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Self-Supervised Learning (SSL)

» @Goal: Learn a good data representation from unlabeled data.

» Motivation: Construct supervised learning tasks out of
unsupervised datasets.

» Why use self-supervised learning?

v Data labeling is expensive, thus high-quality labeled dataset is
imited.

v Learning good representation makes it easier to transfer useful
information to a variety of downstream tasks.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Self-Supervised Learning

+ Self-supervised learning tasks are also known

as pretext tasks.

+ Self-supervised learning example:
+» Pretext task: Train a model to predict the
rotation degree of images (labeling is not

required)

>

+» Downstream task: Use transfer learning to
fine-tune the learned model from the

pretext task with very few labeled examples

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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L. Jing, et. al., "Self-supervised visual feature learning with
deep neural networks: A survey." IEEE Trans. on Pattern
Analysis and Machine Intelligence vol. 43, no. 11, pp. 4037-
4058, 2020




SSL vs Supervised / Unsupervised Learning

Supervised Unsupervised Self-Supervised
* Supervised Learning : Learning with labeled data Labeled Unlabeled Unlabeled
Data Set Data Set Data Set
» Collect a large dataset, manually label the data, train a model, deploy M e

» Learned feature representations from large labeled datasets are often

transferred via pre-trained models to smaller domain-specific

datasets

Y A 4

* Unsupervised Learning : Learning with unlabeled data W v

» Discover patterns in data via clustering, density estimation,

dimensionality reduction, etc.

<—N><—<I<— ":4— 9 [ =

N =€«

<« <« L <——

L. Ericsson, et, al., "Self-Supervised

* Self-supervised Learning : Representation learning with unlabeled data Representation Learning: introduction.

advances, and challenges," in IEEE Signal
Processing Magazine, vol. 39, no. 3, pp.

» Learn useful feature representations from unlabeled data through pretext tasks 42-62, 2022
» Self-supervised: Create its own supervision (i.e., without supervision, without labels)

» Self-supervised learning is one category of unsupervised learning

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




SSL vs Unsupervised Learning/
Transfer Learning/ Data Augmentation

* Self-supervised Learning versus Unsupervised Learning

— Self-supervised learning
* Aims to extract useful feature representations from raw unlabeled data through pretext tasks
* Apply the feature representation to improve the performance of downstream tasks

— Unsupervised learning
* Discover patterns in unlabeled data, e.g., for clustering or dimensionality reduction

e Self-supervised Learning versus Transfer Learning
— Self-supervised learning is a type of transfer learning implemented in an unsupervised manner
— Transfer learning is often implemented in a supervised manner

* Self-supervised Learning versus Data Augmentation
— For Self-supervised learning, image rotation of shifting are used for feature learning in raw unlabeled data
— Data augmentation is often used as a regularization in supervised learning

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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What’s Possible with Self-Supervised Learning?

g q q Predicted Segmentations
“The birthplace of the American national sshe in

anthem” S 4

Answering questions 1

“The birthplace of the American national
anthem, "The Star-Spangled Banner," lies in
Baltimore, Maryland.”

- M S O EE O e e o
Y O 1 o

‘“We want to decide whether the sentiment of the review is
"positive" or "negative".

Review: "While this restaurant is popular on Google, I
absolutely disliked it".

The sentiment of this review is” [I{LNY

Sentiment classification 1

(4

‘e..1s negative.”

Outpainting

https://openai.com/blog/dall-e-introducing-outpainting/
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Early Works of Self-Supervised Learning (SSL)

Restricted Boltzmann Machines

Hidden units

Visible units
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Contrastive divergence (Hinton 2000; Hinton 2002)

Autoregressive Modeling
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Denoising Autoencoder (Vincent et al. 2008)

Siamese networks
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Neural Autoregressive Distribution Estimator (Larochelle et al. 2011)
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Self-organizing neural networks (Becker & Hinton 1992)

left strip
right strip
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Methods for Framing SSL: Self-prediction

Self-prediction: Construct prediction tasks within every individual data sample, to
predict a part of the data from the rest while pretending we don’t know that part.

“Intra-sample” prediction

[ 1}

?

The part to be predicted pretends to be missing

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Self-prediction: Autoregressive Generation

Autoregressive Model: Predict future behavior based on past behavior. Any data that
come with an innate sequential order can be modeled with regression.

Examples:

e Audio (WaveNet, WaveRNN)

* Autoregressive language modeling (GPT, XLNet)
* Images in raster scan (PixelCNN, PixelRNN, iGPT)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Self-prediction: Masked Generation

Masked Generation: Mask a random portion of information and pretend it is missing,
irrespective of the natural sequence. The model learns to predict the missing portion
given other unmasked information.

Examples:
 Masked language modeling (BERT)
* Images with masked patch (denoising autoencoder, context autoencoder, colorization)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Self-prediction: Innate Relationship Prediction

Innate Relationship Prediction: Some transformation (e.g. segmentation, rotation) of one
data sample should maintain the original information or follow the desired innate logic.
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Examples:

* Order of image patches (e.g., relative position, jigsaw puzzle)
* |Image rotation

* Counting features across patches

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Methods for Framing SSL: Contrastive Learning

Contrastive learning : learn such an embedding space in which similar sample pairs stay
close to each other while dissimilar ones are far apart.

“Inter-sample” prediction |
O Q@
®
o ™ o®

O

relationship?

