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Fuzzy Sets

First proposed by Prof. Lotfi A.
Zadeh (UC Berkeley) 1n 1965.

An approach to model
subjective knowledge.

* [ knew that the word “fuzzy” would make the theory

controversial. Knowing how the real world functions,
I submitted my paper to Information and Control
because I was a member of the Editorial Board.
There was just one review-which was very lukewarm.
I believe that my paper would have been rejected if 1

were not on the Editorial Board. (Zadeh L.A. (2011); My
Life and Work - A Retrospective View, Applied and Computational
Mathematics, Special Issue on Fuzzy Set Theory and Applications,
Dedicated to the 90™ Birthday of Prof. Lotfi A. Zadeh, 10(1), 4-9,
2011.)

INFORMATION AND coxTROL B, 338-353 (1065)

129,325 Google Scholar citations, 4/13/2023

Fuzzy Sets™

L. A. ZaneEn

Department of Eleetrieol Engineering and FElectrontes Researeh Laboratory,
Undverstiy of California, Berkeley, California

A fusey set is a class of objects with a continuum of grades of
membership. SBuch a set is characterizged by a membership (charne-
teristic) function which assigns to each object a grade of member.
ship ranging between zero and one. The notions of inclusion, union,
intersection, eomplement, relation, sonwvexity, ete., are extended
to such sets, and various pi'(J[;_H'-rlir_-.q of these notions in the sontext
of fusey sets are established, In partieular, a separation theorem for
convex fuzzy sets in proved without requiring that the fuzzy sets be
disjoint .

I. INTRODUCTION

More often than not, the elasses of objects encountered in the real
physieal world do not have precisely defined criteria of membership.
For example, the class of animals clearly includes dogs, horses, birds,
ete. as its members, and clearly excludes such objects as rocks, Auids,
plants, ete. However, such objects as starfish, bacteria, ete. have an
ambiguous status with respect to the elass of animals. The same kind of
ambiguity arvises in the case of a number such as 10 in relation to the
Yoelass” of all real numbers which are much greater than 1.

Clearly, the “class of all real numbers which are much greater than
1," or “the class of beautiful women,” or “the class of tall men,” do not
constitute classes or sets in the usual mathematical sense of these terms.
Yet, the fact remains that such imprecisely defined “elasses’ play an
important role in human thinking, particularly in the domains of pattern
recognition, communieation of information, and abstraction.

The purpose of this note is to explore in a preliminary way some of the
basic propercties and implications of a concept which may be of use in

* This work was supported in part by the Joint Serviees Electronics Program

(1.8, Army, U.8, Navy and U8, Air Foree) under Grant No, AF-AFOSR-138-04
and by the National Beienee Foundation under Grant GP-2413.

dd8




Most Cited Machine Learning Papers (4/13/2023)

1. K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image
recognition,” CVPR 2016. 160,317

2. D.P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980, 2014. 141,178

3. A. Krizhevsky, 1. Sutskever and G.E. Hinton, “ImageNet classification
with deep convolutional neural networks,” NeuRIPS 2012. 130,639

4. L.A. Zadeh, “Fuzzy sets,” Information and Control, 1965. 129,325
5. L. Breiman, “Random forests,” Machine Learning, 2001. 106,831

6. V. Vapnik, “The Nature of Statistical Learning Theory,” Data Mining
and Knowledge Discovery, 1995. 101,688



Fuzzy Sets

Model the word “some ”’

Some Some
. — D
3 10 0 2 4
Number Interval

0 1 2 3 4 5 6 x

Fuzzy set to model linguistic uncertainty
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Triangular Fuzzy Set
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Three numbers to determine a triangular MF




Gaussian Fuzzy Set
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Gaussian Fuzzy Set: Property

,LI(JC) ‘}I(.?f)

Can cover the entire input domain with an arbitrary number of MFs

D. Wu and J. M. Mendel, “On the Continuity of Type-1 and Interval Type-2 Fuzzy
Logic Systems,” IEEE Trans. on Fuzzy Systems, 19(1):179-192, 2011.
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Takagi-Sugeno-Kang (TSK) Rules

Antecedents Consequent
IF x, is F; and x, isF,, THEN y = ax; + bx, + ¢

* y can also be a nonlinear function of x,; and x,

* In practice usually the simplest approach is
used, 1.e., y=c, where c 1s a constant different
from rule to rule.



Oil price

High

Good

Low

TSK Rulebase

Rule 1 Rule 2 Rule 3

CjJ C) C3
Rule 4 Rule 5 Rule 6

Cy Cjs Co
Rule 7 Rule Rule 9

C7 5 g Co

High Moderate Low

Total proven reserves




Example: TSK Rules

| Low Good High
Input 1: O1l price
0 40 80 120 $
Low Moderate High
Input 2: Total
proven reserves
0 5 10 15 Million bbl

IF Oi1l price is High and Total proven reserves are High, THEN Enhanced recovery 1s 10.
IF Oi1l price is Good and Total proven reserves are High, THEN Enhanced recovery 1s 5.



