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Weakly Supervised Learning

¢ Incomplete supervision, i.e. only a (usually small)
subset of training data is labeled.

Example: In image categorization the groundtruth /
labels are given by human annotators; it is easy to ,,

get a huge number of images from the Internet, /F_E Incomplete Supervision
whereas only a small subset of images can be

annotated due to the human cost.

\
¢ Inexact supervision, i.e. only coarse-grained .
labels are given. / =, :

Example: Image categorization. It is desirable to |f i ' - o
. . . - : —

have every object in the images annotated; g @O _——

however, usually we only have image-level labels — ) —— ﬂm B

rather than object-level labels. | }@ l %3

Inexact Supervision

¢ Inaccurate supervision, i.e. the given labels are
not always groundtruth.

Example: The image annotator is careless or weary,

or some images are difficult to categorize.
Zhi-Hua Zhou, A brief introduction to weakly supervised learning, National

Dongrui Wu, BCI&ML Lab@HUST. http://lab.beiml.cn/ Science Review, 5(1): 44-53, 2018. https://doi.org/10.1093/nsr/nwx106




Incomplete Supervision
+» Settings:

v A small amount of labeled data, which is insufficient to train a good learner.

v Abundant unlabeled data are available.

4

» To learn f: X~Y from a training data set D={(x,y,),....(x, V), X1} --.s X,
where there are / labeled training examples (i.e. those given with y,) and u
= m — [ unlabeled instances.

% Two major techniques:

v Active learning: An ‘oracle’, such as a human expert, can be queried to get
groundtruth labels for selected unlabeled instances.

v Semi-supervised learning: Automatically exploit unlabeled data in addition to
labeled data to improve learning performance; no human intervention is assumed.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Incomplete Supervision

Active learning

Query labels
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Active Learning

Goal: Minimize the number of queries such that the labeling cost for training a
good model can be minimized.

Two widely used selection criteria:

> Informativeness: How well an unlabeled instance helps reduce the uncertainty
of a statistical model.

v Uncertainty sampling: Train a single learner and then queries the unlabeled
instance on which the learner has the least confidence.

v Query-by-committee (QBC): Generate multiple learners and then query the
unlabeled instance on which the learners disagree the most.

> Representativeness: How well an instance helps represent the structure of
input patterns, usually by clustering.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Semi-Supervised Learning

Exploit unlabeled data without
guerying human experts

"+7?°="7  Observing some i
unlabeled data o °
+ 0 - > + © - %o
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Semi-Supervised Learning

" Two basic assumptions:

v'Cluster assumption: Data have inherent cluster structure
=» Instances in the same cluster have the same class label.

v'Manifold assumption: Data lie on a manifold =» Nearby
instances have similar predictions.

= Essence: Similar data points should have similar
outputs, whereas unlabeled data can be helpful to
disclose which data points are similar.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Semi-Supervised Learning

Four major categories:

v Generative methods: Both labeled and unlabeled data are generated from
the same inherent model, estimated by, e.g., EM.

v Graph-based methods: Construct a graph, where the nodes correspond to
training instances and the edges to the relation (similarity) between them;
then propagate label information on the graph according to some criteria.

v Low-density separation methods: The classification boundary goes across
the less-dense regions in input space, e.g., S3VM.

v’ Disagreement-based methods: Generate multiple learners and let them
collaborate to exploit unlabeled data, e.g., co-training.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Inexact Supervision

= Setting: Some supervision information is given, but not as exact as desired.
= Typical scenario: Only coarse-grained label information is available.

" Multi-instance learning: Learn f: X~Y from a training data set D = {(X,
V) woer (X Yu)» Where Xi={x;,....x;,,,EX is called a bag, x,,EX (j €{1, ...,

L,mi
m) is an instance, m; is the number of instances in X, and y,€Y={Y, N. X’ is
a positive bag, i.e. y; = ¥, if there exists x;, that is positive, while p € {1, ...,

m; is unknown. The goal is to predict labels for unseen bags.
* Almost all supervised learning algorithms have their multi-instance peers

" Most algorithms attempt to adapt single-instance supervised learning
algorithms to the multi-instance representation, mainly by shifting their
focus from the discrimination on instances to the discrimination on bags.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Inaccurate Supervision

= Setting: The supervision
information is not always
groundtruth, i.e., some label
information may suffer from

errors. o
The point is /:)
i 1 H : removed from
= Typical scenario: Learning with Yes .\

Suspicious point? e— the training set
label noise. r——— ‘
Yes
= Basic idea: Identify the o

Is relabelled

potentially mislabeled examples, e ———
and then try to make some
correction, e.g., data-editing.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Motivation

* Better data is often more useful than simply more data:
Quality over quantity

* Data collection may be expensive
— Cost of time and materials for an experiment
— Cheap vs. expensive data: Raw images vs. annotated images

e \Want to collect best data at minimal cost

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Example 1: Affective Computing

* Emotions can be represented in the 2D space of $,Dominarce
arousal and valence, or in the 3D space of arousal, /

valence, and dominance.

1 \alence

* Emotions are very subjective, subtle, and uncertain.

Activation

 Multiple assessors are needed to obtain the groundtruth emotion values for
each affective sample (video, audio, image, physiological signal, etc).

v' 14-16 assessors were used to evaluate each video clip in the DEAP dataset

v’ 6-17 assessors for each utterance in the VAM spontaneous speech corpus

v' 110+ assessors for each sound in the IADS-2 dataset

* Very time-consuming and labor-intensive.

