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Motivation 
Machine learning state-of-the-art

• Deep learning achieves state-of-the-art performance in many tasks

• Mainly supervised training with huge and fixed datasets

Limitation:

• Need to restart the training process each time new data become 
available

• Intractable due to storage constraints or privacy issues

Call for systems that adapt continually and keep on learning over time
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• Goal: Gradually extend acquired knowledge and use it for future learning

• Learn from an infinite stream of data

• Also referred to as lifelong learning, sequential learning, or incremental learning

Continual Learning (CL)

De Lange M, Aljundi R, Masana M, et al. A continual learning survey: Defying forgetting in classification tasks. IEEE TPAMI 2021.
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• Performance on a previously learned task or domain
should not significantly degrade over time as new
tasks or domains are added

• Stability-Plasticity dilemma:

Stability: Retain previous knowledge

Plasticity: Ability to learn new knowledge

Major Challenge: Catastrophic Forgetting
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Catastrophic Forgetting

Kolouri S, Ketz N, Zou X, et al. Attention-based selective plasticity. arXiv preprint arXiv:1903.06070, 2019.
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Multi-Task Learning: Learn multiple related tasks
simultaneously using a set or subset of shared parameters

 Aims for a better generalization and a reduced overfitting
using shared knowledge extracted from related tasks

Related Field: Multi-Task Learning 
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Transfer Learning: Aid the learning process of a given task
(the target) by exploiting knowledge acquired from another
task or domain (the source)

Performance on the source task(s) is not important

Related Field: Transfer Learning 
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Online Learning: Optimize predictive models over a
stream of data instances sequentially

Assumes an i.i.d data sampling procedure and considers
a single task domain

Related Field: Online Learning 
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Open World Learning: Detect new classes at test time

When those new classes are then integrated into the
model, it becomes continual learning

Related Field: Open World Learning 
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Task-Incremental Learning: Incrementally learn a set
of distinct tasks

 Always clear which task being performed
during training and testing

 Task identity is explicitly provided, or the tasks
are clearly distinguishable

 Train models with task-specific components or
a completely separate network for each task
(no forgetting)

3 Scenarios of CL: Task-Incremental Learning

van de Ven G M, Tuytelaars T, Tolias A S. Three types of incremental learning. Nature Machine Intelligence, 2022: 1-13.

• Challenge: Find effective ways to share learned representations across tasks

• Example: Learn to play different sports or different musical instruments (it is always clear
which sport or instrument should be played)
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Domain-Incremental Learning: The structure of the
problem is the same, but the input-distribution
changes (domain-shifts)

 The algorithm does not know which task a
sample belongs to (no task identity)

 If using task-specific components, the algorithm
must first identify the task

3 Scenarios of CL: Domain-Incremental Learning

• Challenge: Alleviate catastrophic forgetting

• Example: Incrementally learn to recognize objects under variable lighting
conditions (for example, indoor versus outdoor), or learn to drive under different
weather conditions
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Class-Incremental Learning: Algorithm must
incrementally learn to discriminate between a
growing number of objects or classes

 A sequence of classification-based
tasks, each task contains different
classes and the algorithm must learn to
distinguish between all classes

3 Scenarios of CL: Class-Incremental Learning

• Challenge: Learn to discriminate between classes that are not observed together

• Example: An algorithm first learn about airplane and automobile, and later about
birds and dogs; the algorithm needs to complete a 4-class classification task



Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 14

3 Scenarios of CL: Summary

van de Ven G M, Tuytelaars T, Tolias A S. Three types of incremental learning. Nature Machine Intelligence, 2022: 1-13.
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3 Scenarios of CL: Example & Comparison

van de Ven G M, Tuytelaars T, Tolias A S. Three types of incremental learning. Nature Machine Intelligence, 2022: 1-13.
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Rehearsal (Replay) Methods
 Basic idea:
 Store samples in raw format or generate pseudo-samples

 The samples are reused as model inputs for rehearsal, or to constrain the
optimization of the new task loss