Oil price

High

Good

Low

Example: TSK Rulebase

Rule 1 Rule 2 Rule 3
10 V4 5
Rule 4 Rule 5 Rule 6
5 3 3
Rule 7 Rule Rule 9
3 8 0 0
High Moderate Low

Total proven reserves




TSK Inference

Antecgedents

IF x;is F; and x, is F,, THEN y = ax, + bx, + ¢

Numbers

Consequent

TSK Fuzzy System

Fuzzifier

Fuzzy
Sets

Rules

—

Number

-ﬁ
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TSK Inference

TSK Fuzzy System
Rules
Numbers *
» | Fuzzifier Fsuzzy Inference
ets

Number

-ﬁ

Inference: Combines the fuzzy IF-THEN rules.

1. Compute the firing level of each rule.
(DCompute the firing level of each MF in the antecedent

part of a rule.

(2)Combine these firing levels of antecedent MFs in a
meaningful way to obtain the firing level of that rule.
2. Combine the fired rules using weighted average.



Inference: Example

Rule 1 Rule 2 Rule 3
10 ! 5
1w =0 u, = 0.25 Uz = 0.25
Rule 4 Rule 5 Rule 6
5 3 3
g =0 Hs = 0.6 Ug = 0.4
Rule 7 Rule Rule 9
3 ; 0
puy =0 ug =0 Hog =0
9
_ Zij=1Vili
o 9

_ 7X025+5%0.25+3x0.4+3X0.6

0.25+0.25+ 04+ 0.6

= 4.0




A Short Video Tutorial

Computational
Intelligence

This first-prize-winning video was sponsored by the |IEEE
Computational Intelligence Society (CIS) in its 2011 Fuzzy
Logic Video Competition

The IEEE CIS has free rights to use this video as it sees fit

The video does not infringe any copyrighted materials



Another Short Video Tutorial

IEEE
Computational

Intelligence
Socilety

* This first-prize-winning video was sponsored by
the IEEE Computational Intelligence Society (CIS)
inits 2011 Fuzzy Logic Video Competition

* The IEEE CIS has free rights to use this video as it
sees fit

* The video does not incorporate any copyrighted
materials
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Our Contributions on Fuzzy Systems

1. New optimization [===s=
techniques for type- ?

PERCEPTUAL
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AIDING PEOPLE IN

—

1 fuzzy systems

. Theory and
applications of

interval type_z 2005 FUZZ-1EEE 2010 IEEE
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First AI-X paper on fuzzy systems: htt

ps://fuzzysystem.github.io




Type-2 Fuzzy Sets and Systems
Documentation Al  Examples  Funcions  Blocks  Apps |Search R2019b Documentation Documemaﬁun .

=— CONTENTS Close § Trial Software § Product Update:

« Documentation Home Type-Reduction Methods

Fuzzy Logic Toolbox software supports four built-in type-reduction methods. These algorithms differ in their initialization methods, assumptions, computational efficiency, and terminating

« i "
Fuzzy Logic Toolbox conditions.

« Fuzzy Inference System Modeling
To set the type-reduction method for a type-2 fuzzy system, set the TypeReduction property of the mamfistype2 or sugfistype2 object.

Type-2 Fuzzy Inference Systems

Method TypeReduction property Value Description
Karnik-Mendel (KM) [2] "karnikmendel" First type-reduction method developed
Interval Type-2 Membership Functions
Enhanced Karnik-Mendel (EKM) [3] "ekm" Modification of the Karnik-Mendel algorithm with an improved initialization, modified termination condition, and
Type-2 Fuzzy Inference Systems improved computational efficiency
Fuzzy Inference Process for Type-2 Iterative algorithm with stop condition "iasc" Iterative improvement to brute force methods
Fuzzy Systems (IASC) [4]
Type-Reduction Methods Enhanced iterative algorithm with stop "eiasc" Improved version of the IASC algorithm
See Also condition (EIASC) [9]

Related Topics

In general, the computational efficiency of these methods improve as you move down the table.

You can also use your own custom type-reduction method. For more information, see Build Fuzzy Systems Using Custom Functions.

References
[1] Mendel, J.M., H. Hagras, W.-W. Tan, W.W. Melek, and H. Ying, Introduction to Type-2 Fuzzy Logic Control. Hoboken, NJ. Wiley and IEEE Press (2014)
[2] Karnik, N.N. and J.M. Mendel, "Centroid of a type-2 fuzzy set," Information Sciences, vol. 132, pp. 195-220. (2001)

[3] Wu, D. and J.M. Mendel, "Enhanced Karnik-Mendel algorithms," IEEE Transactions on Fuzzy Systems, vol. 17, pp. 923-934. (2009)

[4] Duran, K., H. Bernal, and M. Melgarejo, "Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set," Annual Meeting of the North American
Fuzzy Information Processing Sociefy, pp. 190-194. (2008)

[5] Wu, D. and M. Nie, "Comparison and practical implementations of type-reduction algorithms for type-2 fuzzy sets and systems," Proceedings of FUZZ-IEEE, pp. 2131-2138 (2011

&, GEN, FL, £ REL,  “IX[E TRIBHEAE R4 Lid 5 R, BEhEER, 46(8):1539-1556, 2020. 20




Design a Fuzzy System

Many questions to be answered in designing a fuzzy system:
v Should singleton or non-singleton fuzzifier be used?

