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Self-Supervised Learning (SSL)

 Goal: Learn a good data representation from unlabeled data.
 Motivation: Construct supervised learning tasks out of

unsupervised datasets.

 Why use self-supervised learning?
 Data labeling is expensive, thus high-quality labeled dataset is

limited.
 Learning good representation makes it easier to transfer useful

information to a variety of downstream tasks.
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Self-Supervised Learning
 Self-supervised learning tasks are also known

as pretext tasks.

 Self-supervised learning example:
 Pretext task: Train a model to predict the

rotation degree of images (labeling is not
required)

 Downstream task: Use transfer learning to
fine-tune the learned model from the
pretext task with very few labeled examples L. Jing, et. al., "Self-supervised visual feature learning with 

deep neural networks: A survey." IEEE Trans. on Pattern 
Analysis and Machine Intelligence vol. 43, no. 11, pp. 4037-
4058, 2020
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SSL vs Supervised / Unsupervised Learning
• Supervised Learning : Learning with labeled data
 Collect a large dataset, manually label the data, train a model, deploy
 Learned feature representations from large labeled datasets are often 

transferred via pre-trained models to smaller domain-specific 
datasets

• Unsupervised Learning : Learning with unlabeled data
 Discover patterns in data via clustering, density estimation, 

dimensionality reduction, etc.

• Self-supervised Learning : Representation learning with unlabeled data
 Learn useful feature representations from unlabeled data through pretext tasks
 Self-supervised: Create its own supervision (i.e., without supervision, without labels)
 Self-supervised learning is one category of unsupervised learning

L. Ericsson, et, al., "Self-Supervised 
Representation Learning: Introduction, 
advances, and challenges," in IEEE Signal 
Processing Magazine, vol. 39, no. 3, pp. 
42-62, 2022
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SSL vs Unsupervised Learning/ 
Transfer Learning/ Data Augmentation

• Self-supervised Learning versus Unsupervised Learning 
– Self-supervised learning 

• Aims to extract useful feature representations from raw unlabeled data through pretext tasks
• Apply the feature representation to improve the performance of downstream tasks

– Unsupervised learning
• Discover patterns in unlabeled data, e.g., for clustering or dimensionality reduction

• Self-supervised Learning versus Data Augmentation
– For Self-supervised learning, image rotation of shifting are used for feature learning in raw unlabeled data
– Data augmentation is often used as a regularization in supervised learning

• Self-supervised Learning versus Transfer Learning 
– Self-supervised learning is a type of transfer learning implemented in an unsupervised manner
– Transfer learning is often implemented in a supervised manner
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What’s Possible with Self-Supervised Learning?

7
https://openai.com/blog/dall-e-introducing-outpainting/

“The birthplace of the American national 
anthem” [MASK]

“The birthplace of the American national 
anthem, "The Star-Spangled Banner," lies in 
Baltimore, Maryland.”

“We want to decide whether the sentiment of the review is 
"positive" or "negative". 

Review: "While this restaurant is popular on Google, I 
absolutely disliked it". 

The sentiment of this review is” [MASK]

“...is negative.”

Sentiment classification

Answering questions

Outpainting

Video segmentation and unlabeled visual region tracking
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Early Works of Self-Supervised Learning (SSL)

Self-organizing neural networks (Becker & Hinton 1992)Neural Autoregressive Distribution Estimator (Larochelle et al. 2011)

Denoising Autoencoder (Vincent et al. 2008)Contrastive divergence (Hinton 2000; Hinton 2002)

Restricted Boltzmann Machines Autoencoders

Siamese networksAutoregressive Modeling
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Methods for Framing SSL: Self-prediction

11

Self-prediction: Construct prediction tasks within every individual data sample, to 
predict a part of the data from the rest while pretending we don’t know that part.

The part to be predicted pretends to be missing

?

“Intra-sample” prediction
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Self-prediction: Autoregressive Generation

12

Autoregressive Model: Predict future behavior based on past behavior. Any data that 
come with an innate sequential order can be modeled with regression.

