FEHLKF
ALSBE SO PR

SCHOOL OF ARTIFICIAL INTELLIGENCE AND AUTOMATION.HUST

RMEOSNSIFILEE

BRAIN-COMPUTER INTERFACE AND MACHINE LEARNING LABORATORY

Continual Learning

Dongrui Wu
School of Artificial Intelligence and Automation
Huazhong University of Science and Technology
drwu@hust.edu.cn

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Outline

* Basic Concepts

* Rehearsal Methods

* Regularization-Based Methods
* Parameter Isolation Methods

e Discussion

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Motivation

€ Machine learning state-of-the-art
* Deep learning achieves state-of-the-art performance in many tasks

* Mainly supervised training with huge and fixed datasets

¥ Limitation:

* Need to restart the training process each time new data become
available

* Intractable due to storage constraints or privacy issues

Call for systems that adapt continually and keep on learning over time

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Continual Learning (CL)

* @Goal: Gradually extend acquired knowledge and use it for future learning
* Learn from an infinite stream of data

* Also referred to as lifelong learning, sequential learning, or incremental learning

| can solve | can solve | can solve
task 1. tasks 1&2. tasks 1&28&:3.

LW] Wiy] Ly
" - +H- "'t -H-“‘..
L L 1Y
Learning Learning Learning
Task : ‘Task 2 Task 3

De Lange M, Aljundi R, Masana M, et al. A continual learning survey: Defying forgetting in classification tasks. IEEE TPAMI 2021.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Major Challenge: Catastrophic Forgetting

* Performance on a previously learned task or domain
should not significantly degrade over time as new

tasks or domains are added

 Stability-Plasticity dilemma:
v'Stability: Retain previous knowledge

v'Plasticity: Ability to learn new knowledge

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Catastrophic Forgetting

ol
5‘**\"4’ y\

:f DX—IE
iy =0y PEP D

Updated Decision Boundary Updated Decision Boundary

Decision Boundary

f(x;680) =0

f66)=0 1 f(x8)=0

Catastrophlc Forgetting Ideal Case

Kolouri S, Ketz N, Zou X, et al. Attention-based selective plasticity. arXiv preprint arXiv:1903.06070, 2019.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 6

Related Field: Multi-Task Learning

 Multi-Task Learning: Learn multiple related tasks
simultaneously using a set or subset of shared parameters

 Aims for a better generalization and a reduced overfitting
using shared knowledge extracted from related tasks

MTL Architectures Outputs
Traditional A) J«‘I ‘ Seg
Hard- parameter BB _‘
Sharing N { Task]-
Specific
- =] - -
Task2-
Soft-parameter flj E:] Lllj [Ar.l Specific
Sharing
_________________________________ Shared
AdaShare . ™ N : S Skipped
(Ours) _ ~—_ .

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Related Field: Transfer Learning

JTransfer Learning: Aid the learning process of a given task
(the target) by exploiting knowledge acquired from another
task or domain (the source)

L Performance on the source task(s) is not important

Y

Different Tasks Source Tasks Target Task

CHES

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Related Field: Online Learning

JOnline Learning: Optimize predictive models over a
stream of data instances sequentially

J Assumes an i.i.d data sampling procedure and considers
a single task domain

Initial St gnd grd gth
traiming .ponk chunk chunk chunk
data

00

T oo Jo

| |

| | :

1 2 3 4 S
Learning stages

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Related Field: Open World Learning

JOpen World Learning: Detect new classes at test time

JdWhen those new classes are then integrated into the

model, it becomes continual learning
Closed Set DA Partial DA

Source domain

Open Set DA label set
cD #*7"", Target domain
*......" label set
Universal DA Different Set DA
ABY\: o & AB\: EF ™
cp /) ° CD /)" GH /

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

10

3 Scenarios of CL: Task-Incremental Learning

Task-Incremental Learning: Incrementally learn a set
of distinct tasks

v' Always clear which task being performed
during training and testing

v’ Task identity is explicitly provided, or the tasks
are clearly distinguishable

v Train models with task-specific components or { il }

a completely separate network for each task Time: D
(no forgetting)

* Challenge: Find effective ways to share learned representations across tasks

 Example: Learn to play different sports or different musical instruments (it is always clear
which sport or instrument should be played)

van de Ven G M, Tuytelaars T, Tolias A S. Three types of incremental learning. Nature Machine Intelligence, 2022: 1-13.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 11

3 Scenarios of CL: Domain-Incremental Learning

Domain-Incremental Learning: The structure of the

problem is the same, but the input-distribution

changes (domain-shifts) Task 1 Task 2

v' The algorithm does not know which task a

sample belongs to (no task identity) iL b ﬂ b

v" If using task-specific components, the algorithm [Model learning data

must first identify the task Time ¢ D

* Challenge: Alleviate catastrophic forgetting

* Example: Incrementally learn to recognize objects under variable lighting
conditions (for example, indoor versus outdoor), or learn to drive under different

weather conditions

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

3 Scenarios of CL: Class-Incremental Learning

Class-Incremental Learning: Algorithm must
incrementally learn to discriminate between a

growing number of objects or classes

v A sequence of classification-based

tasks, each task contains different

classes and the algorithm must learn to
distinguish between all classes

* Challenge: Learn to discriminate between classes that are not observed together

 Example: An algorithm first learn about airplane and automobile, and later about
birds and dogs; the algorithm needs to complete a 4-class classification task

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

3 Scenarios of CL: Summary

At test time, is
context identity known?

YES NO
Task incremental Must context identity

be inferred?

