Online and Offline Domain Adaptation for Reducing BCI Calibration Effort,” IEEE Trans. on Human-Machine Systems, vol. 47, no. 4, pp. 550-563, 2017. (ESI Highly Cited Paper)
  12. D. Wu, V. Lawhern, D. Hairston and B. Lance, “Switching EEG Headsets Made Easy: Reducing Offline Calibration Effort Using Active Weighted Adaptation Regularization,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 24(11), pp. 1125-1137, 2016.

Affective Computing:

  1. D. Wu and J. Huang, “Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression,” IEEE Trans. on Affective Computing, 2020, in press.
  2. D. Wu, C. Courtney, B. Lance, S. Narayanan, M. Dawson, K. Oie, and T.D. Parsons, “Optimal Arousal Identification and Classification for Affective Computing: Virtual Reality Stroop Task,” IEEE Trans. on Affective Computing, 1(2), pp. 109-118, 2010. (Top Accessed Article; IEEE Trans. on Affective Computing Most Influential Paper Award Finalist)

Machine Learning:

  1. X. Zhang and D. Wu*, “Empirical Studies on the Properties of Linear Regions in Deep Neural Networks,” Int’l. Conf. on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020.
  2. Y. Cui, D. Wu* and J. Huang*, “Optimize TSK Fuzzy Systems for Classification Problems: Mini-Batch Gradient Descent with Uniform Regularization and Batch Normalization,” IEEE Trans. on Fuzzy Systems, 2020, accepted. (MatlabPython)
  3. D. Wu*, Y. Yuan, J. Huang and Y. Tan*, “Optimize TSK Fuzzy Systems for Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound (MBGD-RDA),” IEEE Trans. on Fuzzy Systems, 28(5), pp. 1003-1015, 2020. (Matlab)
  4. D. Wu* and J.M. Mendel, “Patch Learning,” IEEE Trans. on Fuzzy Systems, 2020, accepted. (Matlab)
  5. D. Wu, C-T Lin, J. Huang* and Z. Zeng*, “On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression,” IEEE Trans. on Fuzzy Systems, 2020, accepted.
  6. D. Wu* and X. Tan, “Multitasking Genetic Algorithm (MTGA) for Fuzzy System Optimization,” IEEE Trans. on Fuzzy Systems, 28(6), pp. 1050-1061, 2020. (Matlab)
  7. D. Wu*, C-T Lin and J. Huang*, “Active Learning for Regression Using Greedy Sampling,” Information Sciences, vol. 474, pp. 90-105, 2019.
  8. D. Wu, “Pool-based sequential active learning for regression,” IEEE Trans. on Neural Networks and Learning Systems, 30(5), pp. 1348-1359, 2019.

Intelligent Control:

  1. 伍冬睿*,曾志刚,莫红,王飞跃,“区间二型模糊集和模糊系统: 综述与展望,” 自动化学报, 2020.
  2. D. Wu* and J.M. Mendel, “Recommendations on Designing Practical Interval Type-2 Fuzzy Systems“, Engineering Applications of Artificial Intelligence, 95, pp. 182-193, 2019.
  3. J. Huang, M. Ri, D. Wu* and S. Ri, “Interval Type-2 Fuzzy Logic Modeling and Control of a Mobile Two-Wheeled Inverted Pendulum,” IEEE Trans. on Fuzzy Systems, 26(4), pp. 2030-2036, 2018.
  4. D. Wu*, “Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Controllers: Overview and Comparison,” IEEE Trans. on Fuzzy Systems, 21(1), pp. 80-99, 2013. (ESI Highly Cited Paper)
  5. D. Wu*, “On the Fundamental Differences between Interval Type-2 and Type-1 Fuzzy Logic Controllers,” IEEE Trans. on Fuzzy Systems, 20(5), pp. 832-848, 2012. (IEEE CIS Publication Spotlight)
  6. D. Wu and J. M. Mendel, “On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems,” IEEE Trans. on Fuzzy Systems, 19(1), pp. 179-192, 2011. (2014 IEEE TFS Outstanding Paper Award; IEEE CIS Publication Spotlight)
  7. D. Wu and J. M. Mendel, “Enhance Karnik-Mendel Algorithms,” IEEE Trans. on Fuzzy Systems, 17, pp. 923-934, 2009. (ESI Highly Cited Paper; Ranked 12th among all 1,288 SCI papers published worldwide on type-2 fuzzy systems in 1997-2017, according to “A Bibliometric Overview of the Field of Type-2 Fuzzy Sets and Systems,” IEEE Computational Intelligence Magazine, 15(1), pp. 89-98, 2020; Available in Matlab Fuzzy Logic Toolbox)
  8. D. Wu and W. W. Tan, “Genetic Learning and Performance Evaluation of Type-2 Fuzzy Logic Controllers,” Engineering Applications of Artificial Intelligence, 19(8), pp. 829-841, 2006. (Ranked 13th among all 2,960 papers published in EAAI in 1988-2018, according to “Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988–2018),” EAAI, 85, pp. 517–532, 2019)
  9. D. Wu and W. W. Tan, “A Simplified Type-2 Fuzzy Controller for Real-Time Control,” ISA Trans., 15(4), pp. 503-516, 2006.
  10. D. Wu and W. W. Tan, “Type-2 FLS Modeling Capability Analysis,” IEEE Int’l Conf. on Fuzzy Systems, pp. 242–247, Reno, USA, May 2005. (Best Student Paper Award)