* Challenge: How to optimally select the affective samples to label so that an

accurate regression model can be built with the minimum cost?
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Example 2: Oilfield Fracturing Optimization

180-day post-fracturing cumulative oil
production prediction in enhanced oil
recovery in the oil and gas industry:

 The inputs (fracturing parameters of an
oil well, such as its location, length of
perforations, number of zones/holes,
volumes of injected slurry/water/sand,
etc.) can be easily recorded during the

fracturing operation.

 To get the groundtruth output (180-day
post-fracturing cumulative oil
production), one has to wait for at least

180 days.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

SHALE GAS
EXTRACTION

A drill is used to bore into the ground, to
about 50 to 100 meters below the water table.

The hole is lined with a steel casting.

A perforating gun is lowered down the hole
which punctures holes through the steel
casting and into the rock.

A combination of water, sand and chemical
agents are forced down the hole at extreme
pressure to cause fractures in the shale.

Gas escapes through the fractures and travels

up the pipe, making the well productive.



Active Learning (AL)

* Setup: Given existing knowledge, want
to choose where to collect more data

v Access to cheap unlabeled points
v' Make a query to obtain expensive label

v Want to find labels that are most useful

* Qutput: Classifier/regression model
trained on less labeled data

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Online and Offline AL

* Online AL (streaming AL, selective sampling): The learner
decides whether to query or discard items from a stream

e Offline AL (pool-based AL): Queries the most useful instances
from a large pool of available unlabeled data U.

—
— observe E ,
‘ instance

an instance )
in the pool

label & add to label & add to <
(z,y) training set |_O<-— _ 2 y) training set

select the best

oracle query

decide to query
or discard

oracle

(a) selective sampling (b) pool-based sampling

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Query Synthesis (Membership Queries)

* Setup: The test input distribution is known; Training input
samples at any desired locations can be queried.

* Goal: Find the optimal training input density to generate the
training input samples.

instance
\\ de novo

Can result in awkward and
uninterpretable  queries,
e.g., images generated by a
neural network attempting
to learn how to recognize
handwritten digits.

label & add to

\
<Qf, y> training set \ input
space
<33, ?> -3

< O"/

oracle query

(a) query synthesis (b) an example from handwriting recognition

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 18
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Uncertainty Sampling

* Perhaps the simplest and most commonly used
* Query the most uncertain instances to label
* Focuses on the informativeness

Binary classification (maximum uncertain): ™ = arg min |P(y|z) — 0.5
xXr

Multi-class classification:

v’ Least confident: L = atgmax 1 — P(g|z)

v’ Margin sampling: r" = arg ngnP(gjllaj) — P(42|x)

v Maximum entropy: & = arg max — Z P(y;|x)log P(y;|x)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Query-by-Committee (QBC)

Popular for both classification and regression
Focuses on the informativeness

Basic idea:

1. Build a committee of learners from existing labeled data

2. Select the unlabeled sample on which the committee disagree
the most to label

Disagreement measures: V(y:)
Vote entropy: = arg max — Z log c
Kullback-Leibler (KL) dlvergence
Rt P.(yil)
r’ = arg max — P.(yi|c) log ==
v C >‘>‘ P(y;i|x)

c=1 1

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Expected Model Change

* Popular for classification, regression, and ranking
* Focuses on the informativeness

e Basic idea: Select the instance that would make the
greatest (expected) change to the current model

r* = arg mgxzp(yi\x)nv@(L Uz, y:))| ~ arg mgxz P(yilx)||Vo((x,yi))|

where || - || is the Euclidean norm of each resulting gradient vector. At
query time, V/ly(L) should be nearly zero since ¢ converged at the previous
round of training. Thus, we can approximate Vg(L U (x,1;)) =~ Vg ({x,y;)) for
computational efficiency, because training instances are usually assumed to be
independent.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Expected Error Reduction

* Focuses on the informativeness

* Basic idea: Select the instance that reduces the (expected)
generalization error the most, or, minimize the expected

0/1 loss:

U

u=1

where 07(%:%) refers to the the new model after it has been re-trained with
the training tuple (x,y;) added to L. The computational cost is high.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Criteria for Pool-based ALR

* Informativeness: Measured by uncertainty (entropy, distance to the decision
boundary, confidence of the prediction, etc.), expected model change,
expected error reduction, etc.

* Representativeness: Evaluated by the number of samples that are similar or
close to a target sample (or its density)

* Diversity: The selected sample should scatter across the full feature space,
instead of concentrating in a small local region

X,

A
o.‘
® 9

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ > X




Query-by-Committee (QBC)

* Popular for both classification and regression
* Focuses on the informativeness

* Basicidea:
1. Build a committee of learners from existing labeled data
2. Select the unlabeled sample on which the committee disagree
the most to label

* For regression: Select the sample which has the maximal variance
to label

P
1 Z 2
— P _ 5 _ 7\7

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Expected Model Change Maximization (EMCM)

* Popular for classification, regression, and ranking
* Focuses on the informativeness

* Basic idea:
1. Build a committee of learners from existing labeled data
2. Select the unlabeled sample with the maximal expected
model change to label

* For linear regression: ,
1 _
9(xn) = 5 > NWh = g%l , n=1,..N
p=1

W. Cai, Y. Zhang, and J. Zhou, “Maximizing expected model change for active learning
Dongrui Wu, BCI&ML Lab@HUST., http:/lab.bcimlen/ 10 regression,” IEEE 13th Int. Conf. Data Mining, Dallas, TX, Dec. 2013, pp. 51-60.




Transductive Experimental Design (TED)

* Popular for classification and regression
* Focuses on the informativeness and representative

* Basic idea:
Select a batch of unlabeled samples with the minimal

estimation confidence, which also maximally reconstruct
the whole dataset, to label.