Examples:
• Audio (WaveNet, WaveRNN)
• Autoregressive language modeling (GPT, XLNet)
• Images in raster scan (PixelCNN, PixelRNN, iGPT)
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Self-prediction: Masked Generation

13

Masked Generation: Mask a random portion of information and pretend it is missing, 
irrespective of the natural sequence. The model learns to predict the missing portion 
given other unmasked information.

Examples:
• Masked language modeling (BERT)
• Images with masked patch (denoising autoencoder, context autoencoder, colorization)
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Self-prediction: Innate Relationship Prediction

14

Innate Relationship Prediction: Some transformation (e.g. segmentation, rotation) of one 
data sample should maintain the original information or follow the desired innate logic.

Examples:
• Order of image patches (e.g., relative position, jigsaw puzzle)
• Image rotation
• Counting features across patches
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Methods for Framing SSL: Contrastive Learning

15

Contrastive learning : learn such an embedding space in which similar sample pairs stay 
close to each other while dissimilar ones are far apart.

The multiple samples can be selected from the dataset based on some known logics
(e.g. the order of words / sentences), or fabricated by altering the original version.

re
la

tio
ns

hi
p?

“Inter-sample” prediction
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Contrastive Learning: Inter-sample Classification

16

Inter-sample classification : Given both similar (“positive”) and dissimilar (“negative”) 
candidates, to identify which ones are similar to the anchor data point is a classification task.

To construct a set of data point candidates:

• The original input and its distorted version
• Data that captures the same target from different views

Common loss functions:
• Contrastive loss (Chopra et al. 2005)
• Triplet loss (Schroff et al. 2015; FaceNet)
• Lifted structured loss (Song et al. 2015)
• Multi-class n-pair loss (Sohn 2016)
• Noise contrastive estimation (“NCE”; Gutmann & Hyvarinen 2010)
• InfoNCE (van den Oord, et al. 2018)
• Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, Frosst et al. 2019)
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Contrastive Learning: Common Loss Functions

17

Contrastive loss: Encodes data into an embedding vector such that examples from the same 
class have similar embeddings and samples from different classes have different ones.

Triplet loss: learns to minimize the distance between the anchor x and positive x+ and 
maximize the distance between the anchor x and negative x- at the same time.
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Contrastive Learning: Common Loss Functions

18

N-pair loss: Generalizes triplet loss to include comparison with multiple negative samples.

Lifted structured loss: utilizes all the pairwise edges within one training batch for better 
computational efficiency.

where
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Contrastive Learning: Common Loss Functions

19

Noise Contrastive Estimation (NCE): running logistic regression to tell apart the target data 
from noise.

Soft-Nearest Neighbors Loss: extending the loss function to include multiple positive samples 
given known labels

InfoNCE: using categorical cross-entropy loss to identify the positive sample amongst a set 
of unrelated noise samples

, where

target sample distribution

noise distribution

, where the density function is
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Contrastive Learning: Feature Clustering

20

Feature Clustering : Find similar data samples by clustering them with learned features.

Use clustering algorithms 
to assign pseudo labels to 
samples such that we can 
run intra-sample 
contrastive learning.

Examples:
• DeepCluster (Caron et al 2018)
• InterCLR (Xie et al 2021)
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Contrastive Learning: Multiview Coding

21

 Apply the InfoNCE objective to two or 
more different views of input data：

Examples:
• AMDIM (Bachman et al. 2019)
• Contrastive multiview coding (Tian et al. 2019)

 Apply the InfoNCE objective to two or 
more different modalities of input data：

Examples:
• CLIP (Radford et al. 2021)
• ALIGN (Jia et al. 2021)
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Pretext Tasks 

23
L. Ericsson, et, al., "Self-Supervised Representation Learning: Introduction, advances, and challenges," 
in IEEE Signal Processing Magazine, vol. 39, no. 3, pp. 42-62, 2022
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Masked Prediction

24

I is the set of indices inside the square-mask region, the pixels in the masked region will correspond to zi, 
and the pixels outside the masked region will be xi. Given xi, zi, the model can now be trained to minimize, 
e.g., the following reconstruction loss like mean square error:
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Word2Vec

25

• Word2Vec, the most important algorithm in field 
of nature language processing

• Word embeddings: to map words to a d
dimensional vector. 