Perceptual Computing & Decision Making:

  1. J. M. Mendel and D. Wu, “Perceptual Computing: Aiding People in Making Subjective Judgments,” Wiley-IEEE Press, April 2010. (Matlab code) (Book Review)(Google Books)
  2. D. Wu* and J. M. Mendel, “Similarity Measures for Closed General Type-2 Fuzzy Sets: Overview, Comparisons, and a Geometric Approach,” IEEE Trans. on Fuzzy Systems, 27(3), pp. 515-526, 2019.
  3. D. Wu, H-T Zhang* and J. Huang*, “A Constrained Representation Theorem for Well-Shaped Interval Type-2 Fuzzy Sets, and the Corresponding Constrained Uncertainty Measures,” IEEE Trans. on Fuzzy Systems, 27(6), pp. 1237-1251, 2019. (IEEE CIS Publication Spotlight)
  4. D. Wu*, “A Reconstruction Decoder for Computing with Words,” Information Sciences, 255, pp. 1-15, 2014.
  5. D. Wu and J. M. Mendel, “Linguistic Summarization Using IF-THEN Rules and Interval Type-2 Fuzzy Sets,” IEEE Trans. on Fuzzy Systems, 19(1), pp. 136-151, 2011.
  6. D. Wu and J.M. Mendel, “Computing With Words for Hierarchical Decision Making Applied to Evaluating a Weapon System,” IEEE Trans. on Fuzzy Systems, 18(3), pp. 441-460, 2010.
  7. D. Wu and J. M. Mendel, “Perceptual reasoning for perceptual computing: A similarity-based approach,” IEEE Trans. on Fuzzy Systems, 17(6), pp. 1397-1411, 2009.
  8. D. Wu and J. M. Mendel, “A Comparative Study of Ranking Methods, Similarity Measures and Uncertainty Measures for Interval Type-2 Fuzzy Sets,” Information Sciences, 179(8), pp. 1169-1192, 2009. (ESI Highly Cited Paper; Top 25 Hottest Article)
  9. D. Wu and J. M. Mendel, “Aggregation Using the Linguistic Weighted Average and Interval Type-2 Fuzzy Sets,” IEEE Trans. on Fuzzy Systems, 15(6), pp. 1145-1161, 2007.
  10. D. Wu and J. M. Mendel, “Uncertainty Measures for Interval Type-2 Fuzzy Sets,” Information Sciences, 177, pp. 5378-5393, 2007.

发明专利:

  1. A. Kumar, B. Ellis, Z. Wan, C. Pierce, M. Dokucu, D. Wu and S. Balram, Dynamic monitoring, diagnosis, and control of cooling tower systems, WO2015012832, 1/29/2015.
  2. S. Gustfason and D. WuInfluencer analyzer platform for social and traditional media document authors, US20150348216, 12/3/2015.
  3. J. Reimann, C. Johnson, D. Wu, S. Evans, and R. Cheinhample, A. Pandey, System and method using generative model to supplement incomplete industrial plant information, US20160004794, 1/7/2016.
  4. A. Can, E. Bas, D. Wu, J. Yu, and L. Wahrmund, Expert guided knowledge acquisition system for analyzing seismic data, WO2017152119, 8/9/2017.
  5. X. Gui, B. Shi, H. Liu and D. WuTarget Positioning And Tracking System, Device, And Positioning And Tracking Method, WO2017084240, 5/27/2017.
  6. 伍冬睿,石振华,一种用于恒河猴眼动决策解码的多视图学习方法和系统,201910586165.4, 2020-07-10
  7. 伍冬睿,谭显烽,一种适用于云计算系统的多任务处理方法,201811434588.6, 2020-07-10
  8. 伍冬睿,孟璐斌,一种基于EEG的脑机接口回归系统白盒目标攻击方法,201910896360.7, 2020-08-04

在线讲座:

  1. 脑机接口中的机器学习, 5/12/2020.
  2. Affective Computing, 12/6/2011.

媒体报道:

  1. TechXplore关于脑机接口对抗攻击的报道
  2. 中新网关于脑机接口的报道
  3. 长江日报关于脑机接口的报道
  4. 华中大新闻网关于脑机接口的报道
  5. 华中大新闻网关于脑机接口的报道
  6. 华中大新闻网关于IEEE SMC青年科学家奖的报道