The multiple samples can be selected from the dataset based on some known logics
(e.g. the order of words / sentences), or fabricated by altering the original version.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 15




Contrastive Learning: Inter-sample Classification

Inter-sample classification : Given both similar (“positive”) and dissimilar (“negative”)
candidates, to identify which ones are similar to the anchor data point is a classification task.

To construct a set of data point candidates:

 The original input and its distorted version
e Data that captures the same target from different views

Common loss functions:

* Contrastive loss (Chopra et al. 2005)

* Triplet loss (Schroff et al. 2015; FaceNet)

e Lifted structured loss (Song et al. 2015)

* Multi-class n-pair loss (Sohn 2016)

* Noise contrastive estimation (“NCE”; Gutmann & Hyvarinen 2010)

* InfoNCE (van den Oord, et al. 2018)

* Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, Frosst et al. 2019)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Contrastive Learning: Common Loss Functions

Contrastive loss: Encodes data into an embedding vector such that examples from the same
class have similar embeddings and samples from different classes have different ones.

——
o

L cont (X, X, 0) =1l = )’j]”fe(xi) —fe(Xj)"g_ + 1y # yj] max (0, € —|||fo(x;) —fe(Xj)“z

minimize maximize

Triplet loss: learns to minimize the distance between the anchor x and positive x+ and
maximize the distance between the anchor x and negative x- at the same time.

Luipiee(X, x*,x7) = )" max (0, [lf®) — f&DI3 = ) = fF&OII3 + €)

xeX
Negative m
Anchor LEARNING
Negative
Anchor

Positive Positive
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Contrastive Learning: Common Loss Functions

N-pair loss: Generalizes triplet loss to include comparison with multiple negative samples.
N-1
Lrapair (% X, (X7 1) = log (1 + ) exp(f(x)"f(x;) — f(x)f(x*)))
i=1

exp(f(x)' f(x™))
exp(f(x)' f(x1)) + E:—l exp(f(x)'f(x;))

= —log

Lifted structured loss: utilizes all the pairwise edges within one training batch for better
computational efficiency.

Lone = Dij + log ( Z exp(e — Dy) + Z exp(e — Djl))
ikHeEN G,DeN

where Dj = |[f(x;) — fX)ll2 X1 X2 X3 X4 X5  Xg

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Contrastive Learning: Common Loss Functions

Noise Contrastive Estimation (NCE): running logistic regression to tell apart the target data

from noise. target sample distribution
. po(m)
LNCE = —— Z | log 6(£9(x:)) + log(1 — 6(£4(X;)))| , where  £p(u) = log e ta logpg(u) — log g(u)
i=1

noise distribution

InfoNCE: using categorical cross-entropy loss to identify the positive sample amongst a set
of unrelated noise samples

.f(x 08 C)
p(C =pos|X,c) = ¥ - , where the density functionis f(x,c) px|c)
Zj WASSTY p(x)

Soft-Nearest Neighbors Loss: extending the loss function to include multiple positive samples
given known labels Z > #y__” 1 g €Xp(=f(X;, X;)/7)
Lon =—= 0og

::,ék k=1....8 EXp(=f (Xi, Xp)/7)
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 19




Contrastive Learning: Feature Clustering

Feature Clustering : Find similar data samples by clustering them with learned features.

8 Clustering C Use clustering algorithms
O O to assign pseudo labels to
S . O : samples such that we can

run intra-sample

contrastive learning.
Contrastive style classification

Examples:
* DeepCluster (Caron et al 2018)
* InterCLR (Xie et al 2021)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Contrastive Learning: Multiview Coding

» Apply the InfoNCE objective to two or » Apply the InfoNCE objective to two or
more different views of input data: more different modalities of input data:

Pepper the [h
aussi Text

=g Encoder
| Y Y A A
i —»  Encoder \ y 5 Ty Ty
. ; i ) ;
Match —>» I : LTy | LT | LT3 o [T
-

—»  Encoder /

> b LT [T | LT . |ITy

Image

[— A | I3Ty | 3T, | I3-T I3-T
Encator —» I3 3717 | 131z | 1313 3N

L > Iy Ty [INTy [ InTy | . |INTN

Examples: Examples:
« AMDIM (Bachman et al. 2019) e CLIP (Radford et al. 2021)
e Contrastive multiview coding (Tian et al. 2019) e ALIGN (Jia et al. 2021)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 21
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Pretext Tasks

Pseudolabel Generation Processes
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L. Ericsson, et, al., "Self-Supervised Representation Learning: Introduction, advances, and challenges,"
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Masked Prediction

| is the set of indices inside the square-mask region, the pixels in the masked region will correspond to z,
and the pixels outside the masked region will be xi. Given x,, z, the model can now be trained to minimize,
e.g., the following reconstruction loss like mean square error:

0" = argmm

P(Dy) . z,);D(Do (ky (ho(xi)) = zi)

Algorithm 1. The pseudolabel generation process P

for masked prediction.

Input: Unlabeled data set D, ={x{"} ..
for i from 110 M do
Generate |nd|ces, 1, of elements to remove from x®
zi—{xijj €I}
xi—{xijij & 1}
end for
Output: {x;,z:} /..

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 24




Word2Vec

* Word2Vec, the most important algorithm in field
of nature language processing

* Word embeddings: to map wordstoa d
dimensional vector.