How many MFs should be used for each input?

Should Gaussian or piecewise linear MFs be used?

Should Mamdani or TSK inference be used?

Should minimum or product -norm be used?

< XN X X X

How to optimize the fuzzy system?

In this talk, we use singleton fuzzification, Gaussian MFs, TSK
rules and product f-norm, and assume that the user can
specify the number of MFs in each input domain.

D. Wu and J. M. Mendel, “Recommendations on designing practical interval type-2 fuzzy
systems,” Engineering Applications of Artificial Intelligence, 95:182—193, 2019.

21



Design a TSK Fuzzy System

N I
Singleton or
non-singleton?
- J

-

\_

e Gaussian or Trapezoidal MFs?

* Number of MFs? <7
* How to optimize? This talk

Rulebase

/
< | Fuzzifier
inputs

T1 FSs

~

J

‘Inference Engine

Crisp
output

Wmduct t-norm?

|

D. Wu and J. M. Mendel, “Recommendations on designing practical interval type-2 fuzzy
systems,” Engineering Applications of Artificial Intelligence, 95:182—193, 2019.



Design a TSK Fuzzy System

Challenges in designing a TSK fuzzy system:

v Optimization. Evolutionary algorithms, gradient descent, and
gradient descent plus least squares estimation (ANFIS).

v Interpretability. The interpretability decreases when the number
of rules increases, and when each input activates too many rules.

v  Curse of dimensionality. When each input has a few fuzzy
partitions, the number of rules increases exponentially with the
number of inputs. Clustering based initialization also suffers from
curse of dimensionality (validity and interpretability).

v Generalization. Regularization can improve generalization, but
not extensively explored in training fuzzy systems.

D. Wu, C-T Lin, J. Huang & Z. Zeng, "On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks,
Mixture of Experts, CART, and Stacking Ensemble Regression," IEEE Trans. Fuzzy Systems, 28(10): 2570-2580, 2020.
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Multi-Layer Perceptron (MLP)

Input Hidden Output
Layer Layer Layer
Wi NG
w
X1 S "2 @ W,
-\,
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W24



Adaptive-Network-based Fuzzy
Inference System (ANFIS)

Layer 1 Layer2 Layer3  Layer4 LayerS5
fi

—
f2 1>
[ =

3

fa ¢

Layer 1: Compute the membership grades.

Layer 2: Compute the firing level of each rule.

Layer 3: Compute the normalized firing levels of the rules.

Layer 4: Multiply each normalized firing level by its corresponding rule consequent.

Layer 5: Compute the output as a summation.

J.S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans.
on Systems, Man, and Cybernetics, 23(3):665-685, 1993. (~20000 citations)



Differences between MLP & ANFIS

Input Hidden Output
Layer Layer Layer Layer 1 Layer 2 Layer3 Layer 4 Layer 5
[ f
1 -
o LT
f3 L 4 ';
X1 X2

MLP always uses fully connected layers, whereas ANFIS is not.

In MLP, the output of a node in the hidden layer and output layer is always computed by a
weighted sum followed by an activation function, whereas there are many different
operations in an ANFIS.

Layer 4 of the ANFIS also uses x as an input (to represent the rule consequents), but usually
an MLP does not have such connections. (skip-layer connection in ResNet?)

MLP is a black-box model, whereas ANFIS can be expressed by IF-THEN rules, which is
easier to interpret and understand.



FS and Radial Basis Function Network (RBFN)

For input x = (1, x9), the out-
put of the kth (K = 1,..., K) re-
ceptive field unit, using a Gaussian
response function, is:

(1 — myp 1) + (w2 — My 0)°
X1 fk(X> — eXpP | — 5 7

O

Receptive
Field Units

The output of the RBF'N is:
X2 " K
\ o) — ZAL S0
— e :
2 t—1 Ju(X)

FS = RBEN, when:

Number of receptive field units = Number of fuzzy rules

The output of each fuzzy rule is a constant, instead of a function
Antecedent MFs of each fuzzy rule: Gaussian with the same variance
The product t-norm is used

The FS and the RBFN use the same method (i.e., either weighted
average or weighted sum) to compute the final output

DN NI NI NI

J.-S. Jang and C.-T. Sun, “Functional equivalence between radial basis function networks
and fuzzy inference systems,” IEEE Trans. on Neural Networks, 4(1):156-159, 1993. 28



FS and Mixture of Experts (MoE)

» Gating Network

fi
Expert 1 71 é
X : fi
Expert k& Yk ®——>@ Y
X5 . fx
Expert K K ®

K
Yore(X) =D fL(x)yr(x)  FS = MoE
k—1

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, 3(1):79-87, 1991.