* For regularized linear regression:

max Tr [VXT(XXT + JuI)—lva]

X
subject to X C V,|X|=m

K. Yu, J. Bi, and V. Tresp, “Active learning via transductive experimental design,”

, , in Proc. Int’l Conf. on Machine learning, Pittsburgh, PA, Jun. 2006, pp. 1081-1088.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Clustering-based AL

e Passive sampling approach
* Focuses on the representative

* Basic idea:
1. Partition the dataset into £ clusters using clustering
approaches, e.g., k -means clustering, £ -medoid

clustering.
2. Select the samples closest to the cluster centroids to

label.

[1]J. Kang, K. R. Ryu, and H.-C. Kwon, “Using cluster-based sampling to select initial
training set for active learning in text classification,” in Proc. Pacific-Asia Conf. on
Knowledge Discovery and Data Mining, Sydney, Australia, May 2004, pp. 384—388.

[2] H. T. Nguyen and A. Smeulders, “Active learning using pre-clustering,” in Proc. Int’l

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ Conf. on Machine Learning, Banff, Canada, Jul. 2004, p- 79.




Greedy Sampling (GS)

* Passive sampling approach
* Focuses on the diversity

 Basic idea:

1. For each of the NV unlabeled samples, compute its distances
to all M labeled samples, d,,,,,n=1,... NNm=1,.... M

2. CompUte dn — mindnman — 17 7N

3. Select the sample with the maximal d,, to label

H. Yu and S. Kim, “Passive sampling for regression,” in Proc. IEEE Int. Conf.

Dongrui Wu, BCI&ML Lab@HUST. http:/lab.beiml.cn/ Syst., Man, Cybern., Sydney, NSW, Australia, Dec. 2010, pp. 1151-1156.
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Limitations of Previous ALR Approaches

* Only consider informativeness, representative, or
diversity, but not informativeness, diversity and
representativeness simultaneously

* The first a few samples are usually initialized
randomly

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Representativeness-Diversity (RD)

1. Representativeness and diversity in initialization:

i. Perform k-means clustering on all samples, where &k equals the size of
the initial labeled samples.

ii. For each cluster, select the sample closest to its centroid for labeling.

2. Representativeness and diversity in the nt" iteration of the sequential AL:
i. Perform k-means clustering on all samples, where k=n.

ii. ldentify the largest cluster that does not contain a labeled sample, and
select the sample closest to its centroid to label.

D. Wu, "Pool-based sequential active learning for regression," IEEE Trans. on Neural Networks and Learning Systems, 30(5):1348-1359, 2019.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Integrate RD with an Existing ALR Approach

1. Representativeness and diversity in initialization:

1) Perform k-means clustering on all samples, where k equals the size
of the initial labeled samples.

2) For each cluster, select the sample closest to its centroid for labeling.

2. Representativeness, diversity, and/or informativeness in the nth
iteration of sequential AL:

1) Perform k-means clustering on all samples, where k=n.

2) ldentify the largest cluster that does not contain a labeled sample

3) Use QBC or EMCM or GS to select a sample from the above cluster
for labeling.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Pseudo-Code

Algorithm 2: The proposed RD ALR algorithm, and its
variations.

Input: N unlabeled samples, {x, }_,, where x,, € R%;
M, the maximum number of labeled samples to

query

Output: The regression model f(x).

// Initialize d labeled samples

Perform k-means clustering on {x,, }_,, where k = d;

Select from each cluster the sample closest to its
centroid, and query for its label;

// End initialization

form=d+1,....M do

Perform k-means clustering on {x,,
k=m;

Identify the largest cluster that does not already
contain a labeled sample;

Option I: Select the sample closest to the cluster
centroid for labeling;

Option 2: Use QBC (Section II-B) to select a sample
from the cluster for labeling;

Option 3: Use EMCM (Section II-C) to select a
sample from the cluster for labeling;

Option 4: Use GS (Section II-D) to select a sample
from the cluster for labeling;

N

n=1>

where

end
Construct the regression model f(x) from the M labeled
samples.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Datasets

No. of No. of No. of No. of No. of
Dataset Source samples raw  numerical categorical total
features features features features
Concrete-CS! | UCI 103 7 7 0 7
IADS-Arousali UFL 167 10 10 0 10
Yacht® UCI 308 6 6 0 6
autoMPG* UClI 392 7 6 1 9
NO2> StatLib 500 7 7 0 7
Housing® UCl 506 13 13 0 13
CPS’ StatLib 534 11 8 3 19
Concrete® UCI 1030 8 8 0 8
Airfoil” UCI 1503 5 5 0 5
Wine-red'? UCI 1599 11 11 0 11
Wine-white'® | UCI 4898 11 11 0 11

! https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test

2 http://csea.phhp.ufl.edu/media.html#midmedia

3 https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

4 https://archive.ics.uci.edu/ml/datasets/auto+mpg

> http://lib.stat.cmu.edu/datasets/

© https://archive.ics.uci.edu/ml/machine-learning- databases/housing/

7 http://lib.stat.cmu.edu/datasets/CPS_85_Wages

® https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
9 https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

10 https://archive.ics.uci.edu/ml/datasets/Wine+Quality

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Area Under the Curve (AUC)
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Ranks of the Algorithms
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Visualization
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IRDM: Further Improves RD

 RD considers representativeness and diversity simultaneously, by
choosing from each cluster a point closest to its centroid for labeling.

 This does not guarantee the global Representativeness-Diversity is
maximized.

* |terative Representativeness-Diversity Maximization (iRDM):
1. Use RD to select M samples as the initial candidate set.

2. lteratively update each candidate to maximize the
Representativeness-Diversity, until convergence.