* Pretext task: find embeddings such that the
words that co-occur are close.

d d
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problems  turning banking crises  as

| J \ J
T Y | J

T
outside context words centerword outside context words
in window of size 2 at position t in window of size 2
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Training word embeddings using 2 architectures:
e Continuous bag-of-words (CBOW): predict the center

word
) Sk Input Projection Qutput Input Projection Output

W(t-2) w(t-2)

W(t-1) Sum w(t-1)

W(t) W(t)

A

\J

W(t+1) W(t+1)

(a CBOW (b) Skip-Gram

W(t+2) W(t+2)

e Loss function (skip-gram): For a corpus with T words,
minimize the negative log likelihood of the context word We+j
given the center word w;

Context word Center word

T
1 / ¢
](9)=—?Z z log P(Weyj | we; Q)

20 " Model parameters
Context window size

~+
Il

[uxy

|
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Word2Vec

Example: using the skip-gram method (predict context
words), compute the probability of "knife” given the
center word “fork”.

P(knife|fork)

. 1s eaten wittk

1. Get “fork” word vector vy,

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

2. Compute scores

X1

X2

Xv

Input

7
0

0

scores

Hidden
N /f?
ho v
Vector of word i h3 g
1% : 2
Matrix W = X Matrix W’ %
’ Context matrix
hn

Embedding matrix

N-dimension vector

3. Convert to probabilities

probabilities

— P(knife|fork)

softmax .

_

Output
softmax

0 V1
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Context Encoder

* Predict missing pieces, also known as context encoders, or inpainting
* Training data: remove a random region in images
* Pretext task: fill in a missing piece in the image

— The model needs to understand the content of the entire image, and produce a plausible
replacement for the missing piece

Dongrui Wu. BCI&ML Lab@HUST http://lab.bciml.cn/ Deepak Pathak et al. Context Encoders: Feature Learning by Inpainting. CVPR 2016
s s . . .
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Context Encoder

The initially considered model uses an encoder-decoder architecture

— The encoder and decoder have multiple Conv
layers, and a shared central fully-connected layer

— The output of the decoder is the reconstructed
input image

— A Euclidean ¥, distance is used as the
reconstruction loss function L.,
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The reconstruction loss alone couldn't capture fine details in the missing region

Improvement was achieved by adding a GAN
branch, where the generator of the GAN learns to
reconstruct the missing piece

— The overall loss function is a weighted
combination of the reconstruction and the GAN
losses, i.e., L = ArecLrectAganLgan
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Transformation Prediction

TP methods apply a transformation that maps from canonical to alternative views and train the model to predict
which transformation has been applled Given a raw input in its canonical view, x(s) a transformation, 7, is

applied to produce x; = Ty (xl ) which is fed into the model. The learning objective can be, e.g., a cross-
entropy loss, in the case of categorical transformation parameters.

6" =argmin Y. Lcelky(he(xi), zi)

0.y  (xiz)eP(Dy)

Algorithm 2. The pseudolabel generation process P for TP.

Input: Unlabeled data set D, ={x{"} ;.
for i from 1 to M do
Sample @~ Q
X~ To(x) > Apply transformation to raw input
Zi—@
end for
Output: {x;,z:} 1.

Output a probability
vector per patch
index out of a
predefined set of
permutations

Given a patch, predict
which one of 8
neighboring locations
another patchisin

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 29




Image Rotation

* Geometric transformation recognition

* Training data: images rotated by a multiple of 90° at random
— This corresponds to four rotated images at 0°, 90°, 180°, and 270°

* Pretext task: train a model to predict the rotation degree that was applied
— Therefore, it is a 4-class classification problem

Original Image ) ) ) .
Architecture for Geometric Transformation Recognition

argmax

ConvNets — Dense(4) — 1

90 degree /

{0, 90, 180, 270}

Classes

Rotate

0 degree 90 degree 180 degree 270 degree

Dongrui Wu. BCI&ML Lab@HUST http://lab.bciml.cn/ Gidaris, Spyros et al. Unsupervised Representation Learning by Predicting Image Rotations. ICLR 2018
s s . . .
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Image Rotation

* Asingle ConvNet model is used to predict one of the e Evaluation on the PASCAL VOC dataset for
four rotations classification, detection, and segmentation tasks
* The model needs to understand the location and — The model (RotNet) is trained in SSL manner, and
type of the objects in images to determine the fine-tuned afterwards

