论文
Complete Publication List
Google Scholar Profile
Brain-Computer Interface:
-
D. Wu*, “Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces,” Journal of Neural Engineering, 22:031005, 2025.
-
伍冬睿, “精准、安全、隐私保护的脑机接口”, 中国人工智能学会通讯, 15(3):29-35, 2025.
-
L. Meng, X. Jiang, X. Chen, W. Liu, H. Luo and D. Wu*, “Adversarial Filtering Based Evasion and Backdoor Attacks to EEG-Based Brain-Computer Interfaces,” Information Fusion, 107:102316, 2024. (Python)
-
R. Bian, H. Wu, B. Liu and D. Wu*, “Small Data Least-Squares Transformation (sd-LST) for Fast Calibration of SSVEP-based BCIs,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 31:446-455, 2023. (Python)
-
D. Wu, J. Xu, W. Fang, Y. Zhang, L. Yang, X. Xu*, H. Luo* and X. Yu*, “Adversarial Attacks and Defenses in Physiological Computing: A Systematic Review,” National Science Open, 1:20220023, 2022.
-
D. Wu*, X. Jiang, R. Peng, “Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A Tutorial,” Neural Networks, 153:235-253, 2022. (Matlab)
-
X. Zhang, D. Wu*, L. Ding*, H. Luo, C-T Lin, T-P Jung and R. Chavarriaga, “Tiny noise, big mistakes: Adversarial perturbations induce errors in Brain-Computer Interface spellers,” National Science Review, 8(4), 2021. (Python; TechXplore; TechXplore2)
-
W. Zhang and D. Wu*, “Manifold Embedded Knowledge Transfer for Brain-Computer Interfaces,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 28(5):1117-1127, 2020. (Python; 世界机器人大会)
-
H. He and D. Wu*, “Transfer Learning for Brain-Computer Interfaces: A Euclidean Space Data Alignment Approach,” IEEE Trans. on Biomedical Engineering, 67(2):399-410, 2020. (ESI Highly Cited Paper; Matlab; IEEE Brain; Best Paper Award)
-
X. Zhang and D. Wu*, “On the Vulnerability of CNN Classifiers in EEG-Based BCIs,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 27(5):814-825, 2019. (Python)
Affective Computing:
-
D. Wu, B-L Lu, B. Hu* and Z. Zeng*, “Affective Brain-Computer Interfaces (aBCIs): A Tutorial,” Proceedings of the IEEE, 111(10):1314-1332, 2023.
-
Y. Xu, X. Jiang and D. Wu*, “Cross-Task Inconsistency Based Active Learning (CTIAL) for Emotion Recognition,” IEEE Trans. on Affective Computing, 2024, in press. (Python)
-
Y. Xu, Y. Cui, X. Jiang, Y. Yin, J. Ding, L. Li and D. Wu*, “Inconsistency-Based Multi-Task Cooperative Learning for Dimensional Emotion Recognition,” IEEE Trans. on Affective Computing, 13(4):2017-2027, 2022. (Python)
-
D. Wu* and J. Huang, “Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression,” IEEE Trans. on Affective Computing, 13(1):16-27, 2022.
-
S. Li, Y. Xu, H. Wu, D. Wu*, Y. Yin, J. Cao and J. Ding, “Facial Expression Recognition in-the-wild with Deep Pre-trained Models,” European Conference on Computer Vision (ECCV) ABAW Workshop, Tel Aviv, Israel, October 2022. (Python)
-
权学良, 曾志刚, 蒋建华, 张亚倩, 吕宝粮, 伍冬睿*, 基于生理信号的情感计算研究综述. 自动化学报, 47(8):1769−1784, 2021.
-
D. Wu, C. Courtney, B. Lance, S. Narayanan, M. Dawson, K. Oie, and T.D. Parsons, “Optimal Arousal Identification and Classification for Affective Computing: Virtual Reality Stroop Task,” IEEE Trans. on Affective Computing, 1(2):109-118, 2010. (Top Accessed Article; IEEE Trans. on Affective Computing Most Influential Paper Award Finalist)
Machine Learning:
-
L. Deng, R. Xu, Y. Wang, X. Du, X. Ma, X. Zheng and D. Wu*, “LMID: A Comprehensive multimodal Dataset for Failure Prediction in Cloud Computing Systems,” ACM KDD, Jeju, South Korea, August 2026.
