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Traditional Bias-Variance Trade-off
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Bias-Variance Trade-off in DNNs
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Reference: P. Nakkiran et al., Deep double descent: Where bigger models and more data hurt. ICLR 2020



Generalization of DNNs

* Over-parameterized networks have powerful expressivity to completely
memorize all training examples with random labels, yet they can still
generalize well on normal examples

* Explicit regularization may improve generalization, but is neither
necessary nor by itself sufficient for controlling generalization error

v’ Explicit regularization: dropout, weight-decay, data augmentation
v Implicit regularization: early stopping, batch normalization, stochastic

gradient descent (SGD)

Reference: C. Zhang, et al., Understanding deep learning requires rethinking generalization. ICLR 2017 &



The Role of SGD in DNN Training

SGD has an inductive bias to search the hypothesises which show excellent
generalization performances:

* DNNs learn patterns first, and then use brute-force memorization to fit the noise
hard to generalize [1]

* SGD on DNNs learns functions of increasing complexity gradually [2]

* Spectral bias (frequency principle) of DNNs [3,4]: Lower frequencies in the input
space are learned first and then the higher ones. Overfitting happens when the
complexity of models keeps increasing or high-frequency components remain
being introduced

References:

[1] D. Arpit et al., A closer look at memorization in deep networks. ICML 2017

[2] D. Kalimeris et al., SGD on neural networks learns functions of increasing complexity. NeurlPS 2019
[3] N. Rahaman et al., On the spectral bias of neural networks. ICML 2019

[4] Z-Q Xu et al., Training behavior of deep neural network in frequency domain, NeurlPS 2019




Epoch-wise Double Descent

* Previous finding: The learning bias in training DNNs is monotonic, e.g., from simple to
complex or from low frequencies to high frequencies

* Conflicting with epoch-wise double descent [1] : The generalization error first has a
classical U-shaped curve and then follows a second descent

 According to spectral bias, with higher-frequency components being gradually
introduced in training, the generalization performance should deteriorate
monotonically due to the memorization of noise
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Reference: [1] P. Nakkiran et al., Deep double descent: Where bigger models and more data hurt. ICLR 2020



Our Main Findings

e At a certain epoch, usually around the start of the 2nd descent, while the perturbed
part is still being memorized, the high-frequency components begin to diminish

e Reason: The prediction
surface off the training data learn memorize second descent 0

(o)}
o

manifold becomes flatter and -2
more regularized in the late > _g
training stage, which c 40 5 I
improves the generalization > S ~10
performance of models on £ 20 -12
the test samples not covered . —14
by the training data 0 : 16
manifold. As a result, the 10° 10° 10° 10°

second descent of the test epoch

error happens.

Reference: X. Zhang, H. Xiong and D. Wu, "Rethink the Connections among Generalization, Memorization, and
the Spectral Bias of DNNs," IJCAI 2021.



Spectrum of a DNN

Denote the input point sampled from a distribution D by & ~ D, a normal-
ized random direction by wv,, the c-th logit output of a DNN by f.(x), where
ce{l,2,...,C} and C is the number of classes.

We evenly sample N points from [ — hv,, x + hv,] to perform the discrete
Fourier transform, where A bounds the area.

The Fourier transform of f.(x) is then:

N
2n — N —1
z ({B 4 n . ]’L’U;I;) e Z27TN]€

We then add up the spectra across the dataset and the logit outputs to
illustrate the local variation from a global viewpoint:

1 & ~
— —N"Eoup|f
5 C; D

fcw

‘ 2

10



Epoch-wise Double Descent

Perturbed set: Randomly shuffled 10% labels of the training set to strengthen double descent
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The test error decreases quickly at the beginning of the training, whereas the error on the
perturbed set remains high: the models effectively learn the patterns of the data in this period

As the training goes on, the error on the perturbed set decreases rapidly, along with a little
increase of the test error. In this period, the models start to memorize the noise, which leads to

overfitting on the training set

Epoch-wise double descent: If the models are trained with more epochs, the peak of the test error
occurs, just around the epoch when the model memorizes the noise, and then the test error steps
into the second descent

11



Non-Monotonicity of the Spectral Bias

Perturbed set: Randomly shuffled 10% labels of the training set to strengthen double descent
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The models first introduce low-frequency components and then the high-
frequency ones

The ratio of the high-frequency components increases rapidly when the
models try to memorize the noise

Along the 2nd descent of the test error, the high-frequency components begin
to diminish, violating the claims about the monotonicity of the spectral bias



Why Do High-Frequency Components Diminish?
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Summary

* We studied the frequency components of DNNs in the data
point neighbors via Fourier analysis

* The monotonicity of the spectral bias does not always hold,
because the off-manifold prediction surface may reduce its high-
frequency components in the late training stage

* Though perturbed points on the training data manifold remain
memorized by the on-manifold prediction surface, this implicit
regularization on the off-manifold prediction surface can still
help improve the generalization performance

Reference: X. Zhang, H. Xiong and D. Wu, "Rethink the Connections among Generalization, Memorization, and
the Spectral Bias of DNNs," 1JCAI 2021.