rotation degree — RotNet outperformed all other SSL methods

— The learned features are not as good as the

w Objectives: .
> g(xy=0) > ﬁi |, Come » Maxinize rob supervised learned features based on transfer
1 | 5] L — model £ FI:I R'"l
Rotate 0 degrees Ro|-||1¢:j — Predict 0 degrees rotation (y=0) Iea rn I ng from I mage Net, but they demonst rate a
potential
» glx, p=1) ,% > f'm:J\':\Tr_l , p Maximize prob.
’ | model F(. F'(x")
Rotate 90 degrees ; P Predict 90 degrees rotation (yv=1) Classification  Detection Segmentation
Rotated image: X (('/(;[I]AP) (%mAP) {%mIOU)
i Supervised Trained layers | fc6-8 all all all
> g(X.y=2) - > I‘T']‘jjj"_}“;; ; - Miminiee peod P ) ImageNet labels | 789 799 56.8 48.0
e , ik i .4 feature learning — Ry ™
Image X Rotate 180 degrees m_ . Predict 180 degrees rotation (y=2) andom _ _ 3.3 3. A
Rotated image: X~ Random rescaled Krihenbiihl et al.|(2015) | 39.2 56.6 45.6 32.6
Egomotion (A grawal et al.||2015) 31.0 542 43.9
: e o Context Encoders (Pathak et al.|[2016b) 346 565 44.5 20.7
> g(X,y=3) —» . . i gl Tracking (Wang & Gupta] 2015) 556 631 474
Prtars a0 gaarl = — Context (Doersch et al.| 2015) 551 653 51.1
= e Hiotated imags: ¥ Predict 270 degrees rotation (y=3) Colorization (Zhang et al.[2016a) 61.5 635.6 46.9 35.6
BIGAN (Donahue et al.[ 2016) 523  60.1 46.9 34.9
Jigsaw Puzzles (Noroozi & Favaro||2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin] 2017 56.7 653 494
Split-Brain (Zhang et al.[[2016b) 63.0 67.1 46.7 36.0
P d If ColorProxy (Larsson et al., 2017) 65.9 38.4
roposed seir- Counting (Noroozi et al,2017) . 677 514 36,6
supervised (Ours) RotNet | 70.87 72.97 544 39.1

feature learning

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 31




Image Jigsaw Puzzle

* Predict patches position in a jigsaw puzzle
e Training data: 9 patches extracted in images (similar to the previous approach)
* Pretext task: predict the positions of all 9 patches

— Instead of predicting the relative position of only 2 patches, this approach uses the grid of 3x3 patches
and solves a jigsaw puzzle

Dongrui Wu. BCI&ML Lab@HUST http://lab.bciml.cn/ Noroozi (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
9 5 . . .
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Image Jigsaw Puzzle

* A ConvNet model passes the individual patches through the same Conv layers that have shared weights
— The features are combined and passed through fully-connected layers
— Output is the positions of the patches (i.e., the shuffling permutation of the patches)
— The patches are shuffled according to a set of 64 predefined permutations
* Namely, for 9 patches, in total there are 362,880 possible puzzles
* The authors used a small set of 64 shuffling permutations with the highest hamming distance

J S e o - f
2"\ shuffled / S
\ ;fv.s_ P =lae e/
W"‘B H i A o
~ X \N e a . =
AP : "y S TS
Permutation Set / f,,-:'{ ‘\k hi i 'i E!E - f oo
index permutation f&mﬁcgf::%ﬁrgm ..._"-a_ :}_x" 'x:;,- g i i . ;x_
P A ..
64 946832517 . !; . : -, . ﬁ:i - ./
/ ~— =
! Hn—‘ 'i 'ﬁ ~mm "ﬁ i -{t—

c
'

a1 1evs SaSedSé o g 30 Ll R 2]
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Image Jigsaw Puzzle

 The model needs to learn to identify how parts are assembled in an object, relative positions of
different parts of objects, and shape of objects

— The learned representations are useful for downstream tasks in classification and object detection

weight-shared Siamese blocks
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Instance Discrimination

. ($)y . . : . o
One input, x* ~ T(x;") is chosen to be the anchor and is compared with a positive sample, x~ T(x('s)) which is
another view or transform of the same input. The anchor is also contrasted with a negative sample, which is a view of
a different image, xj ~ T(xj ) The samples are then encoded by the feature extractor to obtain their

= ho(x"), r"

representations, r“

= he(x"), ri = ho(x;). A similarity function ® is used to measure the similarity

between positive (the anchor with a positive sample) and negative pairs (the anchor with a negative sample). The
system is then trained to pull positive pairs closer and push negative pairs apart. A general formulation of the

contrastive loss used in many works is

O rh

Econ = ]E 10g

“View" 1

similar

“View" 2

\ . L
1 dissimilar
/!

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

k
O rh) + Z O, ry)
1 _

j:

Algorithm 3. The pseudolabel generation process 7 for con

trastive-instance discrimination.

Input: Unlabeled data set D, = {x"} ..

for i from 1toM do

Sample x“~T(x!)

Sample x*~T(x!")
for k from1to K do
Sample j~U(1,M)
Sample xi ~T(x})

end for
X (% xh), (x",x0), ., (X, x0) ).
~1{1,0,....,0}.
end for

Output: {x.z:} Y.

b Pick another raw input.
> Get a random fransform
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Contrastive Predictive Coding

e Contrastive Predictive Coding (CPC), The name of the approach is based on the following:

— Contrastive: representations are learned by contrasting positive and negative examples, which is implemented
with the NCE loss

— Predictive: the model needs to predict future patches in the sequences of overlapping patches for a given
position in the sequence

— Coding: the model performs the prediction in the latent space, i.e., using code representations from an encoder
and an auto-regressive model

Predictions
{ ' \ , L T
-—h' or | \ \
\ ,/ \ x f Ly A k

A Sy

| Gene \ I.l'l Jenc ".Ill I."f Jene ".II |.'I|l fJene I\II | Genc \ [ Benc II".I .'f Jene II'I. J-'I Jene \
| \ J f f f \ f ! A

L ) I ) L VL | \ I L \
— T2 Tt—1 It Li41 Tty Ti4q
'{'. ’ I_ i
/ e %

An example with images from MNIST, where a positive sequence contains
sorted numbers, and a negative sequence contains random numbers

———

Positive Sample

Negative Sample

D ongrui Wu. BCI&ML Lab @HUST http://lab.bciml.cn/ Oord, Adron van den et al. Representation Learning with Contrastive Predictive Coding. ArXiv abs/1807.03748 (2018)
s s . . .




