姓名:伍冬睿
职称:教授
职务:人工智能与自动化学院副院长
电子邮件:drwu@hust.edu.cn
个人主页:http://faculty.hust.edu.cn/drwu
研究领域:脑机接口、机器学习、智慧医疗、计算智能、情感计算

教育经历:
2003,中国科学技术大学,自动化,学士
2006,新加坡国立大学,电子与计算机工程,硕士
2009,美国南加州大学,电子工程,博士
奖励荣誉:
- 2024 世界机器人大赛–BCI脑控机器人大赛技术赛 全国特等奖(冠军)
- 2023 IEEE Fellow
- 2023 中国自动化学会自然科学一等奖 (1/5)
- 2023《麻省理工科技评论》中国智能计算创新人物
- 2023 世界机器人大赛–BCI脑控机器人大赛技术赛 全国一等奖(亚军)
- 2023 华瑙学者杰出青年奖
- 2023 脑科学与类脑智能科创新青年30人-青年科学家
- 2023 IEEE神经系统与康复工程汇刊最佳副编奖
- 2022 教育部青年科学奖
- 2022 瀚翔青年科学家奖
- 2022 世界机器人大赛–BCI脑控机器人大赛技术赛 全国特等奖(冠军)
- 2022 湖北青年五四奖章
- 2021 中国自动化学会 青年科学家奖
- 2021 世界机器人大赛–BCI脑控机器人大赛技术赛 全国特等奖(冠军)
- 2021 IEEE 神经系统与康复工程汇刊 最佳论文奖
- 2020 USERN Prize in Formal Sciences
- 2020 湖北省杰出青年基金
- 2020 世界机器人大赛–BCI脑控机器人大赛技术赛 全国一等奖
- 2019 第三届中国脑机接口比赛技术赛 全国一等奖
- 2018 IEEE人机系统汇刊 最佳副编奖
- 2017 ICONIP最佳学生论文奖入围
- 2017 IEEE系统、人和控制论学会 青年科学家奖
- 2016 IEEE脑计划 最佳论文奖入围
- 2015 德国-美国工程前沿论坛
- 2015 美国国家科学院、工程院、医学院Kech未来计划
- 2015 IEEE情感计算汇刊 最有影响力论文奖入围
- 2014 首席信息官100项目奖
- 2014 北美模糊信息处理学会 青年科学家奖
- 2014 IEEE模糊系统汇刊 最佳论文奖
- 2013 海德堡阿贝尔、图灵、菲尔兹获奖者论坛
- 2012 首席信息官100项目奖
- 2012 IEEE计算智能协会 最佳博士论文奖
- 2005 IEEE模糊系统国际会议 最佳学生论文奖
学术任职:
- IEEE模糊系统汇刊 (IF=11.9) 主编 (2023-)
- IEEE神经系统与康复工程汇刊 (IF=4.9) 副编 (2019-)
- IEEE 系统、人和控制论学会助理副主席, 2021-2022
- IEEE 系统、人和控制论学会管理委员会委员, 2022
- IEEE模糊系统汇刊 (IF=11.9) 副编 (2011–2018; 2020-2021)
- IEEE人机系统汇刊 (IF=2.968) 副编 (2014–)
- IEEE计算智能杂志 (IF=11.356) 副编 (2017–)
- IEEE神经系统和康复工程汇刊 (IF=3.802) 副编 (2019–)
- 2013年客座主编IEEE计算智能杂志“计算智能与情感计算”特刊
- 2016年客座主编IEEE模糊系统汇刊“脑机接口”特刊
- 2018年客座主编IEEE计算智能新兴主题汇刊 “深度迁移学习进展”特刊
- 2021年客座主编IEEE计算智能杂志“智慧医疗中的元学习”特刊
- 海德堡阿贝尔、图灵、菲尔兹获奖者论坛评委
- IEEE计算智能学会武汉分会主席
- IEEE系统、人和控制论学会武汉分会副主席
- IEEE计算智能学会情感计算工作组主席
科研成果:
IEEE Fellow,IEEE模糊系统汇刊(IF=11.9)主编。主要研究方向为脑机接口、机器学习等,成果应用于中船、华为等。发表PIEEE、IEEE TPAMI、《国家科学评论》等论文200余篇,谷歌学术引用1.6万余次。连续5年入选斯坦福大学全球前2%科学家榜单。获教育部青年科学奖、中国自动化学会自然科学一等奖(排名第1)、《麻省理工科技评论》中国智能计算创新人物等,及6个最佳论文奖。2021/2022/2024中国脑机接口比赛技术赛全国冠军,央视新闻直播间采访报道。
学术专著:
- J. M. Mendel and D. Wu, “Perceptual Computing: Aiding People in Making Subjective Judgments,” Wiley-IEEE Press, April 2010. (Matlab code) (Book Review)(Google Books)
代表性论文:
Brain-Computer Interface:
- D. Wu*, “Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces,” Journal of Neural Engineering, 22:031005, 2025.