FS and Classification and Regression Tree (CART)
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L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and Regression Trees, 1st ed. Routledge, 2017. 30



FS and Stacking

Training Set 1 - Base Model 1
— Training Set 2 - Base Model 2
Training .
. Final
Set D - Fusion ! podel
Training Set 3 - Base Model 3
Training Set 4 - Base Model 4

A TSK FS for regression can be viewed as a stacking model.

Each rule consequent is a base regression model, and the rule antecedent MFs
determine the weights of the base models in stacking.

In stacking usually the aggregated output y is a function of y;, k=1,...,K, only,
but in a TSK FS the aggregation function also depends on the input x, as the
weights are computed from them, and change with them.

So, a TSK FS is actually an adaptive stacking regression model.



Inspirations

From neural networks: Design more efficient training
algorithms for TSK fuzzy systems.

From MoE: Achieve a better trade-otf between cooperation
and competitions of the rules in a TSK fuzzy system.

From CART: Better initialize a TSK fuzzy system for high-
dimensional problems.

From stacking ensemble regression: Design Dbetter
stacking models, and increase the generalization ability of
a TSK fuzzy model.

D. Wu, C-T Lin, J. Huang & Z. Zeng, "On the Functional Equivalence of TSK Fuzzy Systems to Neural Networks,
Mixture of Experts, CART, and Stacking Ensemble Regression," IEEE Trans. Fuzzy Systems, 28(10): 2570-2580, 2020.
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Takagi-Sugeno-Kang (TSK) Fuzzy System (FS)

Assume the input x = (zq, ..., z3) € R¥*! and the
TSK fuzzy system has R rules:

Rule, : 1F z; 18| X, |land --- and xp; 18 |X; s

M
THEN y,(%) = pro [ D [brfzn.
m=1

where X, ,, (r =1,...R; m = 1,..., M) are fuzzy sets,
and b, and b, ,, are consequent parameters.




Big Data
At least three Vs:

1. Volume (the size of the data): The number of training
examples (N) is very large, and/or the dimensionality ot
the input (M) is very high.

2. Velocity (the speed of the data)

3. Variety (the types of data)

FSs suffer from the curse of dimensionality, i.e., the number
of rules (parameters) increases exponentially with M.

We assume that the dimensionality can be reduced
effectively to just a few, e.g., using PCA.

We mainly consider how to deal with large N.



Optimize TSK FS

* Evolutionary algorithms: Very high
memory and computing power
requirement on big data.

 Gradient descent (GD): Focus of this talk.



Steps in Optimizing a TSK Fuzzy System

1. Define the objective function

2. Initialize the rules

3. Fine-tune the rules
* How to handle big data (big size & high dimensionality)?
* How to speed-up the training?

* How to improve the generalization performance?



Regularization in the Objective Function

. Define objective
function

. Initialize rules
. Fine-tune rules

* Handle big data

* Speed-up
training

* Improve
generalization

(o regularized loss function:

2 ~\ 12
L=2) =yl ™+5) ) bim
n=1 r=1m=1

where Np, € [1, N], and A > 0 is

a regularization parameter.

Note that b,.o (r = 1,..., R) are
not regularized.



Semi-Random Initialization of the Rules
For m =1, ..., M:

. Define objective 1. Compute the minimum and max-
. . N
function imum of all {xn m ;1
- Initialize rules 2. Initialize the centers of the Gaus-
. Fine-tune rules sian MF's uniformly between the
- Handle big data minimum and the maximum
* Speed-up 3. Initialize the standard deviation
training of all Gaussian MF's as the stan-
» Improve dard deviation ot {xn,m}fyzl
generalization 4. Initialize the rule consequent pa-

rameters as 0



Mini-Batch Gradient Descent (MBGD) for Big Data

1. Define objective
function

2. Initialize rules

3. Fine-tune rules

* Handle big
data

* Speed-up
training

* Improve
generalization

Randomly sample Ny, € |1, N| training exam-
ples = Compute the gradients from them = up-
date the parameters of the TSK fuzzy system.

Let 6, be the model parameter vector in the
kth iteration, and 0L /00 be their first-order gra-
dients. Then, the update rule is:

oL
00y

where ¢ > 0 is the learning rate.

Hk — Hk—l —

When N, = 1, MBGD degrades to stochastic
GD.
When N, = N, it becomes batch GD.

40



Adam/AdaBound for Speeding-up the Training

1. Define objective
function

2. Imtialize rules
3. Fine-tune rules
* Handle big data
* Speed-up
training
* Improve
generalization

* Adam in NN training computes an

individualized adaptive learning rate for each
different model parameter from the estimates
of the 1st and 2nd moments of the gradient.