NO YES
Domain incremental Class incremental

van de Ven G M, Tuytelaars T, Tolias A S. Three types of incremental learning. Nature Machine Intelligence, 2022: 1-13.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

3 Scenarios of CL: Example & Comparison

Context1(c=1)

Context 2 (c =2)

Context 3 (c = 3)

Context 4 (c = 4)

Context 5 (c =5)

Within-context label: y= 0
Global label: g=0

<
I
O
=<
I
<
I
O
<
1
—
<
I
O
<
1
—

Q
"
i

Q
"
a
Q
1
(@)
Q
1"
~
@
1
o
Q
1"

©

b

Input (at test time) Expected output Intuitive description

Task-incremental learning Image + context label Within-context label? Choice between two digits of same context (e.g. O or 1)

Domain-incremental learning Image Within-context label Is the digit odd or even?

Class-incremental learning Image Global label Choice between all ten digits

van de Ven G M, Tuytelaars T, Tolias A S. Three types of incremental learning. Nature Machine Intelligence, 2022: 1-13.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 15

Outline

* Basic Concepts

* Rehearsal Methods

* Regularization-Based Methods
* Parameter Isolation Methods

e Discussion

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Rehearsal (Replay) Methods

+» Basic idea:
v Store samples in raw format or generate pseudo-samples

v' The samples are reused as model inputs for rehearsal, or to constrain the
optimization of the new task loss

« Three main solutions:

L)

v Data Rehearsal: Retrain on a limited subset of stored samples while training
on new tasks

v" Pseudo Rehearsal: Generate pseudo-samples with a generative model

v" Constrained Optimization: Constrain new task updates using stored samples

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 17

iCaRL — Data Rehearsal

+ Scenario: Class incremental learning
Class 1 Class 3

+» Settings:

v' Different classes occur at different time

class-incremental learner

v" A single-head classifier

v' Limited computational resources and memory Class 2

% Three main components:
1. Classification by nearest-mean-of-exemplars
2. Prioritized exemplar selection based on herding

3. Representation learning using knowledge distillation and prototype rehearsal

Rebuffi S A, Kolesnikov A, Sperl G, Lampert C H. iCaRL: Incremental classifier and representation learning. CVPR, 2017.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Pseudo code

Algorithm 2 1CaRL INCREMENTALTRAIN

input X* ..., X" //training examples in per-class sets

input K // memory size

require © // current model parameters

require P = (Py,...,Ps_1) // current exemplar sets
© < UPDATEREPRESENTATION(X?,..., X% P, O)
m < K/t // number of exemplars per class

fory=1,...,s—1do
P, <~ REDUCEEXEMPLARSET(FP,, m)
end for
fory=s,....tdo
P, <~ CONSTRUCTEXEMPLARSET(X,,m, ©)
end for

P+ (P,...,P) // new exemplar sets

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Nearest-Mean-of-Exemplars (NME) Classification

** Limitation of linear classifier

v" Whenever the feature map ¢ changes, all weights w1, ..., w; must be updated

v" The outputs change uncontrollably

7/

*** Nearest-Mean-of-Exemplars (NME)
v" No weight vectors

v’ Class-prototypes automatically
change with ¢

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Algorithm 1 1CaRL CLASSIFY
input x
require P = (P,..., P)
require ¢ : X — RY
fory=1,...,tdo
1
Hy = ﬁ Z v(p)
Y

peEPy,

// image to be classified
/l class exemplar sets
// feature map

// mean-of-exemplars

end for
y" < argmin [[p(z) — |
y=1,....,t
output class label y*

// nearest prototype

20

Representation Learning

Steps: Algorithm 3 iCaRL UPDATEREPRESENTATION
. . . S t . . .
1. Construct an augmented training set 1npu? X*%, ..., X" [/l training images of classes s, ...,
o o require P = (Py,..., Ps 1) // exemplar sets
consisting of new training examples and require © // current model parameters

stored exemplars wrm combined training set:

2. Store network output for all previous D+ | J{(@y):zex’}u | {(z,9): 2 € P’}
=S,..., =1,..., s—1
classes et !
. // store network outputs with pre-update parameters:
3. Construct loss function: fory=1,...,s —1do
Y
L q; < g,(x;) forall (z;,-) € D
v’ Classification loss encourages the end for 7’
network to output the correct class for run network training (e.g. BackProp) with loss function
new classes t
L . {(O)=— . [S:(Sy:yi log gy (wi)+ Oys2y,; log(1—gy (i)
v’ Distillation loss encourages the network (wi.y;) €D lu=s
to reproduce the scores stored in the =
P > @V log gy (z) +(1—q?) log(l—gy(fci))]
previous step y—1

Dongrui Wu. BCI&ML Lab@HUST. http:/lab.beiml.cn/ that consists of classification and distillation terms. y

Exemplar Management

« Steps:
1. Construct exemplar set
2. Reduce exemplar set

+» Basic idea:

v The initial exemplar set should
approximate the class mean vector

v Remove exemplars at any time
during the algorithm’s runtime
without violating this property
(challenging) : Remove elements in
fixed order starting at the end

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Algorithm 4 iCaRL CONSTRUCTEXEMPLARSET

input image set X = {x1,...,x,} of class y

input m target number of exemplars

require current feature function ¢ : X — R
p > p(x) // current class mean
fork=1,...,mdo

. k—1
pi ¢ argmin 1 — Hip(x) + 52, o(py)]|
Te

end for

P < (p1,...,pm)
output exemplar set P

Algorithm 5 iCaRL REDUCEEXEMPLARSET

input m // target number of exemplars
input P = (p1,...,pp|) // current exemplar set
P <+ (p1,---,pm) // i.e. keep only first m

output exemplar set P

22

Experiments

«» Dataset:
v" CIFAR-100: Train all 100 classes in batches of 2/5/10/20/50 classes at a time
v ImageNet ILSVRC 2012
¢ iILSVRC-small: A subset of 100 classes, trained in batches of 10
¢ iILSVRC-full: All 1000 classes, trained in batches of 100

+ Metric: Accuracy on classes that have already been trained

ImageNet ILSVRC 2012 uses the top-5 accuracy

+» Baselines:
v" Finetuning: Finetune the model using new incoming classes
v" Fixed representation: Only train the weight vectors of new classes

v" LWF.MC: Apply LWF to class incremental learning

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Results:

100% 100%
90% 90%
80% i 80%
. 70% 70%
9 60% 60%
5 50% | 50%
8 40% 40%
< 30% 30%
20% a 20%
s g b d
182 hw‘h‘%‘fu:l:hh':t.-a-‘:uu:...yi I(O)gz

10 20 30 40 50 60 70 80 90100
Number of classes

100%
90%
80%
70%
60%
50% s

40% S

Accuracy

20%
10%
0%

30% e,

........