Contrastive Predictive Coding

* Contrastive Predictive Coding (CPC)
* Training data: extracted patches from input images

* Pretext task: predict the order for a sequence of patches using
contrastive learning

— E.g., how to predict the next (future) patches based on encoded
information of previous (past) patches in the image

* The approach was implemented in different domains: speech audio,
images, natural language, and reinforcement learning

* Contrastive learning is based on grouping similar examples together
— E.g., cluster the shown images into groups of similar images

* Noise-Contrastive Estimation (NCE) loss is commonly used in
contrastive learning

— The NCE loss minimizes the distance between similar images
(positive examples) and maximizes the distance to dissimilar
images (negative examples)

— Other used terms are InfoNCE loss, or contrastive cross-entropy

vk
al
.
5.
]
]

loss N'
— (A forthcoming slide explains the NCE loss in more details) -

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Contrastive Predictive Coding

 For aninput image resized to 256x256 pixels, the
authors extracted a grid of 7x7 patches of size 64x64
pixels with 50% overlap between the patches

— Therefore, there are 49 overlapping patches in
total for each image

Jar - Output
Jone - Output
] ¢r
S 2 |
7 s 7/
64 px -7 T ;
~ 49| |ea o
Zt43] | -7 Predictions
Tigdl e T
50% overlap |
256 px: :
A input image |

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

An encoder g, is used to project each patch into a
low-dimensional latent space

— The latent representation obtained by encoders is
often referred to as code (or context)

E.g., the leftmost portion of the image depicts
extracting patches of 64x64 pixels size with 50%
overlap between the patches

— A ResNet-101 encoder is used for projecting the
patch x; into a code representation z;

— The middle image shows the outputs of the
encoder g, for each patch, z; = genc(x¢)

— For the 49 patches (7x7 grid), the outputs are
7x7x1,024 tensors (i.e., Z1, Zy, ..., Z49)

38



Contrastive Predictive Coding

CPC considers the patches as an ordered sequence (e.g., like video frames)
— An autoregressive model g, is used to predict the future patches in the sequence
* The output of the autoregressive model for the shown red patch ¢; (in row 3 and column 4) is the
sum of all vectors g,.(z<;) for the previous patches in the sequence (e.g., all patches in the above

rows and right columns of the red patch)
— The code representation of the patch ¢; is used to predict the blue patches in the next rows and the

same column as the red patch, denoted z;,,, z;,3 and z; 4
— The authors predicted up to five rows for each patch in the grid

far - Output
Jone - Output
--= 1:‘_ T (3 f__‘_|
=" ] | | ’ e
. ./).!.
64 px .,—'//',,'
= e — - i / ’ e
- ,;t_|_2 - - R
Zt+3| |e--+7 _7 Predictions
“t+4] e
50% overlap |
256 p}:l :
\ input image |

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




SIMCLR

 SimCLR, a Simple framework for Contrastive Learning of Representations
* SimCLR is an approach for contrastive learning, similar to CPC
* |t achieved state-of-the-art in SSL, surpassing the Top-1 accuracy by a supervised ResNet-50 on ImageNet

% Supervised ...~ %SimCLR (4x)

< ~_%SimCLR (2x)
o e oCPCv2-L
O .
S "OF ASimCLR wone dMoCo (4
§ oPIRL-c2X AMDM’
- 65 b eMoCo (2x)
EIL CBCv?2 PIRL-ens.
s iR *BigBiGAN
% 60 *MGCG
T LA
Q
= eRotation

29 elnstDisc

25 50 100 200 400 626
Number of Parameters (Millions)

D ongrui Wu. BCI&ML Lab@HUST http://lab.bciml.cn/ C. Ting et al. “A Simple Framework for Contrastive Learning of Visual Representations.” ArXiv abs/2002.05709 (2020) 40




SIMCLR

* Approach:

— Randomly sample a mini-batch of n inputs x, and apply two different data augmentation operations
t and t', resulting in 2n samples X; = t(x) and X; = t'(x)

* Data augmentation includes random crop, resize with random flip, color distortions, and Gaussian blur (data
augmentation is crucial for contrastive learning)

— Apply a base encoder f(-) to X; and X; to obtain the code representations h; = f(X;) and h; = f(ic'j)

— Apply another prediction head encoder g(-) (one fully-connected layer) to h; and h; to obtain the
code representations z; = g(h;) and z; = g(hj)

Maximize agreement

Zi - - 24
Prediction head g: Q(')T TQ(')
One fully-connected layer A, — Representation —» h,

Base encoder f:
ResNet + global average pooling

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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SIMCLR

* For one positive pair of samples z; and z; and for the remaining 2(n — 1) samples treated as negative, a

cosine similarity is calculated as

T
Zi Zj

A A
* The contrastive prediction task aims for a given sample X; to identify a positive pairing sample X;

Sim(Zi, Z]) =

* The NCE loss for the instances X; and X; is calculated as:
exp(sim(zi, zj)/r)
Y21 Ljer exp(sim(z;, 2)/7)

1+ hasavalue of 1if k # i and O otherwise, 7 is a temperature hyperparameter

Li,j = — log

* The overall loss Zi,j L; ; is calculated across all positive pairs X; and ij in @ mini-batch