AdaBound bounds the individualized
adaptive learning rate from the upper and the
lower, so that extremely large or small learning
rate cannot occur. Additionally, the bounds
become tighter as the number of iterations
increases, which forces the learning rates to
approach a constant (as in stochastic GD).

Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with dynamic bound of learning rate,” ICLR 2019.



DropRule for Better Generalization

* DropOut randomly discards some neurons and

Define objective their connections during the training of NNs.

function * DropRule randomly discards a small number of

Initialize rules rules during the training of FSs, but uses all rules
when the training is done.

/i

Fine-tune rules

* Handle big data

* Speed-up v <
training
* Improve *1 < o
generalization < [ y
2 }c-:;ya,

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” Journal of Machine Learning Research, 15(1):1929-1958, 2014.



MBGD-RDA for Big Data

Algorithm 1: The mini-batch gradient descent with regularization, DropRule and AdaBound (MBGD-RDA) algorithm for
TSK fuzzy system optimization. Typical values of some hyper-parameters are: 3, = 0.9, Gy = 0.999, ¢ = 10~5,

Input: N labeled training examples {x,, yn }2_,, where X, = (2,1, coor 2 ar ) € RM T,
L(0), the loss function for the TSK fuzzy model parameter vector 8;
My, the number of Gaussian MFs in the mth input domain;
Nys € [1, N, the mini-batch size:
K. the maximum number of training iterations;
P €[0.5,1], the DropRule rate;
«, the initial learning rate (step size);
51, B2 € [0,1), exponential decay rates for the moment estimates;
€, a small positive number;
{(k) and wu(k), the lower and upper bound functions in AdaBound:
Output: The final 6.
// Initialization
for m=1,...,M do
Compute the minimum and maximum of all {x,, »}V_:
Initialize the center of the M, Gaussian MFs uniformly between the minimum and the maximum;
Initialize the standard deviation of all M,,, Gaussian MFs as the standard deviation of {.;-n_m};};lz
end
Initialize the consequent parameters of all R rules as 0;
6 is the concatenation of all Gaussian MF centers, standard deviations, and rule consequent parameters;
// Update 8
mygp = 01, Vo = 0;
for k=1..... K do
// MBGD
Randomly select Ny, training examples;
for n =1,..., N, do
forr=1,....R do
Compute f,(xy,). the firing level of x,, on Rule,:
// DropRule
Generate p, a uniformly distributed random number in [0, 1];
if p > P then
| felxa) = 0
end
end
Compute y(xy ). the TSK fuzzy system output for x,, by (4):

end
// Compute the gradients
OL(Or—1)
Bk = —Ff7
60,1
// AdaBound
my = Symg—1 + (L — 51)gr: v = Bevg_1 + (1 — \ng)g%;
g, Uy

1—gF T

& = max [F(L'). min | u(k), ﬁ)} :
t

Gk = Bk—l —a® Tﬁk',

my =

end
Return 05




Experiments: Datasets

TABLE 11
SUMMARY OF THE 10 REGRESSION DATASETS.

No. of No. of No. pf No. of No. of TSK
Dataset Source ' raw  numerical used model
examples . . .

features features features parameters
PM10" StatLib 500 7 7 5 212
NO2! StatLib 500 7 7 5 212
Housing? UCI 506 13 13 5 212
Concrete? UCI 1,030 8 8 5 212
Airfoil? UcClI 1,503 5 5 5 212
Wine-Red? UcCl 1,599 11 11 5 212
Abalone® UCI 4,177 8 7 5 212
Wine-White® | UCI 4,898 11 11 5 212
PowerPlant” | UCI 0,568 4 4 4 06
Protein® UCI 45,730 9 9 5 212

http://lib.stat.cmu.edu/datasets/
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Abalone
https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

8 https://archive.ics.uci.edu/ml/datasets/Physicochemical+Properties+of+
Protein+Tertiary+Structure

= W N H

o Ut

7
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Results: RMSEs
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Fig. 2. The average test RMSEs of the seven algorithms on the 10 datasets.
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Fig. 3. Percentage improvement of the test RMSEs of MBGD-R, MBGD-D, MBGD-RD,
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High-dimensional TSK with Layer Normalization
and Rectified Linear Unit (HTSK-LN-ReLU)

Layer1 Layer2 Layer 3]F Layer 4 _I,Jayer 5 _”Layer 6 Layer 7 i gh— dimensional TSK (HTSK): Defuzzi-
! fi J— . : :
X 3¢ L - =y, fication using
o <N A ) (—7!)
X2 1 .“ v o> eXp r
’ \~ \0\6' | Laver | s | Reru | £ f T(wl> — R ’
/\\AT Aﬁ& f3| Norm | f5 f3 > Z = GXp(—Z/)
<EREES ; L
¥ — —1 —1r ! 2
2 Xz,z .:.A\‘m fa fa fa i Z; _ i (372'7d _2mr,d) 7
o