 Three main solutions:
 Data Rehearsal: Retrain on a limited subset of stored samples while training

on new tasks

 Pseudo Rehearsal: Generate pseudo-samples with a generative model

 Constrained Optimization: Constrain new task updates using stored samples
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iCaRL — Data Rehearsal
 Scenario: Class incremental learning

 Settings:
 Different classes occur at different time

 A single-head classifier

 Limited computational resources and memory

 Three main components:
1. Classification by nearest-mean-of-exemplars

2. Prioritized exemplar selection based on herding

3. Representation learning using knowledge distillation and prototype rehearsal

Rebuffi S A, Kolesnikov A, Sperl G, Lampert C H. iCaRL: Incremental classifier  and  representation  learning.  CVPR, 2017.
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Pseudo code
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Nearest-Mean-of-Exemplars (NME) Classification 

 Nearest-Mean-of-Exemplars (NME)

 No weight vectors

 Class-prototypes automatically
change with 𝜑𝜑

 Limitation of linear classifier

 Whenever the feature map 𝜑𝜑 changes, all weights 𝜔𝜔1, … ,𝜔𝜔𝑡𝑡 must be updated

 The outputs change uncontrollably
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Representation Learning
Steps: 

1. Construct an augmented training set 
consisting of new training examples and 
stored exemplars

2. Store network output for all previous 
classes

3. Construct loss function:

Classification loss encourages the 
network to output the correct class for 
new classes

Distillation loss encourages the network 
to reproduce the scores stored in the 
previous step
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Exemplar Management 
 Steps:

1. Construct exemplar set

2. Reduce exemplar set

 Basic idea:

 The initial exemplar set should
approximate the class mean vector

 Remove exemplars at any time
during the algorithm’s runtime
without violating this property
(challenging) : Remove elements in
fixed order starting at the end
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Experiments 
 Dataset:
 CIFAR-100: Train all 100 classes in batches of 2/5/10/20/50 classes at a time

 ImageNet ILSVRC 2012

 iILSVRC-small: A subset of 100 classes, trained in batches of 10

 iILSVRC-full: All 1000 classes, trained in batches of 100

 Metric: Accuracy on classes that have already been trained

ImageNet ILSVRC 2012 uses the top-5 accuracy

 Baselines:
 Finetuning: Finetune the model using new incoming classes

 Fixed representation: Only train the weight vectors of new classes

 LwF.MC: Apply LWF to class incremental learning
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Results: iCIFAR-100  
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Results: iILSVRC-full  



Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 26

Effect of Memory Budgets 𝑲𝑲

 NCM (Nearest-class-mean): Exact class mean instead of means-of-exemplars

 Hybrid 1: Linear classifier instead of NME classifier
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Deep Generative Replay (DGR) 
— Pseudo Rehearsal

Cooperative dual model architecture: Deep generative model (generator) + task solver (solver)

H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” NeurIPS 2017.
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DGR: Experiment Results 

 ER: Exact replay
 Noise: The generated samples do not resemble the real distribution
 None: No samples are stored
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DGR: Experiment Results  
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DGR: Experiment Results  
 Samples from trained generator

MNIST to SVHN experiment after training on SVHN dataset for different iterations
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Gradient Episodic Memory (GEM) 
— Constrained Optimization  

 Basic idea: Constrain the gradient to improve the previous tasks

 Settings:

 A fix total memory ℳ

 𝑀𝑀𝑡𝑡 stores examples in Task 𝑡𝑡

 Implementation:

 Loss on memories from the k-th task

 Minimizing the above loss results in overfitting to examples
in 𝑀𝑀𝑘𝑘 , so a better optimization problem is

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” NeurIPS 2017.

Model after learning task 𝑡𝑡 − 1
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 Implementation:
 To avoid storing the old model, computing the angle between loss gradient vector on new

task data and 𝑀𝑀𝑘𝑘

The proposed parameter update 𝑔𝑔 is unlikely to increase the loss on previous tasks.

 If violations occur, project gradient 𝑔𝑔 to the closest gradient �𝑔𝑔 satisfying all the
constraints above:

32

D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” NeurIPS 2017.