* For downstream tasks, the head g(-) is discarded and only the representation h; is used

Food CIFARI0 CIFARI100 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9  95.3 80.2 48.4 659 600 612 84.2 789 89.2 93.9 95.0
Supervised 752 957 81.2 56.4 649 68.8 63.8 83.8  78.7 92.3 94.1 94.2 SimCLR outperformed supervised
Fine-tuned: models on most datasets

SimCLR (ours) 89.4  98.6 89.0 78.2 68.1 92.1 87.0 86.6  77.8 92.1 94.1 97.6

Supervised 88.7 983 88.7 77.8 67.0 914 88.0 86.5  78.8 93.2 94,2 98.0

Random init ~ 88.3  96.0 81.9 77.0 537 913 84.8 69.4  64.1 827 72.5 92.5

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




* Deep clustering of images

* Training data: clusters of images based

on the content

— E.g., clusters on mountains, temples, etc.

* Pretext task: predict the cluster to which

an image belongs

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Clustering

Cluster 0 Cluster 1
(Mountains) (Temples)
L Labels J

M. Caron, et al., “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018
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Clustering

A common approach to self-supervised clustering is by alternating two steps:

1) optimizing the clustering objective by assigning data points into clusters based on their representations
2) optimizing the model by using the cluster assignments as the pseudo-labels in updates.

2 Classification
Convnet @c\c&?‘o I
® -

1 Pseudo-labels

Clustering

N
.\. [ ]
\.

/ \

Algorithm 4. The psevdolabel generation process 7> for dustering.

Input: Unlabeled data set D, = {x{"},.
Input: Representations {r:} ., where r;— he(x{”)
Input: Cluster centers {c;}%_,, via clustering on {r.}!,.
for i from 1toM do
Sample x;~T(x{)
zi—argmin,ew|| ¢; — 7
end for
Output: {x;,z:} L1,

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Deep Clustering

* Deep clustering of images

* Training data: clusters of images
based on the content

— E.g., clusters on mountains, temples, etc.

* Pretext task: predict the cluster to

which an image belongs
(Mountains) (Temples)
L Labels J

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ M. Caron, et al., “Deep Clustering for Unsupervised Learning of Visual Features”, ECCV 2018 45




Deep Clustering

* The architecture for SSL is called deep clustering
* The model treats each cluster as a separate class
* The output is the number of the cluster (i.e., cluster label) for an input image
* The authors used k-means for clustering the extracted feature maps
* The model needs to learn the content in the images in order to assign them to the

corresponding cluster

Deep Clustering Architecture Predict Cluster
cluster 1
cluster 2
Fully
ConvNets Connected cluster 3
Lﬂ}fEl’S cluster 4

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 46




Outline

e Self-Supervised Learning (SSL)
* Early works

* Methods for framing SSL

* Pretext tasks

 Large Language Models

* Discussion

e Conclusions

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Natural Language Processing

» Self-supervised learning has driven the recent progress in the Natural Language
Processing (NLP) field

— Models like ELMO, BERT, RoBERTa, ALBERT, Turing NLG, GPT-3 have demonstrated immense
potential for automated NLP

 Employing various pretext tasks for leaning from raw text produced rich feature
representations, useful for different downstream tasks

* Pretext tasks in NLP:

— Predict the center word given a window of surrounding words
* The word highlighted with green color needs to be predicted

center word

| ¥
el A quick brown fox jumps over the lazy dog

context words

— Predict the surrounding words given the center word

A quick brown fox jumps over the lazy dog

. . A. Chaudhary. “Self Supervised Representation Learning in NLP,” 2020
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Natural Language Processing

e Pretext tasks in NLP:

— From three consecutive sentences, predict the previous and the next sentence, given the center
sentence

Previous sentence | Iron man fails to lift Thor's hammer >
predict

Center Sentence | Captain America tries lifting Thor's hammer

Next Sentence | The hammer moves a bit

— Predict the previous or the next word, given surrounding words
is impossible

v

Nothing is impossible

— Predict randomly masked words in sentences

A quick [MASK] fox jumps over the [MASK] dog

v {

A quick brown fox jumps over the lazy dog

Dongrui Wu, BCI&ML Lab@HUST’ http://lab.bciml.cn/ A. Chaudhary. “Self Supervised Representation Learning in NLP,” 2020 49




Natural Language Processing

 Pretext tasks in NLP:

— Predict if the ordering of two sentences is correct

| am going outside

| will be back in the evening yes

| am going outside | You know nothing John Snow  no

— Predict the order of words in a randomly shuffled sentence

Finally | did Z.

| did X. ThenlididY.

— Predict masked sentences in a document

Then 1 didY. I did X.

Finally | did Z.

Pegasus is mythical .

It is pure white.

It names the model .

It iz a cool name .

]

It is pure white.

(]

It is a cool name .

|

TRANSFORMER

[ Pegasus is mythical .

It names the model ]

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

A. Chaudhary. “Self Supervised Representation Learning in NLP,” 2020
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Large Language Model with Transformer

Encoders

1222277  Decoders

—==T7 1 Encoder-
DR 7 Decoders

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Examples: BERT, RoOBERTa, SciBERT.

Captures bidirectional context. Wait, how do we pretrain them?