20 40 60 80

Number of classes

.."-'.' ey
& ""-"-l-'." tgoign

ICIFAR-100

100%

1 ‘"""‘t..,. .
ey

g

plL R Y T [R ey

10 20 30 40 50 60 70 80 90100
Number of classes

100

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

50
Number of classes

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

10 20 30 40 50 60 70 80 90100
Number of classes

+—t iCaRL

bt LwF.MC
{4 fixed repr.
t---t finetuning

100

(a) Multi-class accuracy (averages and standard deviations over 10 repeats) on iCIFAR-100 with 2 (top left), 5 (top middle), 10 (top right), 20 (bottom left)

or 50 (bottom right) classes per batch.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

24

Results: iILSVRC-full

100%
90% "
80% .
70%
60%
50%
40% ‘ |
30% .
20% el

10% e

Accuracy

10 20 30 40 50 60 70 80 90 100
Number of classes

iCaRL
LwF.MC
fixed repr.
finetuning

100 %
90 %,
80 % .
70 %
60 %
50 %
40 % 3
30 % ““‘ .. IIIIIIIIIII
20 %
10 %

100 200 300 400 500 600 700 800 900 1000
Number of classes

(b) Top-5 accuracy on iILSVRC-small (top) and iILSVRC-full (bottom).

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

25

Effect of Memory Budgets K

7 0 I I I I | I

65 |

60 |

231 e—e Carl
50| oo NCM |
e—e hybridl
4 5 | | I I 1 1
100 500 1000 2000 3000 4000 5000 K

Figure 4: Average incremental accuracy on iCIFAR-100
with 10 classes per batch for different memory budgets K.

¢ NCM (Nearest-class-mean): Exact class mean instead of means-of-exemplars

o Hybrid 1: Linear classifier instead of NME classifier

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

26

Deep Generative Replay (DGR)
— Pseudo Rehearsal

Cooperative dual model architecture: Deep generative model (generator) + task solver (solver)

Current Task Current Task

Scholar,
v New Scholar New Scholar
Scholar, -]

-
v Current | x Generator Current| X \y) Generator

Scholars N - N
: Replay ' x Replay || " 'Q’_LJ'
v
Scholary Generator Generator
Old Scholar Old Scholar
(a) Sequential Training (b) Training Generator (c) Training Solver

Figure 1: Sequential training of scholar models. (a) Training a sequence of scholar models 1s equivalent
to continuous training of a single scholar while referring to its most recent copy. (b) A new generator
is trained to mimic a mixed data distribution of real samples @ and replayed inputs &’ from previous
generator. (¢) A new solver learns from real input-target pairs (@, y) and replayed input-target pairs
(x’',y"), where replayed response ¢’ is obtained by feeding generated inputs into previous solver.

H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” NeurIPS 2017.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 27

DGR: Experiment Results

-1 « GR 1.0
% ' IR TS LN ER
Fo None 0.9 {f’ f.“‘\-%gf/ﬂw pﬁ:&f\ GR
%1 5 0.8
© , O .
o = E
%1 | | | g - \
o i E | 0_6
o i i i *
nl i i , X103
8 ! 0-4% 5 10 15 20 25
Tasks o ER: Exact replay iterations
o Noise: The generated samples do not resemble the real distribution
(a) o None: No samples are stored (b)

Figure 2: Results on MNIST pixel permutation tasks. (a) Test performances on each task during
sequential training. Performances for previous tasks dropped without replaying real or meaningful
fake data. (b) Average test accuracy on learnt tasks. Higher accuracy is achieved when the replayed
inputs better resembled real data.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 28

DGR: Experiment Results

1.0 —— i e ER(M) 1.0
0.9f \ 0.9 Ararngmin ER(S)
a (>
()
£ 00 W None(M) & -8
(W)
S 0.7 S 0.7
None(S)
0.6 MNIST(Old) — SVHN(New) 0.6 SVHN(OId) — MNIST(New)
0 5 x103 x103
20 5 10 15 20 25 0.5, 5 10 15 20 25
iterations iterations
(a) MNIST to SVHN (b) SVHN to MNIST

Figure 3: Accuracy on classifying samples from two different domains. (a) The models are trained on
MNIST then on SVHN dataset or (b) vice versa. When the previous data are recalled by generative
replay (orange), knowledge of the first domain 1s retained as if the real inputs with predicted responses
are replayed (green). Sequential training on the solver alone incurs forgetting on the former domain,
thereby resulting 1in low average performance (violet).

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 29

DGR: Experiment Results

+» Samples from trained generator

MNIST to SVHN experiment after training on SVHN dataset for different iterations

Figure 4: Samples from trained generator in MNIST to SVHN experiment after training on SVHN
dataset for 1000, 2000, 5000, 10000, and 20000 iterations. The samples are diverted into ones that

mimic either SVHN or MNIST input images.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 30

Gradient Episodic Memory (GEM)
— Constrained Optimization

Basic idea: Constrain the gradient to improve the previous tasks
Settings:

v Afix total memory M

v M, stores examples in Task t

Implementation:

1
O Loss on memories from the k-th task ¢(fo. M) = > U folwi k), w).

M
o« i i (xmkayz)EMk
d Minimizing the above loss results in overtitting to examples

in M}, , so a better optimization problem is

minimizeg g(fe(gj’ t), y) o Model after learning task t — 1
subject to £(fo, My) < {(g_l,Mk) forall £ < t,

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” NeurIPS 2017.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

GEM — Constrained Optimization

+» Implementation:

O To avoid storing the old model, computing the angle between loss gradient vector on new
task data and M,

(9, 9r) = <8€(f9gg) y)’ ag(fg’QMk)> > 0, forall £ < t.