GEM — Constrained Optimization  
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GEM: Illustration  

https://www.youtube.com/watch?v=7qT5P9KJnWo&list=PLJV_el3uVTsOK_ZK5L0Iv_EQoL1JefRL4&index=25
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GEM: Experiments 
 Dataset:

 MNIST Permutations: A fixed permutation of pixels

 MNIST Rotations: Digits rotated by a fixed angle between 0 and 180

 CIFAR100: 100 classes

Total number of tasks 𝑇𝑇 = 20

 Performance Metrics:
Accuracy of testing on task 𝑡𝑡𝑗𝑗
data using the model of task 𝑡𝑡𝑖𝑖

Random accuracy
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GEM: Experiment Results  
Baselines:

 Single: A single model

 Independent: One model per
task, with 𝑇𝑇 times fewer
hidden units than “single”

 Multimodal: A dedicated
input layer per task

 EWC

 iCaRL
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GEM: Experiment Results  
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Averaged GEM (A-GEM)
 An improved version of GEM

 Basic idea: Project on a direction estimated by some randomly selected samples from
a previous task data buffer

 Current task 𝑡𝑡

 The corresponding optimization problem reduces to:

A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with A-GEM,” ICLR 2018.

The gradient computed using a batch randomly 

sampled from
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A-GEM: Experiment Results  

A-GEM has much lower time (about 100 times faster) 
and memory cost (about 10 times lower)

A-GEM and GEM perform comparably in terms of average accuracy
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Regularization-Based Methods
 Basic idea:
 Add an extra regularization item to the loss function

 Two main solutions:

1. Prior-Focused Methods: Changes to important
parameters are penalized during the training of later tasks

2. Data-Focused Methods: Knowledge distillation from a
previous model to the model being trained on the new
data
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Elastic Weight Consolidation (EWC) 
— Prior-Focused Method

Basic idea:

 Determine the parameters that are important for previous tasks

 Constrain these important parameters to stay close to their old values

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, et al. 
Overcoming catastrophic forgetting in neural networks. PNAS, 2017, 114(13): 3521−3526

Loss of current task

Parameters learned 
from previous tasks

Parameters of 
current task

Importance of each parameter 
(Fisher information matrix)
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EWC: Illustration 

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A A, et al. 
Overcoming catastrophic forgetting in neural networks. PNAS, 2017, 114(13): 3521−3526
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EWC: Experiment Results

Limitation: EWC can alleviate catastrophic forgetting; however, important parameters
will slowly deviate from their optimal parameters learned from previous tasks.
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Learning Without Forgetting (LWF) 
— Data-Focused Method

Basic idea: Minimize
the KL divergence
between the probability
distributions of the old
and new model outputs

Z. Li and D. Hoiem, “Learning without forgetting,” ECCV 2016, pp. 614–629.
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LWF: Loss Function
1. Loss on new data:

2. Distillation loss:

True 
label

Prediction 
probability from 

the updated model

Prediction 
probability from 

the updated model

Prediction probability 
on the old task model

Z. Li and D. Hoiem, “Learning without forgetting,” ECCV 2016, pp. 614–629.
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LWF: Experimental Results

Difference between joint training and LWF:

• Joint training requires the data and labels from the old task

• LWF only uses the new task data and prediction probability on the  old task model 
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Comparison: Confusion Matrices 
 iCaRL

Roughly uniform over all classes

 LwF.MC

Bias towards classes from recent batches

 Fixed representation

Bias towards classes from the first batch

 Finetuning

Bias towards classes from the last batch
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Parameter Isolation Methods

 Basic idea:
 Different model parameters for each task

 Two main solutions:
 Dynamic architecture: No constraint on model size
 Static network: Fixed parts allocated to each task



Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 50

Progressive Neural Networks (PNN) 
— Dynamic Architecture

 Instantiate a new neural
network for each task

 Freeze the weights of previous
tasks and transfer knowledge
via lateral connections

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
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Progressive Neural Networks (PNN) 

Train network of Task 𝑘𝑘:

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.