• Pretext task: find embeddings such that the 
words that co-occur are close. 

• Loss function (skip-gram): For a corpus with    words, 
minimize the negative log likelihood of the context word   
given the center word 

Training word embeddings using 2 architectures:
• Continuous bag-of-words (CBOW): predict the center 
word
• Skip-gram: predict the context words
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Word2Vec

26

Example: using the skip-gram method (predict context 
words), compute the probability of ”knife” given the 
center word “fork”.
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Context Encoder

27Deepak Pathak et al. Context Encoders: Feature Learning by Inpainting. CVPR 2016

• Predict missing pieces, also known as context encoders, or inpainting
• Training data: remove a random region in images
• Pretext task: fill in a missing piece in the image

– The model needs to understand the content of the entire image, and produce a plausible 
replacement for the missing piece
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Context Encoder

28Gidaris, Spyros et al. Unsupervised Representation Learning by Predicting Image Rotations. ICLR 2018

• The initially considered model uses an encoder-decoder architecture 

• The reconstruction loss alone couldn't capture fine details in the missing region

– The encoder and decoder have multiple Conv 
layers, and a shared central fully-connected layer

– The output of the decoder is the reconstructed 
input image

– A Euclidean ℓ2 distance is used as the 
reconstruction loss function ℒrec

• Improvement was achieved by adding a GAN 
branch, where the generator of the GAN learns to 
reconstruct the missing piece
– The overall loss function is a weighted 

combination of the reconstruction and the GAN 
losses, i.e., ℒ = 𝜆𝜆recℒrec+𝜆𝜆ganℒgan
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Transformation Prediction

29

TP methods apply a transformation that maps from canonical to alternative views and train the model to predict 
which transformation has been applied. Given a raw input in its canonical view, , a transformation,        is 
applied to produce                            , which is fed into the model. The learning objective can be, e.g., a cross-
entropy loss, in the case of categorical transformation parameters.

Given a patch, predict 
which one of 8
neighboring locations 
another patch is in

Output a probability 
vector per patch 
index out of a 
predefined set of 
permutations
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Image Rotation

30Gidaris, Spyros et al. Unsupervised Representation Learning by Predicting Image Rotations. ICLR 2018

• Geometric transformation recognition 
• Training data: images rotated by a multiple of 90° at random

– This corresponds to four rotated images at 0°, 90°, 180°, and 270°
• Pretext task: train a model to predict the rotation degree that was applied

– Therefore, it is a 4-class classification problem
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Image Rotation

31

• A single ConvNet model is used to predict one of the 
four rotations

• The model needs to understand the location and 
type of the objects in images to determine the 
rotation degree

• Evaluation on the PASCAL VOC dataset for 
classification, detection, and segmentation tasks
– The model (RotNet) is trained in SSL manner, and 

fine-tuned afterwards
– RotNet outperformed all other SSL methods
– The learned features are not as good as the 

supervised learned features based on transfer 
learning from ImageNet, but they demonstrate a 
potential

Supervised 
feature learning

Proposed self-
supervised  
feature learning



Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Image Jigsaw Puzzle

32Noroozi (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles

• Predict patches position in a jigsaw puzzle
• Training data: 9 patches extracted in images (similar to the previous approach) 
• Pretext task: predict the positions of all 9 patches

– Instead of predicting the relative position of only 2 patches, this approach uses the grid of 3×3 patches 
and solves a jigsaw puzzle
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Image Jigsaw Puzzle

33

• A ConvNet model passes the individual patches through the same Conv layers that have shared weights
– The features are combined and passed through fully-connected layers
– Output is the positions of the patches (i.e., the shuffling permutation of the patches)
– The patches are shuffled according to a set of 64 predefined permutations

• Namely, for 9 patches, in total there are 362,880 possible puzzles
• The authors used a small set of 64 shuffling permutations with the highest hamming distance
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Image Jigsaw Puzzle