The proposed parameter update g is unlikely to increase the loss on previous tasks.

Q If violations occur, project gradient g to the closest gradient g satisfying all the
constraints above:

T | 1o
mlmmlze§§ lg — gll5

subject to (g, gr) > O forall & < ¢.

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” NeurIPS 2017.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 32

GEM: lllustration

g
<« %
,7 . minimize
/
/ "
/ ~
/ g
'y,
————— Gradient of current task -
" (G.91)= 0
» Gradient of previous task g1 { N
(g,92)=0

» Update direction

https:// www.youtube.com/watch?v=7qTSPIKInWo&list=PLIJV_el3uVTsOK ZK51.0lv_EQol 1JefR[.4&index=25
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

GEM: Experiments

+» Dataset:
v MNIST Permutations: A fixed permutation of pixels
v MNIST Rotations: Digits rotated by a fixed angle between 0 and 180
v CIFAR100: 100 classes
Total number of tasks T = 20

+ Performance Metrics:

T
1 . :

Average Accuracy: ACC = — Z Rr. R; ; Accuracy of testing on task t;
I data using the model of task ¢;

T—1
1
Back dTr fer: BWT = — R@—RZZ
ackwar ansier T _1 i_El T, :

/ Random accuracy

T
1
Forward Transfer: FWT = AR ; Ri 1, bi.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

GEM: Experiment Results

> MNIST permutations
. R € 0.81 mE single
Baselines: oo = i
o 0.4 mm EWC
+ Single: A single model £ 02 II I -GN
& 0.0 —_
¢ Independent: One model per < T
task, with T times fewer
. . "= r 2 MNIST rotations
hidden units than “single £ 0 =
S 06] == cutmodal
¢ Multimodal: A dedicated £ 7 IIIII e I I
. £ 0.0 — —
input layer per task - " N |
ol ACC BWT FWT
¢ EWC
S CIFAR-100
‘ ica RL % 0.6 = ?:cllgeslendent
T (0.4 I iCARL
“%00 —
E FWT

0.8+
0.6
0.4
0.2+

0.8+
0.6
0.4+
0.2+

0.6
0.5
0.4
0.3
0.2

MNIST permutations

0 2 4 6 8 10 12 14 16 18 20
MNIST rotations
| —

i, -

0 2 4 6 8 10 12 14 16 18 20
CIFAR-100
nA \ .

0 2 4 6 8 10 12 14 16 18 20

Figure 1: Left: ACC, BWT, and FWT for all datasets and methods. Right: evolution of the test

accuracy at the first task, as more tasks are learned.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

35

GEM: Experiment Results

Table 1: CPU Training time (s) of MNIST experiments for all methods.

task single independent multimodal EWC GEM
permutations 11 11 14 179 77
rotations 11 16 13 169 135

Table 2: ACC as a function of the episodic memory size for GEM and iCARL, on CIFAR100.

memory size 200 1,280 2,560 5,120

GEM 0.487 0.079 0.633 0.654
1ICARL 0.436 0.494 0.500 0.508

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Averaged GEM (A-GEM)

+» An improved version of GEM

« Basic idea: Project on a direction estimated by some randomly selected samples from

a previous task data buffer

Current task t

minimizeg £(fo,Dy) s.t. £(fg, M) < 5_1,M) where| M = U M

The corresponding optimization problem reduces to:

. 1 . .
minimize; §Hg—g\|§ s.t. nggT.efEO

/

The gradient computed using a batch randomly

sampled from (Xref,yref) ~ M

A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with A-GEM,” ICLR 2018.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

A-GEM: Experiment Results

A-GEM and GEM perform comparably in terms of average accuracy

A
[)
0.50 A 1.0 4 0-65 7 0.36 1.0 1
0.90 - 0,98 0.25 - -
0.40 4 0.8 0-60 7 | 0.8 -
0.80 -~ 0.26 - 0.20 1 0.32 1
0.30 1 0.6 4 0-55 7 0.30 7 0.6 - - VAN
0.70 - 024 0197 0.28 - : E;:(?G-I\'N
0.50 4 B GEM
0.20 0.4 A 0.4 1 EE A-GEM
. 0.92 0.10 - 0.26 -
0.10 - 0.2 1 04579 0.05 - b2 0.2
0.20 1 0.92 4
0.50 +
0.00 - 0.0 - 0-40 1 0.00 - 0.20 - 0.0 -
Fr(l) LCAw(T)| Time(}) Mem(l) Fr(}) LCAw(T) | Time(!) Mem(l)
(a) Permuted MNIST \ (b) Split CIFAR /

~

A-GEM has much lower time (about 100 times faster)
and memory cost (about 10 times lower)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 38

Outline

* Basic Concepts

* Rehearsal Methods

* Regularization-Based Methods
* Parameter Isolation Methods

e Discussion

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Regularization-Based Methods

+ Basic idea:

v' Add an extra regularization item to the loss function

+ Two main solutions:

1. Prior-Focused Methods: Changes to important
parameters are penalized during the training of later tasks

2. Data-Focused Methods: Knowledge distillation from a
previous model to the model being trained on the new

data

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

40

Elastic Weight Consolidation (EWC)
— Prior-Focused Method

Basic idea:
v' Determine the parameters that are important for previous tasks

v Constrain these important parameters to stay close to their old values

Importance of each parameter

Loss of current task (Fisher information matrix)

N

A * 2

L(0) =L(0)+) S0 —04.:)",
Parameters of Parameters learned
current task from previous tasks

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, et al.

Overcoming catastrophic forgetting in neural networks. PNAS, 2017, 114(13): 3521-3526
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

41

EWC: lllustration

1 Low eror for task B == F\WC

= Low eror for task A = L2
== NO penalty

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, et al.