Z. Liu, X. Jiang, H. Luo, W. Fang, J. Liu and D. Wu*, "Pool-Based Unsupervised Active Learning for Regression
Using Iterative Representativeness-Diversity Maximization (IRDM)," Pattern Recognition Letters, 142:11-19, 2021.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




IRDM: lterative Update

Let the current candidate set be {X., }M_, (X, is the mthe sample in the candidate set, instead

of the mth sample in the pool).
Let the candidate sample to be optimized be X,,, and its corresponding cluster be C,,.
Assume there are N,, samples in C,,. iRDM selects a better sample in C,,, to replace X,,.
The representativeness of a sample x,, in C,, is the average distance between x, and all re-

maining samples in C,,:

Rlxa) = c——x Y [lxn =il (1)

The diversity of a sample x,, in C,, is computed similar to GSx:

Dix,) = min %, x| (2)

X, in the candidate set is then replaced by:

X:; — argner[ri,aﬁc][D(xn) — R(xp)] (3)

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Dongrui Wu, B

IRDM: lllustration and Pseudo-code

Initialize the candidate set Update &, with x, & x; fixed

- =

.

Lol ¥
] - X (x3] .\":
@

Update X,, with %, & %, fixed Update X, with x, & x, fixed

Fig. 2. Optimization of the candidate set in iRDNM (M = 3, one iteration).
The blue dashed circles represent the cluster boundaries. In each subplot,
the dashed lines represent the distances of the sample under consideration
to other samples in the same cluster, whose average is R in (1). The solid
and dotted lines represent the distances of the sample under consideration
to the M— 1 fixed samples in the candidate set, among which the solid line is
the shortest and is D in (2). The green and red dots are the samples before
and after optimization, respectively.

Algorithm 1: The proposed iRDM algorithm.

i

Input: A pool of N unlabeled samples, {x, I-’:;:l;
Cmax» the maximum number of iterations.

Output: {im};le, the set of M samples to label.

Perform k-means clustering (k = M) on {x,}"_,, and
denote the clusters as {Cm};'f: '

Select x,, as the sample closest to the centroid of C,,,
m=1,...M;

Sort the indices of the M samples in the candidate set
and save them to the first row of matrix P;

Compute R(x,) in (1) forn = 1, ..., N and save them;

c= 0

while ¢ < ¢y do

Denote the M selected samples as {im};"::I;
form=1,...Mdo
Fix {x;..... X1 Xmale- .o Xyl
Compute D(x,) in (2) for each sample in Cp,;
Identify x;, in (3);
Set X,, tox,;
end
Sort the indices of the M samples in the candidate
set;
if the sorted indices of the M samples match any row
in P then
| Break;
else
Save the sorted indices of the M samples to the
next row of P;
end
c=c+1;
end
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IRDM: Datasets in Experiments

Table 1. Summary of the 12 regression datasets.

No. of No. of No. of No. of
No. of . .
Dataset raw  numerical categorical  total
samples
features features features  features
Concrete-CS 103 7 7 0 7
Yacht 308 6 6 0 6
autoMPG 392 7 6 | 9
NO2 500 7 7 0 7
Housing 506 13 13 0 13
CPS 534 10 7 3 19
EE-Cooling 768 7 7 0 7
VAM-Arousal | 947 46 46 0 46
Concrete 1,030 8 3 0 8
Airfoil 1,503 5 5 0 S
Wine-Red 1,599 11 11 0 11
Wine-White | 4,898 11 11 0 11

Dongrui Wu, BCI&ML Lab@nuo 1, LILLP.//1dD.UC1LL.CLY




IRDM: Experimental Results (RBF-SVR)
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IRDM: Datasets in Experiments
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Fig. 4. Normalized AUCs (M € [5,20]) of the mean RMSEs and the mean Fig. 5. Normalized AUCs (M € [5,20]) of the mean RMSEs and the mean
CCs on the 12 datasets. RR (r = 0.1) was used. CCs on the 12 datasets. RBF-SVYR (C = 50, A = 0.01) was used.
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Greedy Sampling on the Input (GSx)

* Passive sampling approach
* Focuses on the diversity

 Basic idea:

1. For each of the NV unlabeled samples, compute its distances
to all M labeled samples, d,,,,,n=1,... NNm=1,.... M

2. CompUte dn — mindnman — 17 7N

3. Select the sample with the maximal d,, to label

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 46




Greedy Sampling on the Output (GSy)

* GSx achieves diversity in the input space.

* GSy achieves diversity in the output space:

1. Selects the first a few samples using GSx to build an initial
regression model

2. In each subsequent iteration, a new sample located farthest
away from all previously selected samples in the output
space is selected

* GSxis passive; GSy is NOT!

D. Wu, C-T Lin and J. Huang, "Active Learning for Regression Using Greedy Sampling," Information Sciences, 474: 90-105, 2019.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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GSy

Assume the first k£ (kK > K;) samples have already been labeled

with outputs {y,, }* _,, and a regression model f(x) has been con-

structed.

For each of the remaining N — k unlabeled samples {x,}_, 1)
GSy computes first its distance to each of the k outputs:

d’ =1f(Xy) —Ym|, m=1,..kn=k+1,.. N
and d¥, the shortest distance from f(x,) to {ym}* _;:

nm?

d? = mind} n=k+1,...N

and then selects the sample with the maximum d? to label.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Improved Greedy Sampling (iGS) on
Both the Inputs and Output

* GSx considers only the diversity in the input (feature) space,
without taking feature selection/weighting into consideration.

* GSy considers only the diversity in the output (label) space, which
implicitly considers feature selection /weighting. However, it may
not be reliable, as the model is constructed from a very small
number of samples.