X1 X d—1 rd

Layer Normalization (LN) computes the sample-wise mean and standard deviation
of all neurons in a specific layer, and scales the neuron outputs z to:

where 1 and ¢ are respectively the mean and standard deviation of all neuron outputs

in that layer, and v and 3 are parameters to be tuned.
We add a ReLU function after HI'SK-LN to filter out negative NFLs:

T”(azi) — max (O,T,(mi)) — max (O, LN(T(mz))) :

Y. Cui, D. Wu*, Y. Xu and R. Peng, "Layer Normalization for TSK Fuzzy System Optimization in Regression Problems," IEEE Trans. on Fuzzy Systems, 2023. 47



Experiments: Datasets

Abbr. Train size Test size Features Comment

Scikit-digits SD 1,258 539 64
Space GA SG 2,174 933 6
Abalone ABA 2,923 1,254 8
Park Motor UPDRS PM 4,112 1,763 16
Puma 32h PUM 5,734 2,458 32
Power Plant PP 6,697 2,871 4
Naval NAV 8,353 3,581 16

UTK Face UTK 16,595 7.113 28 Resnet50 + PCA
Steel Industry SI 24,528 10,512 9
Diamonds DIA 27.449 11,764 10

Microsoft MIC 34,903 14,959 136 Removed outliers

Year Prediction MSD YP 36,073 15,461 90 Down-sampled
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Results: RMSEs

HTSK- HTSK- HTSK- HTSK-
Ridge SVR CART RF XGBoost MLP HTSK  ConsBN  ConsBN-UR LN LN-ReLU

SD Mean 0.6658 0.6787  0.6751  0.4084 0.3805 0.2815 0.4332 0.3091 0.2996 0.3122 0.2979

STD  0.0000 0.0000 0.0000 0.0068 0.0123 0.0148 0.1743 0.0483 0.0230 0.0326 0.0077

SG Mean  0.6060 0.6077  0.6715  0.5622 0.5522 0.4893  0.4985 0.4958 0.5108 0.4795 0.4781

STD  0.0000 0.0000 0.0000 0.0028 0.0090 0.0120  0.0110 0.0103 0.0143 0.0092 0.0114

ABA Mean 0.6695 0.6892  0.7176  0.6683 0.6718 0.6359  0.6646 0.6589 0.6546 0.6520 0.6560

STD  0.0000 0.0000 0.0000  0.0033 0.0085 0.0083  0.0085 0.0080 0.0081 0.0074 0.0062

PM Mean 0.9763 09731 0.9216 0.8162 0.8561 0.7856  0.8289 0.8245 0.8252 0.8276 0.8257

STD  0.0000 0.0000 0.0000 0.0046 0.0061 0.0183  0.0081 0.0075 0.0096 0.0137 0.0183

PUM Mean  0.8951 0.8993  0.3242 0.2641 0.2980 0.2507  0.2248 0.1976 0.1998 0.2121 0.2145

STD  0.0000 0.0000 0.0000 0.0015 0.0235 0.0028  0.0049 0.0023 0.0041 0.0046 0.0049

PP Mean 0.2619  0.2620  0.2380  0.1928 0.1893 0.2315  0.2230 0.2240 0.2216 0.2240 0.2211

STD  0.0000 0.0000 0.0000 0.0009 0.0062 0.0015  0.0019 0.0014 0.0010 0.0013 0.0015

NAV Mean 0.3938 0.4263 0.1039  0.0734 0.0881 0.1070  0.0760 0.0787 0.0597 0.0375 0.0313

STD  0.0000 0.0000 0.0000 0.0031 0.0032 0.0142  0.0435 0.0221 0.0040 0.0041 0.0034

UTK Mean  0.8831 0.8929  0.9282  0.8433 0.8531 0.8010 0.8099 0.8108 0.8057 0.8027 0.8074

STD  0.0000 0.0000 0.0000 0.0021 0.0026 0.0064  0.0037 0.0038 0.0027 0.0030 0.0019

S Mean 0.1400 0.1419  0.0467 0.0335 0.0384 0.0537  0.0355 0.0429 0.0438 0.0298 0.0287

STD  0.0000 0.0000 0.0000  0.0007 0.0048 0.0016  0.0023 0.0024 0.0022 0.0014 0.0013

DIA Mean  0.2388 0.2479  0.0364  0.0199 0.0302 0.0636  0.0372 0.0380 0.0377 0.0364 0.0350

STD  0.0000 0.0000 0.0000 0.0006 0.0106 0.0047  0.0025 0.0032 0.0078 0.0055 0.0051

MIC Mean 09711 1.2943  0.9408  0.9177 0.9180 0.9711 1.0621 1.1274 1.0525 0.9435 0.9471