1. Generalization, Memorization,
and Spectral Bias of DNNs

2. Optimization Variance (OV)

Reference: X. Zhang, D. Wu*, H. Xiong and B. Dai, “Optimization Variance:
Exploring Generalization Properties of DNNs," https://arxiv.org/abs/2106.01714




Main Contributions

We perform bias-variance decomposition on the test error to
explore epoch-wise double descent.

We show that for the 0/1 loss, the variance highly correlates
with the variation of the test error

We propose optimization variance (OV), which is calculated from
the training set only and correlates well with the test error

Based on the OV, we propose an approach to search for the
early stopping point without using a validation set, when the 0/1
loss is used in test



Unified Bias-Variance Decomposition

Let (x,t) be a sample drawn from the data distribution D, where € R?
denotes the d-dimensional input, and ¢t € R¢ the one-hot encoding of the label
in ¢ classes. The training set 7 = {(x;,t;)};~; ~ D" is utilized to train the
model f : R? — R¢. Let y = f(x;7) € R® be the probability output of the
model f trained on T, and L£(t,y) the loss function.

A unified bias-variance decomposition of E+[L(%,y)] is:

Er[L(t,y)] = L(t,y) +BET[L(Y,y)],
N—— N ~~ 7
Bias Variance

where [ takes different values for different loss functions, and ¥ is the expected
output:
Y= arg min ErL(y",y)].
yreRe| > yp=1y;=>0

Y minimizes the variance term, which can be regarded as the “center” or “en-
semble” of y w.r.t. different 7.
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Unified Bias-Variance Decomposition

Table 1: Bias-variance decomposition for different loss functions. The CE loss
herein is the complete form of the commonly used one, originated from the
Kullback-Leibler divergence. Z = >"; _, exp{E7[log yx]} is a normalization con-
stant independent of k. H(-) is the hard-max which sets the maximal element to
1 and others to 0. 1.,,9{-} is an indicator function which equals 1 if its argument
is true, and 0 otherwise. log and exp are element-wise operators.

Loss L(t,y) ] 16
MSE 1t —yll3 Ery 1
CE > ke telog = Zexp{Er[logyl} 1 .
20 | Lea{H(t) #H(y)}  HErHE)) Tlny(y:) i ﬁ;ﬁwﬁfy))
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Bias-Variance Decomposition on the Test Set

The bias descends rapidly
at first and then generally
converges to a low value

The variance behaves
almost exactly the same
as the test error,
mimicking even small
fluctuations of the test
error

Mainly the variance
contributes to epoch-wise
double descent
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The Variance

The variance measures the model diversity caused by different training samples
drawn from the same distribution, i.e., the outputs of DNN change according to the
sampled training set

As the gradients are usually the only information transferred from training sets to
models during the optimization of DNN, we measure the variance of a DNN
introduced by the gradients calculated from different training batches

More specifically, we'd like to develop a metric to reflect the function robustness of
DNNs to sampling noise

If the function captured by a DNN drastically varies w.r.t. different training batches,

then very likely it has poor generalization due to a large variance introduced by the
optimization procedure



Optimization Variance (OV)

For a sample (x,t) ~ D, let f(x;0) be the logit output of a DNN with
parameter 6.

Let T ~ D™ be a training batch with m samples, g : Tz — R/®l the
optimizer outputting the update of 8 based on Tp.

The function distribution F,(7p) over a training batch 75 can be approxi-
mated as f(x;0 + g(Tg)).

The variance of F,(7Tp) reflects the model diversity caused by different train-
ing batches.

Given an input « and model parameters 6, at the g-th training epoch, the
OV on « at the g-th epoch is defined as

ov.ie) & = 11/ ;6 + 9(Ts)) — By f(@: 8, + 9(Tw))1
: Er, [[1f(@: 80 + 9(T5)I13] |

If OV, (x) is very large, the models trained with different 75 may have
distinct outputs for the same input, leading to high model diversity and hence
large variance.
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OV, which is calculated from the training set only, is
capable of predicting the variation of the test accuracy
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Even unstable variations of the test accuracy can be reflected by the OV
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Application 1: Early Stopping without a Validation Set
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Figure 4: Early stopping based on test error (True) and the corresponding OV (Found). The shapes
represent different datasets, whereas the colors indicate different categories of DNNs (“CF" and
“Res" denotes “CIFAR" and “ResNet", respectively). 24



Application 2: Optimal Network Size Determination

* Train ResNet18 with
different network sizes on

. 092 n B 00008
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e The Pearson correlation Figure 5: Test accuracy and OV w.r.t.
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and the test accuracy
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Summary

* We show the variance dominates the epoch-wise double
descent, and highly correlates with the test error

* We propose optimization variance (OV), which is calculated
from the training set only but powerful enough to predict
how the test error changes during training

* OV may be used to perform early stopping without any
validation set, or to determine the optimal network size
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