*iGS combines GSx and GSy to ensure that we take feature
selection/weighting into consideration, but can also avoid
catastrophic failure if feature selection/weighting is misleading.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




IGS
IGS selects the first a few samples using GSx to build an initial
regression model, and then in each subsequent iteration a new
sample located farthest away from all previously selected samples

in both input and output spaces to achieve balanced diversity
among the selected samples.

1GS uses GSx to select the first Ky samples to label.

Assume the first k£ samples have already been labeled with labels
{Un}nzr.

For each of the remaining N — k unlabeled samples {x,} .1,
iGS computes first d%  in GSx and d¥ . in GSy, and d¥¥:

¥ =mind, d’ n=k+1,...,.N

nm-—-nm?
m

and then selects the sample with the maximum ¥ to label.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Datasets

Table 1: Summary of the 10 UCI and CMU StatLib datasets.

No.of No.of No.of No. of No. of
Dataset Source samples raw  numerical categorical total
features features  features features
Concrete-Slump'| UCI 103 7 7 0 7
Yacht? UCI 308 6 6 0 6
autoMPG” UCl 392 7 6 1 9
NO2* StatLib 500 7 7 0 7
PM10* StatLib 500 7 7 0 7
Housing5 UClI 506 13 13 0 13
CPS® StatLib 534 11 8 3 19
Concrete’ UCI 1030 8 8 0 8
Wine-red® UCI 1599 11 11 0 11
Wine-white® UCI 4898 11 11 0 11

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Normalized RMSEs and CCs

Table 2: Normalized RMSEs and CCs of the six approaches on the 10 datasets.

Dataset BL QBC EMCM GSx GSy 1iGS
Concrete-Slump | .00 090 0.88 0.77 0.74 0.75

Yacht 1.00 1.08 1.09 1.16 0.95 091
autoMPG 1.00 0.85 0.86 0.73 0.77 0.73

NO2 1.00 0.93 095 0.89 0.88 0.87

PMI10 1.00 092 092 0.95 0.86 0.86
RMSE | Housing 1.00 0.74 0.74 0.75 0.63 0.63
CPS 1.00 0.80 0.76 0.70 0.64 0.64
Concrete 1.00 0.92 092 0.83 0.82 0.81
Wine-red [.00 0.88 0.89 0.85 0.80 0.78
Wine-white 1.00 0.89 090 0.87 0.82 0.84
Average 1.00 0.89 0.89 0.850.79 0.78
Concrete-Slump | 1.00 1.15 1.10 1.29 1.35 1.35

Yacht .00 1.04 1.05 1.06 1.07 1.09
autoMPG 1.00 1.03 1.02 1.05 1.04 1.06

NO2 .00 1.04 1.02 1.03 1.01 1.02
PMI10 1.00 1.15 1.17 1.27 122 1.26

CC | Housing 1.00 1.12 1.12 1.16 1.17 1.21
CPS 1.00 1.27 1.28 141 145 148
Concrete [.00 1.02 1.02 1.04 1.06 1.06
Wine-red 1.00 092 0.82 0.89 0.89 0.95
Wine-white 1.00 1.02 098 094 1.01 1.00

Dongrui Wu, BCI&ML Lab@HUST. http: Average 1.00 1.08 1.06 1.11[1.13 1.15]




Outline

 Weakly Supervised Learning

* Active Learning

* Active Learning for Classification
e Active Learning for Regression

* Deep Active Learning

* Applications

e Conclusions
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Necessity and Challenges of Combining DL & AL

* Model uncertainty in Deep Learning. The output confidence of the softmax layer is
usually too confident and unreliable for estimating the uncertainty

* Insufficient data for labeled samples. The one-by-one sample query approach in classic
AL is inefficient and not applicable in the DL context, where large amounts of labeled
data are required

* Processing pipeline inconsistency. Traditional AL algorithms use fixed feature
representations and focus primarily on the training of classifiers, whereas DL optimizes
the feature extractor and the classifier jointly.

Labeled
training set

Initial training
or pre-training = o _____ |

. uery
Unlabeled pool |  m—) Deep learning . Q_> : : —
- 5

'y L Selected samples

Feature map
Update dataset Training model

~—— Labeled
training set

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Bayesian Active Learning by Disagreement (BALD)

* The batch-based query strategy is the foundation of Deep AL.
* Basic ldea

Select top-k samples with the highest mutual information between model

parameters and predictions, i.e., maximal prediction disagreement using different
model parameters

b
agap ({1, .., %5}, P (@ | Derain)) = ) 1(yi3@ | i, Derain)
=1
]I(y;éﬂ | X, Dtrain) =H (y | X, Dtrain) - EP(m|Dtmin) [H (y | X, @, Dtrain)] ’

Drawbacks: BALD considers each sample independently and ignores the
correlation between samples, which is likely to lead to local decisions

Neil Houlsby, Ferenc Huszar, Zoubin Ghahramani, and Maté Lengyel. 2011. Bayesian Active Learning for Classification and
Preference Learning. CoRR abs/1112.5745 (2011).

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




BatchBALD

* Considers the correlation between data points by estimating the joint
mutual information between multiple data points and model parameters.
* Basic ldea

Jointly score points by estimating the mutual information between a joint of multiple
data points and the model parameters

ABatchBALD ({xls e :xb} , P (&J | Drmin)) =1 (yla ces Ypy | X1y e+ Xb, Dtrain) )
I (yil:bim‘ | X1:bs Drrﬂin) =H (yl:b | X1:b> Drmin) - EP(&HD;,HM)H (yl:b | X1:b, @, Dtr‘ﬂiﬂ) ;

1|z e
Yo |xo Yo |xo Kirsch, Andreas, Joost van Amersfoort, and Yarin Gal.
“BatchBALD: efficient and diverse batch acquisition
for deep Bayesian active learning.” in Proc. Int’l Conf.
ys|za ya | on Neural Information Processing Systems. 2019.