34

• The model needs to learn to identify how parts are assembled in an object, relative positions of 
different parts of objects, and shape of objects
– The learned representations are useful for downstream tasks in classification and object detection
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Instance Discrimination

35

One input, is chosen to be the anchor and is compared with a positive sample, , which is 
another view or transform of the same input. The anchor is also contrasted with a negative sample, which is a view of 
a different image,                         . The samples are then encoded by the feature extractor to obtain their 
representations,                                                                         . A similarity function      is used to measure the similarity
between positive (the anchor with a positive sample) and negative pairs (the anchor with a negative sample). The 
system is then trained to pull positive pairs closer and push negative pairs apart. A general formulation of the 
contrastive loss used in many works is



Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Contrastive Predictive Coding

36Oord, Aäron van den et al. Representation Learning with Contrastive Predictive Coding. ArXiv abs/1807.03748 (2018)

• Contrastive Predictive Coding (CPC), The name of the approach is based on the following:
– Contrastive: representations are learned by contrasting positive and negative examples, which is implemented 

with the NCE loss
– Predictive: the model needs to predict future patches in the sequences of overlapping patches for a given 

position in the sequence
– Coding: the model performs the prediction in the latent space, i.e., using code representations from an encoder 

and an auto-regressive model

An example with images from MNIST, where a positive sequence contains 
sorted numbers, and a negative sequence contains random numbers
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Contrastive Predictive Coding

37

• Contrastive Predictive Coding (CPC)
• Training data: extracted patches from input images
• Pretext task: predict the order for a sequence of patches using 

contrastive learning
– E.g., how to predict the next (future) patches based on encoded 

information of previous (past) patches in the image 
• The approach was implemented in different domains: speech audio, 

images, natural language, and reinforcement learning
• Contrastive learning is based on grouping similar examples together

– E.g., cluster the shown images into groups of similar images
• Noise-Contrastive Estimation (NCE) loss is commonly used in 

contrastive learning
– The NCE loss minimizes the distance between similar images 

(positive examples) and maximizes the distance to dissimilar 
images (negative examples)

– Other used terms are InfoNCE loss, or contrastive cross-entropy 
loss

– (A forthcoming slide explains the NCE loss in more details)
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Contrastive Predictive Coding

38

• For an input image resized to 256×256 pixels, the 
authors extracted a grid of 7×7 patches of size 64×64 
pixels with 50% overlap between the patches
– Therefore, there are 49 overlapping patches in 

total for each image • An encoder genc is used to project each patch into a 
low-dimensional latent space 
– The latent representation obtained by encoders is 

often referred to as code (or context)
• E.g., the leftmost portion of the image depicts 

extracting patches of 64×64 pixels size with 50% 
overlap between the patches 
– A ResNet-101 encoder is used for projecting the 

patch 𝑥𝑥𝑡𝑡 into a code representation 𝑧𝑧𝑡𝑡
– The middle image shows the outputs of the 

encoder genc for each patch, 𝑧𝑧𝑡𝑡 = 𝑔𝑔enc 𝑥𝑥𝑡𝑡
– For the 49 patches (7×7 grid), the outputs are 

7×7×1,024 tensors (i.e., 𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧49)
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Contrastive Predictive Coding

39

• CPC considers the patches as an ordered sequence (e.g., like video frames)
– An autoregressive model gar is used to predict the future patches in the sequence

• The output of the autoregressive model for the shown red patch 𝑐𝑐𝑡𝑡 (in row 3 and column 4) is the 
sum of all vectors 𝑔𝑔ar 𝑧𝑧≤𝑡𝑡 for the previous patches in the sequence (e.g., all patches in the above 
rows and right columns of the red patch)

– The code representation of the patch 𝑐𝑐𝑡𝑡 is used to predict the blue patches in the next rows and the 
same column as the red patch, denoted 𝑧𝑧𝑡𝑡+2, 𝑧𝑧𝑡𝑡+3 and 𝑧𝑧𝑡𝑡+4