Overcoming catastrophic forgetting in neural networks. PNAS, 2017, 114(13): 3521-3526
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

42

EWC: Experiment Results

A train A train B train C B 1.0- single task performance
1.0 - | K EWC
< ! 1
p ,’ :Q:ﬁ;(zm | EWC
(30] 1 : -
" 08- | | @
I : = 0.9 -
o 1.0 : ., S
X , e c
i :' | S
0.8 - ! ; S
I : L
o 1.0 : | 0.8 -
" ! lf,:_ RPN
o : | SGD+dropout
0.8 I . T T T T T T T T T

2 3 4 5 6 7 8 9 10

Frac. correct Training time Number of tasks

Limitation: EWC can alleviate catastrophic forgetting; however, important parameters
will slowly deviate from their optimal parameters learned from previous tasks.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 43

Learning Without Forgetting (LWF)
— Data-Focused Method

Basic idea: Minimize
the KL divergence
between the probability
distributions of the old
and new model outputs

Z. Li and D. Hoiem, “Learning without forgetting,” ECCV 2016, pp.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

(a) Original Model
(old task 1)
(test image)ﬁ-@h. +@>} :
(old task m)
0 0,

(b) Fine-tuning

Input: Target:
new task
image
new task
ground truth
(d) Joint Training
Input: Target:

: old tasks’
image for * ground truth
each task -

new task
ground truth

B random initialize + train
[fine-tune
- unchanged

(c) Feature Extractlon

Input: Target:
new task
image
new task
ground truth

(e) Learning without Forgetting

Input: Target:
model (a)’s
response for
new task % . .--ﬁﬂ’ old tasks
image
new task
ground truth
614-629.

44

LWF: Loss Function

1. Loss on new data: LEARNINGWITHOUTFORGETTING:
Start with:
vV,) — — - log v 0s: shared parameters
Enew (ym Yn) yn S 0,: task spgcific parameters for each old task
/ Xn, Yy training data and ground truth on the new task
True Prediction Y, + CNN(X,,, 05, 6,) // compute output of old tasks for new data
label probability from 6, < RANDINIT(|0..|) // randomly initialize new parameters

ST . the updated model| Train:) .
2. Distillation loss: P Define Y, = CNN(X,,, 05, 6,) // old task output

Define Y,, = CNN(X,,, 0s, 6,) // new task output
-~ ’ A’ £ £ * . ~ ~ ~ A ~
Eold(ij yo) — _H(yog yo) 95: 90: 971, < argmin (Aoﬁold(ycu Yo) + ﬁnew (Yng Yn) + R(QS, Qo,gn))

, 6s,60,6n
— — Zy:)(z) log A':J(i)

TN

Prediction probability Prediction

on the old task model probability from
the updated model

Z. Liand D. Hoiem, “Learning without forgetting,” ECCV 2016, pp. 614—-629.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 45

(a) Using AlexNet structure (validation performance for ImageNet/Places365/VOC)

LWF: Experimental Results

ImageNet—VOC ImageNet—CUB ImageNet— Scenes Places365—VOC Places365—CUB Places365—Scenes ImageNet— MNIST
old new old new old new old new old new old new old new
LwF (ours) 56.2 76.1 54.7 57.7 55.9 64.5 50.6 70.2 479 34.8 50.9 75.2 49.8 99.3
Fine-tuning -0.9 -0.3 -3.8 -0.7 2.0 -0.8 2.2 0.1 -4.6 1.0 2.1 -1.7 -2.8 0.0
LFL 0.0 -0.4 -1.9 -2.6 -0.3 -0.9 0.2 -0.7 0.7 -1.7 -0.2 -0.5 -2.9 -0.6
Fine-tune FC 0.5 -0.7 0.2 -3.9 0.6 -2.1 0.5 -1.3 1.8 -4.9 0.3 -1.1 7.0 -0.2
Feat. Extraction 0.8 -0.5 2.3 -5.2 12 -3.3 1.1 -1.4 3.8 -12.3 0.8 -1.7 7.3 -0.8
Joint Training 0.7 -0.2 0.6 -1.1 0.5 -0.6 0.7 -0.0 2.3 1.5 0.3 -0.3 7.2 -0.0

Difference between joint training and LWF:

* Joint training requires the data and labels from the old task

 |LWF only uses the new task data and prediction probability on the old task model

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

46

Comparison: Confusion Matrices
¢ iCaRL S AL R

208

Roughly uniform over all classes

True class

o LWF.MC "B

80 .

Bias towards classes from recent batches

100

20 40 60 80 100
Predicted class Predicted class
(a) iCaRL (b) LWFE.MC

o Fixed representation

Bias towards classes from the first batch

True class

¢ Finetuning

Bias towards classes from the last batch

20 40 60 80
Predicted class Predicted class

(c) fixed representation (d) finetuning

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 47

Outline

* Basic Concepts

* Rehearsal Methods

* Regularization-Based Methods
* Parameter Isolation Methods

e Discussion

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Parameter Isolation Methods

+ Basic idea:

v Different model parameters for each task

<~ Two main solutions:
v Dynamic architecture: No constraint on model size

v Static network: Fixed parts allocated to each task

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

49

Progressive Neural Networks (PNN)
— Dynamic Architecture

outputy outputs outputs

o Instantiate a new neural
network for each task

a Freeze the weights of previous
tasks and transfer knowledge
via lateral connections

input

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 50

Progressive Neural Networks (PNN)

Train network of Task k:

outputy outputs outputs

a [§ a |

Weight of current network Weight of lateral connections

/
k k k: '
h = f (WP Y o |
v j<k \

Hidden activation of Hidden activation of
current network previous network

input

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

PNN: Experiment Setup

source task

target task

- s
= =z

, A IS :/ random
input input input input input input -
(1) Baseline 1 (2) Baseline 2 (3) Baseline 3 (4) Baseline 4 (5) Progressive Net (6) Progressive Net fl’r;)z_er-ll

2 columns 3 columns

Figure 3: Illustration of different baselines and architectures. Baseline 1 1s a single column trained on the target
task; baseline 2 1s a single column, pretrained on a source task and finetuned on the target task (output layer
only); baseline 3 is the same as baseline 2 but the whole model is finetuned; and baseline 4 is a 2 column
progressive architecture, with previous column(s) initialized randomly and frozen.