- 伍冬睿, “精准、安全、隐私保护的脑机接口”, 中国人工智能学会通讯, 15(3):29-35, 2025.
- L. Meng, X. Jiang, X. Chen, W. Liu, H. Luo and D. Wu*, “Adversarial Filtering Based Evasion and Backdoor Attacks to EEG-Based Brain-Computer Interfaces,” Information Fusion, 107:102316, 2024. (Python)
- R. Bian, H. Wu, B. Liu and D. Wu*, “Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-based BCIs,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 31:446-455, 2023. (Python)
- D. Wu, J. Xu, W. Fang, Y. Zhang, L. Yang, X. Xu*, H. Luo* and X. Yu*, “Adversarial Attacks and Defenses in Physiological Computing: A Systematic Review,” National Science Open, 1:20220023, 2022.
- D. Wu*, X. Jiang, R. Peng, “Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A Tutorial,” Neural Networks, 153:235-253, 2022. (Matlab)
- X. Zhang, D. Wu*, L. Ding*, H. Luo, C-T Lin, T-P Jung and R. Chavarriaga, “Tiny noise, big mistakes: Adversarial perturbations induce errors in Brain-Computer Interface spellers,” National Science Review, 8(4), 2021. (Python; TechXplore; TechXplore2)
- W. Zhang and D. Wu*, “Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 28(5):1117-1127, 2020. (Python; 世界机器人大会)
- H. He and D. Wu*, “Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach,” IEEE Trans. on Biomedical Engineering, 67(2):399-410, 2020. (ESI Highly Cited Paper; Matlab; IEEE Brain)
- X. Zhang and D. Wu*, “On the Vulnerability of CNN Classifiers in EEG-Based BCIs,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 27(5):814-825, 2019. (Python)
Affective Computing:
- D. Wu, B-L Lu, B. Hu* and Z. Zeng*, “Affective Brain-Computer Interfaces (aBCIs): A Tutorial,” Proceedings of the IEEE, 111(10):1314-1332, 2023.
- Y. Xu, X. Jiang and D. Wu*, “Cross-Task Inconsistency Based Active Learning (CTIAL) for Emotion Recognition,” IEEE Trans. on Affective Computing, 2024, in press. (Python)
- Y. Xu, Y. Cui, X. Jiang, Y. Yin, J. Ding, L. Li and D. Wu*, “Inconsistency-Based Multi-Task Cooperative Learning for Dimensional Emotion Recognition,” IEEE Trans. on Affective Computing, 13(4):2017-2027, 2022. (Python)
- D. Wu* and J. Huang, “Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression,” IEEE Trans. on Affective Computing, 13(1):16-27, 2022.
- S. Li, Y. Xu, H. Wu, D. Wu*, Y. Yin, J. Cao and J. Ding, “Facial Expression Recognition in-the-wild with Deep Pre-trained Models,” European Conference on Computer Vision (ECCV) ABAW Workshop, Tel Aviv, Israel, October 2022. (Python)
- 权学良, 曾志刚, 蒋建华, 张亚倩, 吕宝粮, 伍冬睿*, 基于生理信号的情感计算研究综述. 自动化学报, 47(8):1769−1784, 2021.