– The authors predicted up to five rows for each patch in the grid
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SimCLR

40C. Ting et al. “A Simple Framework for Contrastive Learning of Visual Representations.” ArXiv abs/2002.05709 (2020)

• SimCLR, a Simple framework for Contrastive Learning of Representations
• SimCLR is an approach for contrastive learning, similar to CPC
• It achieved state-of-the-art in SSL, surpassing the Top-1 accuracy by a supervised ResNet-50 on ImageNet
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SimCLR

41

• Approach:
– Randomly sample a mini-batch of n inputs 𝒙𝒙, and apply two different data augmentation operations 
𝑡𝑡 and 𝑡𝑡𝑡, resulting in 2𝑛𝑛 samples �𝒙𝒙𝑖𝑖 = 𝑡𝑡 𝒙𝒙 and �𝒙𝒙𝒋𝒋 = 𝑡𝑡𝑡 𝒙𝒙

• Data augmentation includes random crop, resize with random flip, color distortions, and Gaussian blur (data 
augmentation is crucial for contrastive learning)

– Apply a base encoder 𝑓𝑓 � to �𝒙𝒙𝑖𝑖 and �𝒙𝒙𝒋𝒋 to obtain the code representations 𝒉𝒉𝑖𝑖 = 𝑓𝑓 �𝒙𝒙𝑖𝑖 and 𝒉𝒉𝒋𝒋 = 𝑓𝑓 �𝒙𝒙𝒋𝒋
– Apply another prediction head encoder 𝑔𝑔 � (one fully-connected layer) to 𝒉𝒉𝑖𝑖 and 𝒉𝒉𝒋𝒋 to obtain the 

code representations 𝒛𝒛𝑖𝑖 = 𝑔𝑔 𝒉𝒉𝑖𝑖 and 𝒛𝒛𝑗𝑗 = 𝑔𝑔 𝒉𝒉𝑗𝑗

Base encoder f: 
ResNet + global average pooling

Prediction head g:
One fully-connected layer
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SimCLR

42

• For one positive pair of samples 𝒛𝒛𝑖𝑖 and 𝒛𝒛𝑗𝑗 and for the remaining 2 𝑛𝑛 − 1 samples treated as negative, a 
cosine similarity is calculated as 

sim 𝒛𝒛𝑖𝑖 , 𝒛𝒛𝑗𝑗 =
𝒛𝒛𝑖𝑖𝑇𝑇𝒛𝒛𝑗𝑗
𝒛𝒛𝑖𝑖 𝒛𝒛𝑖𝑖

• The contrastive prediction task aims for a given sample �𝒙𝒙𝑖𝑖 to identify a positive pairing sample �𝒙𝒙𝒋𝒋
• The NCE loss for the instances �𝒙𝒙𝑖𝑖 and �𝒙𝒙𝒋𝒋 is calculated as:

ℒ𝑖𝑖,𝑗𝑗 = − log
exp sim 𝒛𝒛𝑖𝑖 , 𝒛𝒛𝑗𝑗 /𝜏𝜏

∑𝑘𝑘=12𝑛𝑛 𝟏𝟏 𝑘𝑘≠𝑖𝑖 exp sim 𝒛𝒛𝑖𝑖 , 𝒛𝒛𝑗𝑗 /𝜏𝜏

– 𝟏𝟏 𝑘𝑘≠𝑖𝑖 has a value of 1 if 𝑘𝑘 ≠ 𝑖𝑖 and 0 otherwise, 𝜏𝜏 is a temperature hyperparameter
• The overall loss ∑𝑖𝑖,𝑗𝑗 ℒ𝑖𝑖,𝑗𝑗 is calculated across all positive pairs �𝒙𝒙𝑖𝑖 and �𝒙𝒙𝒋𝒋 in a mini-batch
• For downstream tasks, the head 𝑔𝑔 � is discarded and only the representation 𝒉𝒉𝑖𝑖 is used

SimCLR outperformed supervised 
models on most datasets
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Clustering

43

• Deep clustering of images
• Training data: clusters of images based 

on the content
– E.g., clusters on mountains, temples, etc. 