Weight of current network

Hidden activation of 
current network

Hidden activation of 
previous network

Weight of lateral connections 
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PNN: Experiment Setup

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
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PNN: Experiment Results 
 Evaluation Domain: Atari game where the visuals and gameplay have been altered

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
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PNN: Detailed Analysis

The network tends to reuse low-level features

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
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PNN: Limitations 

1. The growth in the number of parameters with the
number of tasks

2. Only a fraction of the new capacity is actually utilized

3. Require the task identity to choose network while
testing

A. A. Rusu et al., “Progressive neural networks,” 2016, arXiv:1606.04671.
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Dynamically Expandable Representation (DER)
— Dynamic Architecture

 A two-stage learning approach that utilizes a dynamically expandable representation
 Save part of previous data as the memory ℳ𝑡𝑡 for future training
 The model consists of two parts: feature extractor 𝜙𝜙𝑡𝑡 and classifier ℋ𝑡𝑡

Yan S P, Xie J W, He X M. DER: Dynamically expandable representation for class incremental learning. CVPR 2021.
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Dynamically Expandable Representation (DER)

1. Expandable Representation Learning: The current 𝜙𝜙𝑡𝑡 is

build by expanding the feature extractor 𝜙𝜙𝑡𝑡−1 , the feature

is then fed into the classifier ℋ𝑡𝑡 for prediction

2. Dynamical Expansion: Remove the model redundancy and

maintain a compact representation

Yan S P, Xie J W, He X M. DER: Dynamically expandable representation for class incremental learning. CVPR 2021.
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DER

 Classification loss: Retrain the classifier ℋ𝑡𝑡 with currently 

available data �𝐷𝐷𝑡𝑡 = 𝐷𝐷𝑡𝑡 ⋃ℳ𝑡𝑡

 Auxiliary classifier ℋ𝑡𝑡
𝑎𝑎 : Encourage the model to discriminate 

old and new concepts

 Sparsity loss:
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DER: Experiment Results 
CIFAR-100: Train all 100 classes in several splits including 5/10/20/50
incremental steps, with fixed memory size of 2,000 exemplars over batches

Without pruning 
(sparsity loss)
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DER: Experimental Results 
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PackNet — Static Network
Use network pruning techniques to create free parameters that can then be
employed for learning new tasks, without adding extra network capacity

A. Mallya and S. Lazebnik, “PackNet: Adding multiple tasks to a single network by iterative pruning,” CVPR 2018.
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PackNet: Pruning Procedure
1. The weights in a layer are sorted by their absolute

magnitude, and the lowest 50% or 75% are selected
for removal

2. Only prune weights belonging to the current task, but
not modify weights that belong to a prior task

3. Overhead: Storage of a sparsity mask indicating
which parameters are active for a particular task
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PackNet: Experiment Results 

C
ontinual 

Learning 
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PackNet: Detailed Analysis

The most challenging or unrelated task 
should be added first

Effective transfer learning as very few 
parameter modifications are enough to 
obtain good accuracies
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PackNet: Detailed Analysis

Sharing biases reduces the storage overhead, 
as each convolutional, fully-connected, or 
batch-normalization layer can contain an 
associated bias term.

Better to finetune all layers
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Hard Attention to the Task (HAT) 
— Static Network

 Motivation:
 The network may learn a new set of features, some of which not

overlap much with previous tasks’

 Basic idea:
 Learn to use the task identifier to condition every layer, and then

exploit this learned condition to prevent forgetting previous tasks

J. Serra, D. Surıs, M. Miron, and A. Karatzoglou, “Overcoming catastrophic forgetting with hard attention to the task,” ICLR 2018.
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HAT: Architecture 

forward 

backward 

The output of each layer

where 𝒂𝒂𝑙𝑙𝑡𝑡 is a gated version of a
single-layer task embedding 𝒆𝒆𝑙𝑙𝑡𝑡

Sigmoid gate 
function Positive

scaling parameter
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HAT: Network Training 
 Condition the gradients according to the cumulative attention from all

previous tasks

 Modify the gradient with the reverse of the minimum of the cumulative
attention in the current and previous layers

Masks prevent large updates to weights important to previous tasks
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PackNet vs HAT
 Similarity:

Employ masks to constrain the network

 Differences:
1. HAT’s constraint is based on network weights, which allows

for a potentially better use of the network’s capacity;
PackNet is based on heuristic weight pruning.