STD  0.0000 0.0000 0.0000 0.0006 0.0018 0.0250  0.0964 0.2867 0.1212 0.0219 0.0160

YP Mean 0.8808 0.9105 0.9247  0.8788 0.8577 0.8310 0.8454 0.8362 0.8360 0.8406 0.8407

STD  0.0000 0.0000 0.0000 0.0008 0.0011 0.0039  0.0055 0.0036 0.0032 0.0042 0.0029

Average 0.6319  0.6687 0.5441  0.4732 0.4778 0.4585 0.4783 0.4703 0.4623 0.4498 0.4486
Average Rank 9.25 10.58 8.67 4.75 5.83 4.58 592 5.17 4.33 3.50 3.17
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Uniform Regularization in the Objective Function

For each mini-batch with M training samples,

R M 2
1 — 1
1. Define objective L=10+aly+ ) (M d F(x,) - E)
function =1

n=1
where:

2. Initialize rules e ( is the cross-entropy loss between the esti-

3 Fine-tune rules mated class probabilities [obtained by apply-
. ing a softmax operation to y(a)| and the true

* Handle big data class probabilities
* Speed-up e /5 the L2 regularization of the rule consequent

training parameters

o T e The last term forces the rules to be fired at
mp I'OV.6 . similar degrees in the input space, so that each
generahzatlon rule contributes about equally to the output.

It reduces the “rich get richer” problem. R



k-Means Clustering Initialization of the Rules

1. Define objective Rule, : IF z7 18 X, 1 and --- and x5 18 X, )y,
function M
2. Initialize rules THEN y,(x) = by + Z brmTm,
m=1

3. Fine-tune rules

* Handle big data | + Antecedents: k-means clustering to mitialize

» Speed-up the means of the Gaussian MFs, and random
training standard deviation in N(1,0.2).
* Improve

. * Consequents: bias = 0, coefficients U(-1,1).
generalization




Mini-Batch Gradient Descent (MBGD) for Big Data

Randomly sample Ny, € |1, N| training exam-
ples = Compute the gradients from them = up-
1. Detine objective date the parameters of the TSK fuzzy system.

function

Let 6, be the model parameter vector in the

2. Imitialize rules kth iteration, and 0L /080y be their first-order gra-

3. Fine-tune rules dients. Then, the update rule is:
c oL
* Handle big data 0. =0, , —« 7
004
* 5p .ee.d-up where «v > 0 is the learning rate.
training
* Improve When N, = 1, MBGD degrades to stochastic
. . GD
generalization

When N, = N, it becomes batch GD.




Adam/AdaBound for Speeding-up the Training

1. Define objective
function

2. Imtialize rules
3. Fine-tune rules
* Handle big data
* Speed-up
training
* Improve
generalization

* Adam in NN training computes an

individualized adaptive learning rate for each
different model parameter from the estimates
of the 1st and 2nd moments of the gradient.

AdaBound bounds the individualized
adaptive learning rate from the upper and the
lower, so that extremely large or small learning
rate cannot occur. Additionally, the bounds
become tighter as the number of iterations
increases, which forces the learning rates to
approach a constant (as in stochastic GD).

Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods with dynamic bound of learning rate,” ICLR 2019.



Batch Normalization (BN) for Better

. Define objective
function

. Initialize rules

. Fine-tune rules

* Handle big data

* Speed-up
training

* Improve
generalization

Generalization

BN normalizes the data distribution 1n
each mini-batch to accelerate the training
& 1mprove the generalization.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ICML 2015.



Experiments: Datasets

SUMMARY OF THE 12 DATASETS.

Index Dataset No. of Samples No. of Features No. of Classes
1 Vehicle! 846 18 4
2 Biodeg? 1,055 41 2
3 DRD? 1151 19 2
4 Yeast* 1,484 8 10
5 Steel? 1,941 27 7
6 IS¢ 2,310 19 7
7 Abalone’ 4,177 10 3
8§  Waveform21?® 5,000 21 3
9 Page-blocks’ 5,473 10 5
10 Satellite!Y 6,435 36 6
11 Clave!l 10,798 16 4
12 MAGIC!? 19,020 10 2




Experimental Results:
Classification Accuracy

AVERAGE BCAS OF THE NINE ALGORITHMS ON THE 12 DATASETS.