• Pretext task: predict the cluster to which 
an image belongs

M. Caron, et al., “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
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Clustering

44

A common approach to self-supervised clustering is by alternating two steps: 
1) optimizing the clustering objective by assigning data points into clusters based on their representations 
2) optimizing the model by using the cluster assignments as the pseudo-labels in updates.
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Deep Clustering

45

• Deep clustering of images

• Training data: clusters of images 
based on the content

– E.g., clusters on mountains, temples, etc. 

• Pretext task: predict the cluster to 
which an image belongs

M. Caron, et al., “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
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Deep Clustering

46

• The architecture for SSL is called deep clustering
• The model treats each cluster as a separate class
• The output is the number of the cluster (i.e., cluster label) for an input image
• The authors used k-means for clustering the extracted feature maps

• The model needs to learn the content in the images in order to assign them to the 
corresponding cluster
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Natural Language Processing

48

• Self-supervised learning has driven the recent progress in the Natural Language 
Processing (NLP) field 
– Models like ELMO, BERT, RoBERTa, ALBERT, Turing NLG, GPT-3 have demonstrated immense 

potential for automated NLP

• Employing various pretext tasks for leaning from raw text produced rich feature 
representations, useful for different downstream tasks

• Pretext tasks in NLP:
– Predict the center word given a window of surrounding words

• The word highlighted with green color needs to be predicted

– Predict the surrounding words given the center word

A. Chaudhary. “Self Supervised Representation Learning in NLP,” 2020
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Natural Language Processing

49

• Pretext tasks in NLP:
– From three consecutive sentences, predict the previous and the next sentence, given the center 

sentence

– Predict the previous or the next word, given surrounding words

– Predict randomly masked words in sentences

A. Chaudhary. “Self Supervised Representation Learning in NLP,” 2020
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• Pretext tasks in NLP:
– Predict if the ordering of two sentences is correct

– Predict the order of words in a randomly shuffled sentence

– Predict masked sentences in a document

A. Chaudhary. “Self Supervised Representation Learning in NLP,” 2020
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Large Language Model with Transformer
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J. Devlin, et, al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
," 2018, arXiv preprint arXiv:1810.04805. https://github.com/google-research/bert#fine-tuning-with-bert

BERT: Transformer based network to learn representations of language 
Improvements:
1. Bi-directional LSTM -> Self-attention
2. Massive data
3. Masked-LM objective

BERT: Input Representation

• Use 30,000 WordPiece vocabulary on 
input. 

• Each token is sum of three embeddings
• Addition to transformer encoder: 

sentence embedding
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BERT: Pre-training

2 training objectives:

1. Predict the Masked word

15% of all input words are randomly masked.

Two sentences are fed in at a time. Predict the if the 
second sentence of input truly follows the first one 
or not.

2. Sentence ordering

Predict the masked word Sentence ordering
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BERT: Fine-tunning

Idea: Make pre-trained model usable in downstream tasks
Initialized with pre-trained model parameters
Fine-tune model parameters using labeled data from downstream tasks
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Text-To-Text Transfer Transformer (T5): Understand the first order effect of each design 
choice by altering it while keeping other choices fixed.

C. Raffel, et,al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”, Journal of Machine Learning Research, vol. 21, pp. 1-67, 2020
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Text-To-Text Transfer Transformer (T5): Understand the first order effect of each design 
choice by altering it while keeping other choices fixed.

• Prefix language modeling 
– Input: Thank you for inviting 
– Output: me to your party last week 

• BERT-style denoising
– Input: Thank you <M> <M> me to your party apple week 
– Output: Thank you for inviting me to your party last week 

• Deshuffling
– Input: party me for your to. last fun you inviting week Thanks. 
– Output: Thank you for inviting me to your party last week 

• IID noise, replace spans 
○ Input: Thank you <X> me to your party <X> week 
○ Output: <X> for inviting <Y> last <Z>

• IID noise, drop tokens  
○ Input: Thank you me to your party week .
○ Output: for inviting last

• All the variants perform similarly
• “Replace corrupted spans” and “Drop 

corrupted tokens” are more 
appealing because target sequences 
are shorter, speeding up training.
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BART: Similar Architecture as T5.
• Performs competitive to RoBERTa

and XLNet on 
discriminative/classification tasks. 

