
1

基于非校验集信息的
深度学习泛化性能曲线预测

伍 冬 睿
华 中 科 技 大 学

drwu@hust.edu.cn



1. Generalization, Memorization, 
and Spectral Bias of DNNs

2. Optimization Variance (OV)

Content

2



Reference: X. Zhang, H. Xiong and D. Wu, "Rethink the Connections among 
Generalization, Memorization, and the Spectral Bias of DNNs," IJCAI 2021.
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Traditional Bias-Variance Trade-off
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Bias-Variance Trade-off in DNNs

Reference: P. Nakkiran et al., Deep double descent: Where bigger models and more data hurt. ICLR 2020 5



Generalization of DNNs

Reference: C. Zhang, et al., Understanding deep learning requires rethinking generalization. ICLR 2017

• Over-parameterized networks have powerful expressivity to completely
memorize all training examples with random labels, yet they can still
generalize well on normal examples

• Explicit regularization may improve generalization, but is neither
necessary nor by itself sufficient for controlling generalization error

Explicit regularization: dropout, weight-decay, data augmentation

 Implicit regularization: early stopping, batch normalization, stochastic
gradient descent (SGD)
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The Role of SGD in DNN Training
SGD has an inductive bias to search the hypothesises which show excellent
generalization performances:

• DNNs learn patterns first, and then use brute-force memorization to fit the noise
hard to generalize [1]

• SGD on DNNs learns functions of increasing complexity gradually [2]

• Spectral bias (frequency principle) of DNNs [3,4]: Lower frequencies in the input
space are learned first and then the higher ones. Overfitting happens when the
complexity of models keeps increasing or high-frequency components remain
being introduced

References: 
[1] D. Arpit et al., A closer look at memorization in deep networks. ICML 2017
[2] D. Kalimeris et al., SGD on neural networks learns functions of increasing complexity. NeurIPS 2019
[3] N. Rahaman et al., On the spectral bias of neural networks. ICML 2019
[4] Z-Q Xu et al., Training behavior of deep neural network in frequency domain, NeurIPS 2019 7



Epoch-wise Double Descent
• Previous finding: The learning bias in training DNNs is monotonic, e.g., from simple to

complex or from low frequencies to high frequencies

• Conflicting with epoch-wise double descent [1] : The generalization error first has a
classical U-shaped curve and then follows a second descent

• According to spectral bias, with higher-frequency components being gradually
introduced in training, the generalization performance should deteriorate
monotonically due to the memorization of noise

Reference: [1] P. Nakkiran et al., Deep double descent: Where bigger models and more data hurt. ICLR 2020 8



Our Main Findings
• At a certain epoch, usually around the start of the 2nd descent, while the perturbed

part is still being memorized, the high-frequency components begin to diminish

Reference: X. Zhang, H. Xiong and D. Wu, "Rethink the Connections among Generalization, Memorization, and 
the Spectral Bias of DNNs," IJCAI 2021.

• Reason: The prediction
surface off the training data
manifold becomes flatter and
more regularized in the late
training stage, which
improves the generalization
performance of models on
the test samples not covered
by the training data
manifold. As a result, the
second descent of the test
error happens.
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Spectrum of a DNN
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Epoch-wise Double Descent

• The test error decreases quickly at the beginning of the training, whereas the error on the
perturbed set remains high: the models effectively learn the patterns of the data in this period

• As the training goes on, the error on the perturbed set decreases rapidly, along with a little
increase of the test error. In this period, the models start to memorize the noise, which leads to
overfitting on the training set

• Epoch-wise double descent: If the models are trained with more epochs, the peak of the test error
occurs, just around the epoch when the model memorizes the noise, and then the test error steps
into the second descent 11

Perturbed set: Randomly shuffled 10% labels of the training set to strengthen double descent



Non-Monotonicity of the Spectral Bias
Perturbed set: Randomly shuffled 10% labels of the training set to strengthen double descent

• The models first introduce low-frequency components and then the high-
frequency ones

• The ratio of the high-frequency components increases rapidly when the
models try to memorize the noise

• Along the 2nd descent of the test error, the high-frequency components begin
to diminish, violating the claims about the monotonicity of the spectral bias
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Why Do High-Frequency Components Diminish?
• The on-manifold spectrum keeps introducing high-

frequency components to memorize the perturbed
point

• After the perturbed point is memorized, the off-
manifold spectrum is more biased towards the low-
frequency components, resulting in a much flatter
off-manifold prediction surface

• The on-manifold accuracy slightly decreases after
memorizing the perturbed point, whereas the off-
manifold accuracy keeps increasing
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Summary

• We studied the frequency components of DNNs in the data
point neighbors via Fourier analysis

• The monotonicity of the spectral bias does not always hold,
because the off-manifold prediction surface may reduce its high-
frequency components in the late training stage

• Though perturbed points on the training data manifold remain
memorized by the on-manifold prediction surface, this implicit
regularization on the off-manifold prediction surface can still
help improve the generalization performance

Reference: X. Zhang, H. Xiong and D. Wu, "Rethink the Connections among Generalization, Memorization, and 
the Spectral Bias of DNNs," IJCAI 2021.
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Reference: X. Zhang, D. Wu*, H. Xiong and B. Dai, “Optimization Variance:  
Exploring Generalization Properties of DNNs," https://arxiv.org/abs/2106.01714
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Main Contributions

• We perform bias-variance decomposition on the test error to
explore epoch-wise double descent.

• We show that for the 0/1 loss, the variance highly correlates
with the variation of the test error

• We propose optimization variance (OV), which is calculated from
the training set only and correlates well with the test error

• Based on the OV, we propose an approach to search for the
early stopping point without using a validation set, when the 0/1
loss is used in test
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Unified Bias-Variance Decomposition
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Unified Bias-Variance Decomposition

18



Bias-Variance Decomposition on the Test Set

• The bias descends rapidly
at first and then generally
converges to a low value

• The variance behaves
almost exactly the same
as the test error,
mimicking even small
fluctuations of the test
error

• Mainly the variance
contributes to epoch-wise
double descent
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The Variance

• The variance measures the model diversity caused by different training samples
drawn from the same distribution, i.e., the outputs of DNN change according to the
sampled training set

• As the gradients are usually the only information transferred from training sets to
models during the optimization of DNN, we measure the variance of a DNN
introduced by the gradients calculated from different training batches

• More specifically, we'd like to develop a metric to reflect the function robustness of
DNNs to sampling noise

• If the function captured by a DNN drastically varies w.r.t. different training batches,
then very likely it has poor generalization due to a large variance introduced by the
optimization procedure
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Optimization Variance (OV)

21



Characteristics of OV

OV, which is calculated from the training set only, is
capable of predicting the variation of the test accuracy 22



Characteristics of OV

Even unstable variations of the test accuracy can be reflected by the OV 23



Application 1: Early Stopping without a Validation Set
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Application 2: Optimal Network Size Determination
• Train ResNet18 with 

different network sizes on 
CIFAR10 for 100 epochs with 
no label noise.

• For each convolutional layer, 
set the number of filters k/4 
(k=1,2,...,8) times the 
number of filters in the 
original model

• The Pearson correlation 
coefficient between the OV 
and the test accuracy 
reached -0.94
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Summary

• We show the variance dominates the epoch-wise double
descent, and highly correlates with the test error

• We propose optimization variance (OV), which is calculated
from the training set only but powerful enough to predict
how the test error changes during training

• OV may be used to perform early stopping without any
validation set, or to determine the optimal network size
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