-
L. Deng, Y. Wang, H. Wang, X. Ma, X. Du, X. Zheng and D. Wu*, “Time-Aware Attention-Based Transformer (TAAT) for Cloud Computing System Failure Prediction,” ACM KDD, Barcelona, Spain, August 2024.
-
C. Zhao, D. Wu*, J. Huang, Y. Yuan, H-T Zhang, R. Peng and Z. Shi, “BoostTree and BoostForest for Ensemble Learning,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 45(7):8110-8126, 2023. (Python)
-
W. Zhang, L. Deng, L. Zhang and D. Wu*, “A Survey on Negative Transfer,” IEEE/CAA Journal of Automatica Sinica, 10(2):305-329, 2023. (Python; Norbert Wiener Review Award)
-
X. Zhang, H. Xiong and D. Wu, “Rethink the Connections among Generalization, Memorization, and the Spectral Bias of DNNs,” Int’l Joint Conf. on Artificial Intelligence (IJCAI), Montreal, Canada, August 2021.
-
X. Zhang and D. Wu*, “Empirical Studies on the Properties of Linear Regions in Deep Neural Networks,” Int’l. Conf. on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020.
-
D. Wu*, Y. Yuan, J. Huang and Y. Tan*, “Optimize TSK Fuzzy Systems for Regression Problems: Mini-Batch Gradient Descent with Regularization, DropRule and AdaBound (MBGD-RDA),” IEEE Trans. on Fuzzy Systems, 28(5):1003-1015, 2020. (Matlab)
-
D. Wu* and J.M. Mendel, “Patch Learning,” IEEE Trans. on Fuzzy Systems, 28(9):1996-2008, 2020. (Matlab; IEEE CIS Publication Spotlight)
-
D. Wu, C-T Lin, J. Huang* and Z. Zeng*, “On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks, Mixture of Experts, CART, and Stacking Ensemble Regression,” IEEE Trans. on Fuzzy Systems, 28(10):2570-2580, 2020.
-
D. Wu*, C-T Lin and J. Huang*, “Active Learning for Regression Using Greedy Sampling,” Information Sciences, 474:90-105, 2019. (Matlab)
-
D. Wu, “Pool-based sequential active learning for regression,” IEEE Trans. on Neural Networks and Learning Systems, 30(5): 1348-1359, 2019. (Matlab)
Smart Healthcare:
-
Z. Wang, S. Li and D. Wu*, “Canine EEG Helps Human: Cross-Species and Cross-Modality Epileptic Seizure Detection via Multi-Space Alignment,” National Science Review, 12:nwaf086, 2025. (Python)
-
J. An, R. Peng, Z. Du, H. Liu, F. Hu, K. Su* and D. Wu*, “Sparse Knowledge Sharing (SKS) for Privacy-Preserving Domain Incremental Seizure Detection,” Journal of Neural Engineering, 22(2):026003, 2025. (Python)
-
R. Peng, Z. Du, C. Zhao, J. Luo, W. Liu, X. Chen* and D. Wu*, “Multi-Branch Mutual-Distillation Transformer for EEG-Based Seizure Subtype Classification,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 32:831-839, 2024. (Python)
-
Z. Du, R. Peng, W. Liu, W. Li* and D. Wu*, “Mixture of Experts for EEG-Based Seizure Subtype Classification,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 31:4781-4789, 2023. (Python)
-
Z. Wang, W. Zhang, S. Li, X. Chen and D. Wu*, “Unsupervised Domain Adaptation for Cross-Patient Seizure Classification,” Journal of Neural Engineering, 20(6):066002, 2023. (Python)
-
R. Peng, C. Zhao, J. Jiang, G. Kuang, Y. Cui, Y. Xu, H. Du, J. Shao*, and D. Wu*, “TIE-EEGNet: Temporal Information Enhanced EEGNet for Seizure Subtype Classification,” IEEE Trans. on Neural Systems and Rehabilitation Engineering, 30:2567-2576, 2022. (Python)
-
彭睿旻, 江军, 匡光涛, 杜浩, 伍冬睿*, 邵剑波. 基于EEG的癫痫自动检测: 综述与展望. 自动化学报, 48(2):335-350, 2022.