ZI(y.-: w | X;, Dgain) = Z,u"(:w Nw) Ty, ...y @|xi, ..., Xp, Dirain) = #(U yiN w}
(a) BALD (b) BatchBALD

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Exploration-P

* Select the sample set S that has the largest uncertainty and the smallest redundancy
* Basic ldea

1. Compute the information entropy as the measure of the uncertainty
E(x)=— ) hi(z)log(hi(z))

O g |V

2. Calculate the similarity between an unlabeled sample and the selected sample set S

Sim(z, §) = Tgﬂ;{(Sim(iaj)) Sim(i, j) = fM f;, M denotes a similarity matrix

3. Select the unlabeled sample having maximum score
I(7) = E(z;) — aSim(z, S)
i.e., sample with maximal uncertainty and least redundancy with the selected samples

4. Select the sample x; that furthest from labeled and selected unlabeled sample in a
greedy manner i = minSim(i, L U S)

C. Yin, B. Qian, S. Cao, X. Li, J. Wei, Q. Zheng, and I. Davidson, “Deep Similarity-Based Batch Mode
Active Learning with Exploration-Exploitation,” in Proc. IEEE Int’l Conf. on Data Mining, 2017.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Batch Active Learning by
Diverse Gradient Embeddings (BADGE)

* Considering both informativeness and diversity, BADGE selects a set of
samples with diverse gradients
* Basic ldea

1. Compute the cross-entropy loss fce(f(z;0),y) = In (Z ezl V]) Wy - 2(z; V).

2. Obtain the gradients corresponding to the predicted label

(90): = - bon( (20, ) = (b — I3 = )=(a: V).

3. Use the k-means++ seeding algorithm on{g, : z € U \ S} and query for their labels.

Ash, Jordan T., Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal, “Deep Batch Active Learning by
Diverse, Uncertain Gradient Lower Bounds.” in Proc. Int’l Conf. on Learning Representations, Addis Ababa, Ethiopia, April. 2017.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 60




Learning Loss for Active Learning

 Use aloss prediction module to select unlabeled samples with large losses.
* Basic ldea

1. Train the task model using target loss
2. Train the loss prediction module using ranking loss
3. Select the top-K samples with maximal predicted losses and query for labels

i Labeled _ Tmﬂﬁ; ““““
Traming set — Decp lcammg model * prediction /<' Target loss
. = N Loss : Loss-prediction E
i / Loss prediction module | —* prediction \ loss J
Unlabeled B -
pool \
Total loss

[TTTTT ][]

Human oracles annotate Predicted losses
top-K data points Iy

Donggeun Yoo, and In So Kweon, “Learning loss for active
learning.” In Proc. IEEE/CVF Conf. on Computer Vision and

DOIlgI'lli Wu, BCI&ML Lab@HUST, http://lab.beiml.cn/ Pattern Recognition, Long BeaCh, CA, Jun. Pp. 93-102. 2019.




Active Learning with Multiple Views

* Estimate the uncertainty from the outputs from multiple hidden layers of the model
e Basicldea

1. Train the CNN model using the training set and compute loss between the predictions and
ground-truth labels on the validation set [,,

2. Add a softmax layer on top of each hidden layer to form (n-1) new classifiers. Train these
models on the training set and compute the loss [; on the validationset,i = 1,...,n — 1

3. Obtain the weight of each model by applying softmax to their validation loss w: = Znﬂ =T
L— e

=1
4. Compute the weighted average of the uncertainty in the classifiers following each hidden
Iayer Uj; = Z?:l wy X funcewtainty(oi(mj))

5. Select the top-k samples with maximal uncertainty to query for labels

gr R N ER AR O ER WE W R I N ER N ER R WS ER AR e W
F

(ii) Task learning stage

He, T., Jin, X., Ding, G., Yi, L. and Yan, C,
“Towards better uncertainty sampling: Active
learning with multiple views for deep convolutional
neural network.” in Proc. IEEE Int’l Conf. on
Multimedia and Expo, Shanghai, China, Jul. 2019.

Traditional uncertainty
Measurement

Input S

__________________ Uncertainty measurement
l of synthesizing information
* in two stages
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 62




Outline

 Weakly Supervised Learning

* Active Learning

* Active Learning for Classification
e Active Learning for Regression

* Deep Active Learning

* Applications

e Conclusions
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Application 1: Cardiovascular Diseases

e Cardiovascular diseases (CVDs) are
the leading cause of human death:
Take 17.9 million lives every year,

31% of all global deaths (WHO).

Triplets HR Technique

e Real-time accurate heart rate

- \
ﬁO_‘soo 150 100,75 8020 (300 150 100

estimation from wearable ECG e
L . N _
system is critical to cardiovascular B g [ Beats/min,

disease detection and treatment. Must START with ‘R’ wave

on a Line of Large Box

D. Wu, C. Guo, F. Liu and C. Liu, "Active Stacking for Heart Rate Estimation,"
Int'l Joint Conf. on Neural Networks (IJCNN), Glasgow, UK, July 2020.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 64




Heart Rate Estimation

* ECG from wearable systems generally
has poor quality due to bad electrode
contact, wrong electrode positioning,
body movements, and various noise.

* Traditional heart rate estimation
algorithms, which mainly considered
clinic quality ECG sighals, cannot be
used.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Ensemble Regression (ER)

ER can improve the estimation performance, by integrating multiple
base estimators.

In heart rate estimation, different QRS detectors can be viewed as
base estimators.

Unsupervised ER (no labeled ECG trials are available): Average,
median.