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 53

PNN: Experiment Results

«» Evaluation Domain: Atari game where the visuals and gameplay have been altered

(a) (b) Pong to White Pong to H-flip
- 20 Prog2
Baseline 2 Pong
Noisy
H-flip
Baseline 3 Pong ()
. | -
N0|sl.y. 8 W
H-flip n , ¢ ahteJViBase3
Baseline 4 Rand AN Y L
andom YL Y s Basel
Prog. 2 col Pong ',\, Sy 'y \ o
Noisy e
H-flip —2(0 et S
Prog. 3 col Noisy + H-flip 0 steps 4e7 0 steps 4e?

Figure 4: (a) Transfer matrix. Colours indicate transfer scores (clipped at 2). For progressive nets, the first
column 1s trained on Pong, Noisy, or H-flip (table rows); the second column is trained on each of the other pong
variants (table columns). (b) Example learning curves.

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 54

(a)

PNN: Detailed Analysis

pong h-flip pong zoom pong noisy noisy

1

0 AFS
-

insensitive sensitive

The network tends to reuse low-level features

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

pong

55

PNN: Limitations

1. The growth in the number of parameters with the
number of tasks

2. Only a fraction of the new capacity is actually utilized

3. Require the task identity to choose network while
testing

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Dynamically Expandable Representation (DER)
— Dynamic Architecture

« A two-stage learning approach that utilizes a dynamically expandable representation
+ Save part of previous data as the memory M, for future training
+» The model consists of two parts: feature extractor qbt and classifier H;

Input Layer 1 Layer 2 .-+ Layer L Feature Plcdu:tlon Mask Layer

Layer [-1 Layer [

M’lsk m,; '

Sparsity Loss
t i

Mask Parameters
e
l

Fearure Extrflctor Tl

Feature Extractor F,

EUI\

New Feature Extractor F;

Super-Feature

—' Cla331ﬁer

!]

Auxiliary ||
. - 1
Classifier | |

Figure 2: Dynamically Expandable Representation Learning. At step ¢, the model is composed of super-feature extractor ®;
and classifier H;, where ®; is built by expanding the existing super-feature extractor &, with new feature extractor F;. We
also use an auxiliary classifier to regularize the model. Besides, the layer-wise channel level mask is jointed learned with the
representation, which is used to prune the network after the learning of model.
Yan S P, Xie] W, He X M. DER: Dynamically expandable representation for class incremental learning. CVPR 2021.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

57

Dynamically Expandable Representation (DER)

1. Expandable Representation Learning: The current ¢; is
build by expanding the feature extractor ¢,_; , the feature

is then fed into the classifier H; for prediction

2. Dynamical Expansion: Remove the model redundancy and

maintain a compact representation

Yan S P, Xie J W, He X M. DER: Dynamically expandable representation for class incremental learning. CVPR 2021.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

DER
Lper = L3, + AaLye + AsLs
® Classification loss: Retrain the classifier H; with currently

available data D, = D, U M,

Iﬁt|

L, = (y = yz’wz)))

’Dt|

e Auxiliary classifier H : Encourage the model to discriminate

old and new concepts

L
> i Killmy—q |1 |||
ZzL:1 Kici—1¢

® Sparsity loss: Lg =

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

CIFAR-100:

DER: Experiment Results

Train all 100 classes in several splits including 5/10/20/50
incremental steps, with fixed memory size of 2,000 exemplars over batches

Methods b steps 10 steps 20 steps 50 steps
#Paras Avg #Paras Avg #Paras Avg #Paras Avg

Bound 11.2 80.40 11.2 80.41 11.2 81.49 11.2 81.74
1CaRL[] 11.2 71.14i0.34 11.2 65.27:|:1_02 11.2 61.20:|:0_83 11.2 56.08:|:()_83
UCIR[2] 11.2 62.7710.82 11.2 58.66.19.71 11.2 58.1740.30 11.2 56.8643 74
BiC[12] 11.2 73.1040 55 11.2 68.80+1 99 11.2 66.48+¢ 32 11.2 62.0919 .85
WA[39] 11.2 72.8140 .08 11.2 69.46¢ 29 11.2 67.33+10.15 11.2 64.321¢ .28
PODNet[6] | 11.2 66.70.10.64 11.2 58.0341 o7 11.2 53.97 1085 11.2 51.1941 g2
RPSNet[26] | 60.6 70.5 56.9 68.6 - - - -
OurS(W/O P) 33.6 76.80:‘:0‘79(4'3.7) 61.6 75.36i0_36(+5.9) 1176 74.09i0_33(+().76) 285.6 72.4110‘36(4'8.09)
Ours \ 2.89 75'55:t0.65(+2'45) 4.96 74.64i0_28(+5.18) 7.21 73.98:|:0.36(+6.65) 10.15 72'05:|:0.55(+7'73)

N

Without pruning
(sparsity loss)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

60

DER: Experimental Results

CIFAR100-B0 20 steps CIFAR100-B0 50 steps

Accuracy (%)

30

10 20 30 40 50 60 70 80 90100 0 102030405060708090100
Number of classes Number of classes

—e— |CaRL —»— UCIR —— BiC —— WA —«— PODNet —+— Qurs (w/o P) —+— Qurs

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Upperbound

61

PackNet — Static Network

Use network pruning techniques to create free parameters that can then be

employed for learning new tasks, without adding extra network capacity

OO
O O
O O
O O
o O

O

OO

oo

O
O
Oe0

O

OO0000O
© OO0
OO00OO0O

OO O
0000

OO000OO0
OeO000
OO000O

OO O
0000

(a) Initial filter for Task I (b) Final filter for Task | (c) Initial filter for Task Il