Examples: GPT-2, GPT-3, LaMDA
Other name: causal or auto-regressive language model

Nice to generate from; can’t condition on future words

Examples: Transformer, T5, Meena

What's the best way to pretrain them?
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Large Language Model: BERT

BERT: Transformer based network to learn representations of language

Improvements:

1. Bi-directional LSTM -> Self-attention

2. Massive data
3. Masked-LM objective

BERT: Input Representation

Input [CLS] ’ my dog is ‘ cute | [SEP] he ‘ likes || play | ##ing | [SEP] o USG 30,000 Word Piece Vocabulary on
-lE-cr)ri(t?Qddings Ecisy || Emy || Eaog Eis Ecue || Ersery || Ene || Eikes | | Epiay Essing Eisery in pu t.
+ + O+ O+ o+ o+ o+ o+ o+ + o+ * Each token is sum of three embeddings
cmeanes TN 1N N B B I Y B Y I  Addition to transformer encoder:
) * O sentence embedding
E?nst;té%rclﬁngs E0 El E2 E3 E4 E5 E6 E7 E8 E9 ElO

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

J. Devlin, et, al., "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
," 2018, arXiv preprint arXiv:1810.04805. https://github.com/google-research/bert#fine-tuning-with-bert



Large Language Model: BERT

BERT: Pre-training

brown 0.92
0.05 .
st .0 s 938
T | BERT T [ BERT |
Encoder #6 T ke IR 2 training objectives:
tt 1T 1 tt 1T 1
@ ] ® [ ] [ L
Encoder #2 1. Predict the Masked word
t 1T 1 1 t t 1T 1 _
15% of all input words are randomly masked.
7 1 S S T
: ! I 1 1 . .
<CLs> The  brown dog <CLs> The  brown dog  ran [-] [SEF]Fido came home [3EP] 2. Sentence ordering
X %2 X3 X4 X1 X2 X3 X4
Predict the masked word Sentence ordering Two sentences are fed in at a time. Predict the if the
second sentence of input truly follows the first one
or not.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Large Language Model: BERT

BERT: Fine-tunning

@P Mask LM Mas'kL LM \ /ﬂl ﬁ @AD o Spal\
= - o =0

2ot o e B2
El=l [Elle=ll=]- [&] =] Sl (]
T p - pamme - o e
FEE).- COEED) - G mqg (=) [a =

Masked Sentence A Mazked Sentence B Cuestion F’aragraph
* . &
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Idea: Make pre-trained model usable in downstream tasks
Initialized with pre-trained model parameters
Fine-tune model parameters using labeled data from downstream tasks

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Large Language Model: BART/TS

Text-To-Text Transfer Transformer (T5): Understand the first order effect of each design
choice by altering it while keeping other choices fixed.

Finetune Evaluate on
| - validation
Pretrain
CNN/DM
BERTBAS -sized :
encoder—éecoder step 750000
Transformer SQUAD
step 760000
DenOiSiﬂg SUperGLUE
objective step 770000
WMT14 EnDe
C4 dataset step 780000
WMT15 EnFr
2'? steps
2% or ~34B tok
Inverse s?qruare roc?t Iig?ning WMT16 EnRo
rate schedule
2'8 steps Evaluate all checkpoints,
2% or ~17B tokens choose the best

Constant learning rate

C. Raffel, et,al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”, Journal of Machine Learning Research, vol. 21, pp. 1-67, 2020

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Large Language Model: BART/TS

Text-To-Text Transfer Transformer (T5): Understand the first order effect of each design
choice by altering it while keeping other choices fixed.

e Prefix language modeling

s * 1ID noise, replace spans
— Input: Thank you for inviting

O Input: Thank you <X> me to your party <X> week

—  Output: 1 k
utput: me to your party last wee O  Output: <X> for inviting <Y> last <Z>

* BERT-style denoising

* 1ID noise, drop tokens
— Input: Thank you <M> <M> me to your party apple week ! P

O Input: Thank you me to your party week .

—  Output: Thank you for inviting me to your party last week o
O  Output: for inviting last

* Deshuffling

— Input: party me for your to. last fun you inviting week Thanks.

—  Output:
Objective GLUE CNNDM SQuAD SGLUE EnDe EnFr EnRo * Allthe variants perform similarly
Prefix language modeling 80.69 1894 7799 6527 26.86 39.73 2749 ° Replace corrupted spans”and “Drop
Deshuffling 73.17 18.59 67.61 58.47 2611  39.30  25.62 corrupted tokens” are more
BERT-style (Devlin et al., 2018)  82.96 19.17 80.65  69.85  26.78 40.03 27.41 appealing because target sequences
% Replace corrupted spans 83.28 19.24 80.88 71.36 26.98 39.82 27.65 hort di traini
Drop corrupted tokens 8444 1931  80.52  68.67 27.07 39.76 27.82 are shorter, speeding up training.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 56




Large Language Model: BART/TS

BART: Similar Architecture as T5.
* Performs competitive to ROBERTa
and XLNet on

discriminative/classification tasks.

* Qutperformed existing methods
on generative tasks (question
answering, and summarization).

* Improved results on machine
translation with fine-tuning on
target language.

ABCDE
L4444

Bidirectional
Encoder

toregressive
Decoder _

-

FFrre
A_B_E

Frrfd
<s>ABCD

(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final

hidden state of the decoder.

Pre-trained

Pre-trained
Encoder ) E:>

R
ABCDE

sentation from the final output is used.