Supervised ER (some labeled ECG trials are available): Bagging,
Boosting, stacking.

Supervised ER usually outperforms unsupervised ER.

How to minimize the number of labeled ECG trials in supervised ER?

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Stacking

Assume among the N ECG trials, K have been labeled, i.e., their reference
heart rates {y}&_, are known.
Stacking trains a regression model ¢, = f(x,) from these K trials.

Ridge regression (RR) (A = 0.01):

Jn =Wlx, +b, n=1,...N

T

where b and w = [wq,...,wps|" are obtained from minimizing the following

objective function:
K
= (k=) +Aw’w
k=1
Linear SVR (C =1):

1
g(b,w) = 5W W+C’k§:16k

st |yr — k| < €, €. >0

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 67




Active Stacking Using GSx (AS-GSx)

AS-GSx integrates stacking and GSx:

1. Use GSx to select K trials to query for their reference heart

rates

2. Check if any base estimator has the same heart rate
estimates as the reference for all K selected trials:

v" Yes: For each of the remaining N-K trials, the median of

these base estimators is ta

ken as its final estimate.

v No: Train a linear SVR moc
the final stacking model.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Active Stacking Using RD (AS-RD)

AS-RD integrates stacking and RD:

1. Use RD to select K trials to query for their reference
heart rates

2. Check if any base estimator has the same heart rate
estimates as the reference for all K selected trials:

v" Yes: For each of the remaining N-K trials, the median
of these base estimators is taken as its final estimate.

v" No: Train a linear SVR model from the K labeled trials
as the final stacking model.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




AS-RD-EMCM

AS-RD-EMCM integrates stacking and RD-EMCM:

1.
2.
3.

Use RD-EMCM to select K,=2 trials to query for their reference heart rates.
Train a linear SVR stacking model from them.

Use the SVR model in RD-EMCM to select the next trial to label, and update the
linear SVR stacking model.

Iterate until K trials have been selected and labeled.

Check if any base estimator has the same heart rate estimates as the reference
for all K selected trials:

v" Yes: For each of the remaining N-K trials, the median of these base
estimators is taken as its final estimate.

v" No: Train a linear SVR model from the K labeled trials as the final stacking
model.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




AS-iGS

AS-iGS integrates stacking and iGS:
1. Use iGS to select K,=2 trials to query for their reference heart rates.
2. Train a linear SVR stacking model from them.

3. Use the SVR model in iGS to select the next trial to label, and update the linear
SVR stacking model.

4. |terate until K trials have been selected and labeled.

5. Check if any base estimator has the same heart rate estimates as the reference
for all K selected trials:

v Yes: For each of the remaining N-K trials, the median of these base estimators
is taken as its final estimate.

v" No: Train a linear SVR model from the K labeled trials as the final stacking
model.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Datasets

e 100 ECG recordings in the augmented training set of 2014
PhysioNet/CinC Challenge.

e Patients with a wide range of problems, and healthy volunteers.

* Each recording was < 10 minutes, 360 Hz, 16-bit resolution.

 Four recordings (2041, 2728, 41024, 41778) shorter than 2
minutes, and one consisting of pure Gaussian noise (42878),
were excluded.

* The remaining 95 ECG recordings had manually annotated QRS
complex locations.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Datasets
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12 Base Estimators (QRS Detectors)

Pan-Tompkins
Hamilton-Tompkins-mean
Hamilton-Tompkins-median

RS-slope

Sixth-power

Finite state machine (FSM)

Improved FSM (iFSM)

U3

Difference operation algorithm (DOM)

L 0 N o Uk WD RE

10. jgrs
11. Optimized knowledge-based method (OKM)
12. UNSW

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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RMSEs of the Base Estimators
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 Sixth-power achieved the smallest RMSE (10.55 bpm),
and RS-slope the largest (29.57 bpm).

* These RMSEs represented 11.99-33.61% relative error.

 Requirement: <10%, or 5 bpm, whichever is greater.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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RMSEs of Unsupervised ER
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Given that the mean heart rate across the 95 subjects was
87.99 bpm, these RMSEs represented 12.92-13.75%
relative error, which should not be acceptable in practice.

Dongrui Wu, BC]



RMSEs of Active Stacking
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RMSEs much smaller than those of the 12 base estimators, and also much
smaller than those of the three unsupervised ensemble regression approaches.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Active Stacking vs. Random Stacking

 RMSEs of the proposed AS

approaches converge at
K=3or4,ie.,,only3or4
labeled trials are needed
for them to achieve a low
RMSE, very favorable in
practice.

Compared with RS, AS can
reduce the RMSE by 35-
40%, suggesting the
effectiveness of using ALR
in heart rate estimation.

5.5 cé I
= 5t Lg RS
= c§ 0.9 - = = AS_GSX
=45 > AS-RD
% = 08} ————— AS-RD-EMCM |
E 4 E ............. AS-iGS
N
S35 207
> D e . —— ﬁa-l-‘.'.:.-'-'-”“'“m'm- =
™, \""'--.._ C \"—: —————————————
37 ."".".';..::m“.‘:'—“-iﬂn'--n!m-l—-; '5 0.6 1 .,.p-,a."‘-'- - E
TSR] X = .
2 3 4 5 6 7 2 3 4 5 6 7
K K

Fig. 4. Mean RMSEs (left) of the five supervised stacking approaches across
the 95 subjects, and the ratio (right) to the mean RMSE of RS.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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RMSEs and CCs

Table 1: The mean and standard deviation (std) of the RMSEs of different approaches.