N

training

(d) Final filter for Task Il (e) Initial filter for Task Il

N—”

training

60% pruning + re-training 33% pruning + re-training

Figure 1: Illustration of the evolution of a 5 x5 filter with steps of training. Initial training of the network for Task I learns a dense filter as
illustrated in (a). After pruning by 60% (15/25) and re-training, we obtain a sparse filter for Task I, as depicted in (b), where white circles
denote 0 valued weights. Weights retained for Task I are kept fixed for the remainder of the method, and are not eligible for further pruning.
We allow the pruned weights to be updated for Task II, leading to filter (c), which shares weights learned for Task I. Another round of
pruning by 33% (5/15) and re-training leads to filter (d), which is the filter used for evaluating on task II (Note that weights for Task I, in
gray, are not considered for pruning). Hereafter, weights for Task II, depicted in orange, are kept fixed. This process is completed until
desired, or we run out of pruned weights, as shown in filter (e). The final filter (e) for task III shares weights learned for tasks I and 1. At test
time, appropriate masks are applied depending on the selected task so as to replicate filters learned for the respective tasks.

A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single network by iterative pruning,” CVPR 2018.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

62

PackNet: Pruning Procedure

1. The weights in a layer are sorted by their absolute
magnitude, and the lowest 50% or 75% are selected
for removal

2. Only prune weights belonging to the current task, but
not modify weights that belong to a prior task

3. Overhead: Storage of a sparsity mask indicating
which parameters are active for a particular task

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

PackNet: Experiment Results

Classifier Pruning (ours) Individual
Dataset Only Lwk 0.50. 0.75. 0.75 i 0.75.0.75.0.75 || Networks
28.42 39.23 29.33 30.87 2842
§ 53:? ImageNet (9.61) (16.94) (9.99) (10.93) 9.61)
S = |[CUBS 36.76 30.42 25.72 24.95 22,57
S 2 |[Stanford Cars 56.42 22.97 18.08 15.75 13.97
QD |MFlowers 20.50 15.21 10.09 9.75 8.65
#Models (Size) || 1 (362 MB) || 1 (362 MB) || 1 (595 MB) (595 MB) || 4(2.173 MB)

Table 2: Errors on fine-grained tasks. Values in parentheses are top-5 errors, while all others are top-1 errors. The numbers at the top of the
Pruning columns indicate the ratios by which the network is pruned after each successive task. For example, 0.50, 0.75, 0.75 indicates that
the initial ImageNet-trained network is pruned by 50%, and after each task is added, 75% of the parameters belonging to that task are set to 0.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 64

PackNet: Detailed Analysis

s Effect of training order Effect of pruning on added tasks
2719 W Trained first 35 - _:_ ICTJZQSENet e F':S":errsune 98.36
27:51 25 75 mam Trained second e Stanford Cars * re-finetune
I Trained third] error ®) g7
30
_ —~ 3542 %29.33 *
S > | é
S S ®1 e — 937,00 Syias $2472
I T :
— — 20
Q a .
S) o * 17.84
- - 15 A 1575 "ﬁ47 4.(
*
"1 esoe %581 55 o
CUBS Stanford Cars Flowers 0.00 _ 0.50 _ 0.75 0.90
Dataset Pruning Ratio
The most challenging or unrelated task Effective transfer learning as very few
should be added first parameter modifications are enough to

obtain good accuracies

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 65

PackNet: Detailed Analysis

Pruning 0.50, 0.75, 0.75
Dataset Separate Bias Shared Bias
CUBS 25.62 25.72
Stanford Cars 18.17 18.08
Flowers 10.11 10.09

Sharing biases reduces the storage overhead,

as each convolutional, fully-connected, or
batch-normalization layer can contain an
associated bias term.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Top-1 Error (%)

50 -

N
o

w
o
L

N
o
!

10 ~

Effect of finetuning various layers

54.63

B classifier only
i fc + classifier only
e all

CUBS Stanford Cars Flowers
Dataset

Better to finetune all layers

66

Hard Attention to the Task (HAT)
— Static Network
» Motivation:

v The network may learn a new set of features, some of which not
overlap much with previous tasks’

+» Basic idea:

v Learn to use the task identifier to condition every layer, and then
exploit this learned condition to prevent forgetting previous tasks

J. Serra, D. Suris, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forgetting with hard attention to the task,” ICLR 2018.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 67

HAT: Architecture

h';
The output of each layer 5 el
h, = alOh, ‘! 5
£ .] [Embedding] Layer
where a; is a gated version of a : :
. . h's;
single-layer task embedding e} " torward |
!)
¢ t 5 —>»{ Compensation - L VR e——
al = O (iel) , max —
N O
igmoid gate »
function _Positive H gy
scaling parameter ['] Expand
Embedding Layer
f
<t \4

aj
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ backward

HAT: Network Training

¢ Condition the gradients according to the cumulative attention from all
previous tasks

<t _ t <t—1
a7 = max (az,al) :

¢ Modify the gradient with the reverse of the minimum of the cumulative
attention in the current and previous layers

/ . 1 . St St
9157 = [+ —HA A5, Q7 q 5)| Glig,

Masks prevent large updates to weights important to previous tasks

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

69

PackNet vs HAT

» Similarity:

Employ masks to constrain the network

+ Differences:

1. HAT’s constraint is based on network weights, which allows
for a potentially better use of the network’s capacity;

Pac
2. HA

KNet is based on

's mask is learna

ratios.

neuristic weight pruning.

ole; PackNet uses pre-assigned pruning

3. HAT's mask is not always binary, it can be between 0 and 1

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

HAT: Experimental Results

+» Forgetting ratio:

0.0 1= EEEN BN BN BN BN DN BN BN BN BN B e .
The accuracy measured _0.1 - ‘ e
on task t after sequentially -
learning task t —0.2 1
o —0.3-
T<t T <
— = :

A;—t — A} —0.51

/ \ —0.6 1
Joint training Random accuracy 1 2 3 4 5 6 7 3

t
t
<t __ 1 T<t _

pP— = — P . m= = Multitask EWC e |WF e PNN
t —1 SGD IMM-Mode ess= [F], emsms HAT

SGD-F == [MM-Mean e PathNet

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 71

Expert Gate — Static Network

Basic idea: Q Q Q

v~ Add a new expert model :
whenever a new task arrives, | B
and transfer knowledge | B - i
from previous models
v Learn a gating mechanism 1 & T
that uses the test sample to ? - ﬁﬁ']
. . P
decide which expert to ELJ\[/L,_]]"'
aCtlvate Input i ={ Features Extraction]

R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with a network of experts,” CVPR 2017.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Expert Gate

1. An autoencoder gate is trained for each task. The autoencoder

2.

of each domain/task should be better at reconstructing the data
of that task than others.

Select the most relevant expert. First compute the
reconstruction error er; of the i-th autoencoder and feed it into
an extra softmax layer:

T t
cap(—er, fty— TP
pi =
z Zj exp(—er;/t)

Then load the expert model associated with the most confident

autoencoder.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Expert Gate: Experiment Results

Method Scenes | Birds | Flowers avg
Joint Training* 63.1 58.5 85.3 68.9
Multiple fine-tuned models™** 63.4 56.8 85.4 68.5
Multiple LWF models™* 63.9 58.0 84.4 68.7
Single fine-tuned model 63.4 - - -
50.3 57.3 - -
46.0 43.9 84.9 58.2
Single LwF model 63.9 - - -
61.8 53.9 - -
61.2 53.5 83.8 66.1
Expert Gate (ours) 63.5 57.6 84.8 68.6

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

74

Comparison of the Three Methods

Solution Advantage Disadvantage
e Require additional computation and
storage of raw input samples

Rehearsal |* Simple and effective * Fix memory deteriorates the ability of

exemplar sets to represent the original
distribution

Regularization

* Avoid storing raw inputs, protect
privacy, and alleviate memory
requirements

* As more tasks are added the weights
gradually deviate from the optimal
weights of previous tasks

Parameter
Isolation

* Guarantee maximal stability by
fixing the parameter subsets of
previous tasks

* Require a task identity to activate
corresponding masks or task branch
during prediction

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

75

Comparison of the Three Methods

a b c d e

S gon:exz ‘]2 Context 2 loss Context 2 data Context 1 Context 2 Class 2 template
— Contex
— Shared ‘G:J A A _ | Class1 .

© No reg A o | template :

E| Context1loss _.% xy™)., (x2,y@) = 5?2

o M) (M) 3 :

£ —— " o ek S R

+Reg S .y i
o d
Parameter 2 Anchor X Feature 2
points

' a. Context-specific components. Certain parts of the network are only used for specific contexts.

' b. Parameter regularization. Parameters important for past contexts are encouraged not to change too much :
§ when learning new contexts. i
' c. Functional regularization. The input—output mapping learned previously is encouraged not to change too |

much at a particular set of inputs (the ‘anchor points’) when training on new contexts.

d. Replay. The training data of a new context is complemented with data representative of past context. The
replayed data is sampled from M, which can be a memory buffer or a generative model.

e. Template-based classification. A ‘template’ is learned for each class (for example, a prototype, an energy
value or a generative model), and classification is performed based on which template is most suitable for |
the sample to be classified.

__

Outline

* Basic Concepts

* Rehearsal Methods

* Regularization-Based Methods
* Parameter Isolation Methods

e Discussion

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Meta-Learning & Continual Learning

 Differences in focus:

v’ Meta-learning: Learning to learn (E)

v’ Continual learning: Learn reusable ;1 ietarieaining (feaming fo earm) %
representations from non-
: Multiple task /- ~ \
stationary data K sequences [N ‘
. T : . :"'::-._H\ (" ocoe aee cee) /"’ ,,

WO main categories: N o

A @000 @000 @000 o
: : ~’| ©e00 eeed eeed r/_f—'
1. Meta continual-learning -)=

2. Continual meta-learning

Hadsell R, Rao D, Rusu A A, et al. Embracing change: Continual learning in deep neural networks. Trends in cognitive sciences, 2020.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 78

Continual Reinforcement Learning

e Reinforcement Learning: Learning from (sparse) rewards

* Continual Learning: Learn reusable representations non-stationary data

* Quite orthogonal objectives but some shared constraints (single agent
view, non-stationary environments, sample bias, etc..)

Continual Reinforcement Learning Approaches

el B —————

_{

_.[

N

_.[

Explicit Knowledge Retention —‘ Leverage Shared Structure Learning to Learn |—
Latent Parameter Storage] -b[Modularity & Composition 1 Context Detection]4-
Distillation Based] ->[State Abstractions Focused . Learning to Adapt]4-
Rehearsal Based] "[Skill Focused Learning to Explore]¢.
->[Goal Focused
->[Auxiliary Task Focused

Hadsell R, Rao D, Rusu A A, et al. Embracing change: Continual learning in deep neural networks. Trends in cognitive sciences, 2020.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

79

Continual Unsupervised Learning

* |deal paradigm to combine with CL
v No Continual Labeling
v' Less Bias

* Why this is still not the case?

v Changing the paradigm: More Data, Less
Supervision

v' Less impactful applications for now (tend to
use supervised learning for impressive results)

Frontiers in Continual Learning - Continual L.earning Course (continualai.org)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Fram A

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

AL B SBiNt 2

SCHOOL OF ARTIFICIAL INTELLIGENCE AND AUTOMATION.HUST

RIEOSNBFIEEE

BRAIN-COMPUTER INTERFACE AND MACHINE LEARNING LABORATORY

Thank you!

81