Dataset CART RF JRip PART TSK-FCM-LSE TSK-MBGD TSK-MBGD-BN TSK-MBGD-UR [ISK-MBGD-UR-BN
Vehicle 0.6936 0.744  0.6939 0.7131 0.7443 0.7010 0.7380 0.7127 0.7930
Biodeg 0.7973 0.8306 0.7899 0.8122 0.8205 0.8368 0.8318 0.8390 0.8439
DRD 0.634 0.6624 0.6227 0.6422 0.6845 0.6642 0.6634 0.6717 0.6729
Yeast 0.3998 0.4867 0.5203 0.4889 0.5102 0.4951 0.5184 0.4946 0.5332
Steel 0.7005 0.6937 0.7129 0.7267 0.6319 0.5933 0.7258 0.7245 0.7515
IS 0.932  0.9529 0.9481 0.9607 0.9571 0.5762 0.7557 0.8559 0.9501
Abalone 0.5319 0.5362 0.5371 0.5280 0.5402 0.4567 0.5236 0.4791 0.5402
Waveform21 0.7637 0.8365 0.7905 0.7844 0.8645 0.6784 0.8003 0.8362 0.8233
Page-blocks  0.7986 0.7385 0.8192 0.8162 0.6003 0.5129 0.5609 0.6033 0.671
Satellite 0.8204 0.8480 0.8308 0.834 0.8558 0.4337 0.7651 0.8679 0.8700
Clave 0.4701 0.4878 0.4985 0.6507 0.4825 0.5876 0.6468 0.6374 0.6421
MAGIC 0.8058 0.8108 0.8052 0.8135 0.7886 0.6325 0.7128 0.8225 0.7934
Average 0.6956 0.7190 0.714  0.7309 0.7067 0.5974 0.6869 0.7120 0.7404




Experimental Results:
Rank of Classification Accuracy

BCA RANKS OF THE NINE ALGORITHMS ON THE 12 DATASETS.
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Conclusions

* TSK FS 1s functionally equivalent to RBFN, MoE, CART and stacking.
* Techniques for the latter models can be used to optimize TSK FSs.

S sep Regression Classification

Define the objective 19 reeularization L2 regularization
function 8 + Uniform Regularization
Initialize the rules Semi-Random Initialization k—mez.m.s (.31us.ter1ng
Initialization
Fine-tune the rules: Mini-batch Gradient Descent Mini-batch Gradient Descent
Handle big data (MBGD) (MBGD)
Fine-tune the rules: AdaBound
Speed-up training AdaBelief AdaBound
Fine-tune the rules: DropRule

. . L Batch Normalization
Improve generalization Layer Normalization
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Source Code
* Matlab: https://github.com/drwuHUST

» PyTSK: https://github.com/YuqiCui/PyTSK

# PyTSK

@A » Welcome to PyTSK'’s documentation! ) Edit on GitHub

Welcome to PyTSK's documentation!

Installation Guide PyTSK is a package for conveniently developing a TSK-type fuzzy neural networks. It's dependencies are as follows:

Quick Start
Scikit-learn [Necessary] for machine learning operations.

Models & Technique Numpy [Necessary] for matrix computing operations.

Scipy [Necessary] for matrix computing operations.

API: pytsk.cluster

PyTorch [Necessary] for constructing and training fuzzy neural networks.
Faiss [Optional] a faster version for k-means clustering.

API: pytsk.gradient_descent

Table of Contents

e |nstallation Guide
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Brain-Computer Interface (BCI)

¢ A direct communication pathway between the brain and an external device.
¢ Research, assist, augment, or repair cognitive or sensory-motor functions.

Signal Acqu}tlon Featu1.‘e ) Mach%ne
and Processing Extraction Learning
Active BCI:

. Direct control consciously

mani

P3

Wheelchair

Passive BCI:

* Implicit user state monitoring to

ulated by the user
* Usually for users with disabilities

Adaptive Automation Video Games Image Tagging

P!

Controller

enrich human-machine interaction
e All users can be benefited
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Fuzzy Sets in BCls
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arrg (W, = arg max =
> werexF Tr[WH(Y, , 3;)W]

I [A) = RSB RS

0 p;gs Pso pl’;s o f =argmin Z (yz — f(Xz))2
(3 PSSR S A2 e =
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Enac BN + w! (yi — f(x:))* =7 (y, f(x))
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1. D. Wu, V. Lawhern, S. Gordon, B. Lance and C-T Lin, "Driver Drowsiness Estimation from EEG Signals Using Online Weighted
Adaptation Regularization for Regression (OwARR)," IEEE Trans. on Fuzzy Systems, 25(6):1522-1535, 2017.

2. D. Wu, J-T King, C-C Chuang, C-T Lin and T-P Jung, "Spatial Filtering for EEG-Based Regression Problems in Brain-Computer
Interface (BCD." [EEE Trans. on Fuzzy Svstems. 26(2):771-781. 2018.



Fuzzy Sets in BCls
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Fuzzy sets can be Integrated with state-of-the-art signal
processing and machine learning approaches for EEG-based BClIs

1. D. Wu, V. Lawhern, S. Gordon, B. Lance and C-T Lin, "Driver Drowsiness Estimation from EEG Signals Using Online Weighted
Adaptation Regularization for Regression (OwWARR)," IEEE Trans. on Fuzzy Systems, 25(6):1522-1535, 2017.
2. D. Wu, J-T King, C-C Chuang, C-T Lin and T-P Jung, "Spatial Filtering for EEG-Based Regression Problems in Brain-Computer Interface

(BCI)," IEEE Trans. on Fuzzy Systems, 26(2):771-781, 2018. 64
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