- D. Wu, C. Courtney, B. Lance, S. Narayanan, M. Dawson, K. Oie, and T.D. Parsons, “Optimal Arousal Identification and Classification for Affective Computing: Virtual Reality Stroop Task,” IEEE Trans. on Affective Computing, 1(2):109-118, 2010. (Top Accessed Article; IEEE Trans. on Affective Computing Most Influential Paper Award Finalist)
Machine Learning:
- L. Deng, Y. Wang, H. Wang, X. Ma, X. Du, X. Zheng and D. Wu*, “Time-Aware Attention-Based Transformer (TAAT) for Cloud Computing System Failure Prediction,” ACM KDD, Barcelona, Spain, August 2024.
- C. Zhao, D. Wu*, J. Huang, Y. Yuan, H-T Zhang, R. Peng and Z. Shi, “BoostTree and BoostForest for Ensemble Learning,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 45(7):8110-8126, 2023. (Python)
- W. Zhang, L. Deng, L. Zhang and D. Wu*, “A Survey on Negative Transfer,” IEEE/CAA Journal of Automatica Sinica, 10(2):305-329, 2023. (Python)
- X. Zhang, H. Xiong and D. Wu, “Rethink the Connections among Generalization, Memorization, and the Spectral Bias of DNNs,” Int’l Joint Conf. on Artificial Intelligence (IJCAI), Montreal, Canada, August 2021.
- X. Zhang and D. Wu*, “Empirical Studies on the Properties of Linear Regions in Deep Neural Networks,” Int’l. Conf. on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020.
- D. Wu*, Y. Yuan, J. Huang and Y. Tan*, “Optimize TSK Fuzzy Systems for Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound (MBGD-RDA),” IEEE Trans. on Fuzzy Systems, 28(5):1003-1015, 2020. (Matlab)
- D. Wu* and J.M. Mendel, “Patch Learning,” IEEE Trans. on Fuzzy Systems, 28(9):1996-2008, 2020. (Matlab; IEEE CIS Publication Spotlight)
- D. Wu, C-T Lin, J. Huang* and Z. Zeng*, “On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression,” IEEE Trans. on Fuzzy Systems, 28(10):2570-2580, 2020.
- D. Wu*, C-T Lin and J. Huang*, “Active Learning for Regression Using Greedy Sampling,” Information Sciences, 474:90-105, 2019. (Matlab)
- D. Wu, “Pool-based sequential active learning for regression,” IEEE Trans. on Neural Networks and Learning Systems, 30(5): 1348-1359, 2019. (Matlab)
Smart Healthcare:
- Z. Wang, S. Li and D. Wu*, “Canine EEG Helps Human: Cross-Species and Cross-Modality Epileptic Seizure Detection via Multi-Space Alignment,” National Science Review, 12:nwaf086, 2025. (Python)
- J. An, R. Peng, Z. Du, H. Liu, F. Hu, K. Su* and D. Wu*, “Sparse Knowledge Sharing (SKS) for Privacy-Preserving Domain Incremental Seizure Detection,” Journal of Neural Engineering, 22(2):026003, 2025. (Python)
- R. Peng, Z. Du, C. Zhao, J. Luo, W. Liu, X. Chen* and D. Wu*, “Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 32:831-839, 2024. (Python)
- Z. Du, R. Peng, W. Liu, W. Li* and D. Wu*, “Mixture of Experts for EEG-Based Seizure Subtype Classification,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 31:4781-4789, 2023. (Python)
- Z. Wang, W. Zhang, S. Li, X. Chen and D. Wu*, “Unsupervised Domain Adaptation for Cross-Patient Seizure Classification,” Journal of Neural Engineering, 20(6):066002, 2023. (Python)
- R. Peng, C. Zhao, J. Jiang, G. Kuang, Y. Cui, Y. Xu, H. Du, J. Shao*, and D. Wu*, “TIE-EEGNet: Temporal Information Enhanced EEGNet for Seizure Subtype Classification,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 30:2567-2576, 2022. (Python)
- 彭睿旻, 江军, 匡光涛, 杜浩, 伍冬睿*, 邵剑波. 基于EEG的癫痫自动检测: 综述与展望. 自动化学报, 48(2):335-350, 2022.