• Outperformed existing methods 
on generative tasks (question 
answering, and summarization). 

• Improved results on machine 
translation with fine-tuning on 
target language.

M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,” ,2019, arXiv preprint arXiv: 1910.13461. 
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GPT-2 uses only Transformer Decoders (no Encoders) to generate  new sequences from scratch or from a 
starting sequence.

http://jalammar.github.io/illustrated-gpt2/

As it processes each subword, it masks the “future” words and conditions on and attends to the previous words
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• GPT-3 stands for Generative Pre-trained Transformer
• GPT-3 generates text based on initial input prompt 

from the end-user
– It is trained using next word prediction on huge amount 

of raw text from the internet
– The quality of text generated is often undistinguishable 

from human-written text
– GPT-3 can also be used for other tasks, such as 

answering questions, summarizing text, automated 
code generation, and many others

• It is probably the largest NN model at the present, 
having 175 billion parameters

– The cost for training GPT-3 reportedly is $ 12 million
– For comparison, Microsoft’s Turing NLG (Natural 

Language Generation) model has 17 billion parameters

• Currently, OpenAI allows access to GPT-3 only to 
selected applicants

• Controversies: GPT-3 just memorizes text from other 
sources, risk of abuse by certain actors

https://beta.openai.com/playground

• BERT-Base model has 12 transformer blocks, 12
attention heads,

– 110M parameters!

• BERT-Large model has 24 transformer blocks, 16
attention heads,

– 340M parameters!

• GPT-2 is trained on 40GB of text data (8M webpages)! 
– 1.5B parameters!

• GPT-3 is an even bigger version of GPT-2, but isn’t
open-source

– 175B parameters!
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• Pretraining cost: Although there is also tremendous research activity in developing
more efficient pretraining algorithms, the net cost of pretraining is trending upward due
to the fact that bigger data sets and larger network architectures have systematically led
to better performance.

• Data requirement and curation: For benchmarking purposes (especially in vision and
audio and graphs, but less so in text), methods are often actually trained on curated
data while ignoring the labels. It is not clear how much existing algorithm design is
overfitted to these curated data sets, and whether the relative performance of different
approaches is maintained when real, uncurated data are used instead.

• Architecture choice and deployment costs: the trend has been that bigger architectures
lead to better representation performance. This is welcome from the perspective of
near- “automatic” performance improvement as data sets and computation capabilities
grow. However, it does pose a concern for deployment of the resulting models on
resource-constrained or embedded devices with limited memory and/or computation
capability, which may limit the benefit of this line of improvement for such applications.

L. Ericsson, et, al., "Self-Supervised Representation Learning: Introduction, advances, and challenges," in IEEE Signal 
Processing Magazine, vol. 39, no. 3, pp. 42-62, 2022
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• Transferability: The current state of the graph modality is that transferability is good
to unseen nodes within the same graph and to unseen graphs within the same data
set, e.g., protein-protein interactions. However, there is little information to suggest
transfer across graph types, like chemical-to-biological or citation-to-social, currently
has any benefit.

• Choosing the right pretext task: Since self-supervised pretexts rely on exploiting the
structure of data, which in turn differs significantly across modalities, their efficacy
can vary substantially across modalities.

• Self-supervised versus semi-supervised: As both families of methods are making
rapid progress and there have been few direct comparisons, it is not yet clear
if/when one family should be preferred.
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Step 1: Pre-train a model for a pretext task
Step 2: Transfer to downstream task applications

Goal of self-supervised learning: Enable representation learning 
on easily obtained, uncurated data.

L. Ericsson, et, al., "Self-Supervised Representation Learning: Introduction, advances, and 
challenges," in IEEE Signal Processing Magazine, vol. 39, no. 3, pp. 42-62, 2022
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