¥ FTredq
<s>ABCDE

(a) To use BART for classification problems, the same
input is fed into the encoder and decoder, and the repre-

ABCDE
RREE
Pre-trained I:> Pre-trained
Encoder Decoder
R
Randomly <s>ABCD
Initialized Encoder

EEEE

apByde

(b) For machine translation, we learn a small additional
encoder that replaces the word embeddings in BART. The
new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension,” ,2019, arXiv preprint arXiv: 1910.13461.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Large Language Model: GPT-2

GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences from scratch or from a

starting sequence. @ CPT.2 BERT

Output
DECODER ENCODER
- e L
DECODER ENCODER
DECODER ENCODER
Input
recite the | first law $

As it processes each subword, it masks the “future” words and conditions on and attends to the previous words

output token

orders " Token probabilities (logits)
mbeadings
A i 0.19850038
0.7089803 us
Decoder #12, Position #1 0.46333563 aaron Pick an output
tput vect
' token based on
EEEE] X = its probability
(sample)
C ) ‘ The
-0.51006055  zyzzyva
( ) DECODER \
[Masked Self-Attention ]
. DECODER
Input
<S> robot must obey
<8>
1 2 3 4 5 6 512
1 2 1024

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ http://jalammar.github.io/illustrated-gpt2/




Large Language Model: GPT-3

GPT-3 stands for Generative Pre-trained Transformer

GPT-3 generates text based on initial input prompt
from the end-user

— Itis trained using next word prediction on huge amount
of raw text from the internet

— The quality of text generated is often undistinguishable
from human-written text

— GPT-3 can also be used for other tasks, such as
answering guestions, summarizing text, automated
code generation, and many others

e Itis probably the largest NN model at the present,
having 175 billion parameters
— The cost for training GPT-3 reportedly is $ 12 million

— For comparison, Microsoft’s Turing NLG (Natural
Language Generation) model has 17 billion parameters

e Currently, OpenAl allows access to GPT-3 only to
selected applicants

* Controversies: GPT-3 just memorizes text from other
sources, risk of abuse by certain actors

https://beta.openai.com/playground

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

GPT-2 ==

BERT-Base model has 12 transformer blocks, 12
attention heads,
— 110M parameters!

BERT-Large model has 24 transformer blocks, 16
attention heads,
— 340M parameters!

GPT-2 is trained on 40GB of text data (8M webpages)!

— 1.5B parameters!

GPT-3 is an even bigger version of GPT-2, but isn’t
open-source
— 175B parameters!
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Discussion

* Pretraining cost: Although there is also tremendous research activity in developing
more efficient pretraining algorithms, the net cost of pretraining is trending upward due
to the fact that bigger data sets and larger network architectures have systematically led
to better performance.

* Data requirement and curation: For benchmarking purposes (especially in vision and
audio and graphs, but less so in text), methods are often actually trained on curated
data while ignoring the labels. It is not clear how much existing algorithm design is
overfitted to these curated data sets, and whether the relative performance of different
approaches is maintained when real, uncurated data are used instead.

* Architecture choice and deployment costs: the trend has been that bigger architectures
lead to better representation performance. This is welcome from the perspective of
near- “automatic” performance improvement as data sets and computation capabilities
grow. However, it does pose a concern for deployment of the resulting models on
resource-constrained or embedded devices with limited memory and/or computation
capability, which may limit the benefit of this line of improvement for such applications.

L. Ericsson, et, al., "Self-Supervised Representation Learning: Introduction, advances, and challenges," in IEEE Signal

. Processing Magazine, vol. 39, no. 3, pp. 42-62, 2022
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Discussion

* Transferability: The current state of the graph modality is that transferability is good
to unseen nodes within the same graph and to unseen graphs within the same data
set, e.g., protein-protein interactions. However, there is little information to suggest

transfer across graph types, like chemical-to-biological or citation-to-social, currently
has any benefit.

* Choosing the right pretext task: Since self-supervised pretexts rely on exploiting the
structure of data, which in turn differs significantly across modalities, their efficacy
can vary substantially across modalities.

* Self-supervised versus semi-supervised: As both families of methods are making
rapid progress and there have been few direct comparisons, it is not yet clear
if/when one family should be preferred.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Conclusions

Goal of self-supervised learning: Enable representation learning
on easily obtained, uncurated data.

Setup

@ | = n

Unlabeled

Source Data Set i
X z J
* i E -2' P N fa ﬂ E . j‘, L

Pseudolabel Self-Supervised Downstream
Generation Process Pretraining Task Adaptation

S|

|\1>

-

Labeled Update «—— Update (Update) «—— Update
Target Data Set _ ) ) _ _
X, L. Ericsson, et, al., "Self-Supervised Representation Learning: Introduction, advances, and
’ challenges," in IEEE Signal Processing Magazine, vol. 39, no. 3, pp. 42-62, 2022

FIGURE 2. The self-supervised workflow starts with an unlabeled source data set and a labeled target data set. As defined by the pretext task, pseudola-
bels are programmatically generated from the unlabeled set. The resulting inputs, x and pseudolabels z. are used to pretrain the model &, (fe(-))—
composed of feature extractor /e and output k£, modules—to solve the pretext task. After pretraining is complete, the learned weights 6" of the
feature extractor he- are transferred and used together with a new output module g, to solve the downstream target task.

Step 1: Pre-train a model for a pretext task
Step 2: Transfer to downstream task applications

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 64




Fram A

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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