2. HAT's mask is learnable; PackNet uses pre-assigned pruning
ratios.

3. HAT's mask is not always binary, it can be between 0 and 1
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HAT: Experimental Results
 Forgetting ratio:

Joint training 

The accuracy measured 
on task 𝜏𝜏 after sequentially 

learning task 𝑡𝑡

Random accuracy
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Expert Gate — Static Network
Basic idea:

 Add a new expert model
whenever a new task arrives，
and transfer knowledge
from previous models

 Learn a gating mechanism
that uses the test sample to
decide which expert to
activate

R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with a network of experts,” CVPR 2017.
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Expert Gate
1. An autoencoder gate is trained for each task. The autoencoder

of each domain/task should be better at reconstructing the data
of that task than others.

2. Select the most relevant expert. First compute the
reconstruction error 𝑒𝑒𝑟𝑟𝑖𝑖 of the 𝑖𝑖-th autoencoder and feed it into
an extra softmax layer:

Then load the expert model associated with the most confident
autoencoder.

Temperature
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Expert Gate: Experiment Results
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Comparison of the Three Methods
Solution Advantage Disadvantage

Rehearsal • Simple and effective

• Require additional computation and 
storage of raw input samples
• Fix memory deteriorates the ability of 
exemplar sets to represent the original 
distribution

Regularization
• Avoid storing raw inputs, protect 
privacy, and alleviate memory 
requirements

• As more tasks are added the weights 
gradually deviate from the optimal 
weights of previous tasks

Parameter 
Isolation 

• Guarantee maximal stability by 
fixing the parameter subsets of 
previous tasks

• Require a task identity to activate 
corresponding masks or task branch 
during prediction
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Comparison of the Three Methods

a. Context-specific components. Certain parts of the network are only used for specific contexts.
b. Parameter regularization. Parameters important for past contexts are encouraged not to change too much

when learning new contexts.
c. Functional regularization. The input–output mapping learned previously is encouraged not to change too

much at a particular set of inputs (the ‘anchor points’) when training on new contexts.
d. Replay. The training data of a new context is complemented with data representative of past context. The

replayed data is sampled from M, which can be a memory buffer or a generative model.
e. Template-based classification. A ‘template’ is learned for each class (for example, a prototype, an energy

value or a generative model), and classification is performed based on which template is most suitable for
the sample to be classified.
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Outline

• Basic Concepts

• Rehearsal Methods

• Regularization-Based Methods

• Parameter Isolation Methods

• Discussion
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• Differences in focus：

Meta-learning: Learning to learn

 Continual learning: Learn reusable 
representations from non-
stationary data

• Two main categories:

1. Meta continual-learning

2. Continual meta-learning

​Meta-Learning & Continual Learning

Hadsell R, Rao D, Rusu A A, et al. Embracing change: Continual learning in deep neural networks. Trends in cognitive sciences, 2020.
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• Reinforcement Learning: Learning from (sparse) rewards

• Continual Learning: Learn reusable representations non-stationary data

• Quite orthogonal objectives but some shared constraints (single agent 
view, non-stationary environments, sample bias, etc..)

Continual Reinforcement Learning

Hadsell R, Rao D, Rusu A A, et al. Embracing change: Continual learning in deep neural networks. Trends in cognitive sciences, 2020.
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• Ideal paradigm to combine with CL
 No Continual Labeling
 Less Bias

• Why this is still not the case?
 Changing the paradigm: More Data, Less 

Supervision
 Less impactful applications for now (tend to 

use supervised learning for impressive results)

​Continual Unsupervised Learning

Frontiers in Continual Learning - Continual Learning Course (continualai.org)
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Thank you!
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