Category Approach RMSE mean (bpm) RMSE std (bpm)
Pan-Tompkins 15.49 18.06
Hamilton-Tompkins-mean 14.69 15.78
Hamilton-Tompkins-median 14.87 15.73
RS-slope 29.57 26.92
Sixth-power 10.55 10.95
Base FSM 12.14 16.16
Estimator iIFSM 15.26 16.54
U3 15.68 20.47
DOM 15.67 19.03
jqrs 16.33 20.83 °
OKM 17.09 25.30 ReqUIrement:
UNSW 14.22 21.88
Unsupervised LOSO-CV 11.37 11.65 (0) b
Ensemble Average 11.97 12.14 S 10 A)’ O r 5 p m/
Regression Median 12.10 16.86 . .
RS 5.55 445 whichever is
AS-GSx 3.18 3.07
K =2 AS-RD 3.76 4.02
AS-RD-EMCM 3.76 4.02 greate r‘
AS-i1GS 3.18 3.07
RS 4.96 4.15
AS-GSx 297 2.68
K=3 AS-RD 2.98 2.65
AS-RD-EMCM 3.12 2.67
AS-iGS 2.99 2.66
RS 4.64 3.97
AS-GSx 2.81 245
K =4 AS-RD 2.98 2.95
AS-RD-EMCM 3.02 2.75
Dongrui Wu, BCl& Supervised AS-1GS 2.92 2.78 79




A Subtle Detail: Why Take the Median

AS-GSx integrates stacking & GSx:

1. Use GSx to select K trials to query
for their reference HRs

2. Check if any base estimator has
the same HR estimates as the
reference for all K selected trials:

v Yes: For each of the remaining
N-K trials, the median of these
base estimators is taken as its
final estimate.

v"No: Train a linear SVR model
from the K labeled trials as the
final stacking model.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

* Median, which takes the median of
the selected base estimators.

* Subset, which performs a linear SVR
on the selected base estimators.

* All, which performs a linear SVR on
all 12 base estimators.

AS-GSx i AS-RD AS-RD-EMCM AS-iGS
25 Median > 250
—_ Subset —~ 3 -3 .
=T [ [P All = = = )
52 o & £
) [ [ 1.5
£15 < 2 | Z 2
z > - | X Z
1.5 .
1 s
2 - 6 2 - 6
K K

Fig. 5. Average RMSEs of three variants of the algorithm, when there exist
some base estimators whose outputs are identical to the reference heart rates
on all selected trials.
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Application 2: Affective Computing

* Emotions can be represented in the 2D space of $,Dominarce
arousal and valence, or in the 3D space of arousal, /

valence, and dominance.

1 \alence

* Emotions are very subjective, subtle, and uncertain.

Activation

 Multiple assessors are needed to obtain the groundtruth emotion values for
each affective sample (video, audio, image, physiological signal, etc).

v' 14-16 assessors were used to evaluate each video clip in the DEAP dataset

v’ 6-17 assessors for each utterance in the VAM spontaneous speech corpus

v' 110+ assessors for each sound in the IADS-2 dataset

* Very time-consuming and labor-intensive.

* Challenge: How to optimally select the affective samples to label so that an

accurate regression model can be built with the minimum cost?
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Multi-Task AL

* Traditional (single-task) AL: Optimally query the unlabeled
samples to predict only one output.

* Multi-task AL: Optimally query the unlabeled samples, so that
the 3 dimensions of emotion can be predicted simultaneously.

T 1[}orninarvce

Sadness 1 Valence

Acltivation

D. Wu and J. Huang, "Affect Estimation in 3D Space Using Multi-Task Active Learning for Regression," IEEE Trans. on Affective Computing, 2022.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Single-Task Gsy vs. Multi-Task GSy

Single-task GSy:

Single-task GSy first uses GSx to select
the first K samples to label, and build a
regression model f(x). For each of the re-
maining N —k unlabeled samples {x,,}_, 1,

GSy computes first its distance to each of
the k& outputs:

d? = \f(xn) —ym||, m=1,...k
n=k+1,...,. N

and d¥, the shortest distance from f(x;,)
t0 {Ym b1’

y J
d; mm d; .,

n=k+1,.... N

and then selects the sample with the max-

imum d? to label.
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

Multi-task GSy:
MT-GSy uses GSx to select the first k

samples, and trains P regression models
fo(x) (p =1,..., P). For each of the re-
maining N — k unlabeled samples {x, }2_, . |,

MT-GSy computes first its distance to each
of the k outputs, for each of the P tasks:

d%mp — pr<Xn> o ymH

wherem=1,...k,n=k+1,..., N, and
p=1,...,P. MT-GSy then computes:

dy—mdenmp, n=k+1,...,.N

and selects the sample with the maximum

d¥ to label.



Single-Task iGS vs. Multi-Task iGS

Single-task iGS: Multi-task iGS:

Assume the first k£ samples have already MT-1GS first uses iGS to select and la-
been labeled with labels {y, }*_,. For each bel K samples. It then builds P regres-
of the remaining N — k unlabeled sample sion models {f,(x) 5:1 for the P tasks.
{xn}o_s.q, single-task iGS computes first For each of the remaining N — k unla-
its distance to each of the k labeled sam- beled samples {Xn}n i1, MT-IGS com-
ples in the input space: putes d¥, and d%mp? and then @

o =lx,—xn|l, m=1,..k

n=~k+1,... N dXY—mde Hdnm,w n=k+1,....N
and d/  in GSy, and then d}¥:

dy) =mind,, dy,, n=k+1,. N and selects the Sample with the maximum

d*Y to label.

Next, single-task iGS selects the sample
with the maximum d>¥ to label.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 84




 VAM Corpus: Spontaneous speech with
authentic emotions in a German TV
talk-show Vera am Mittag (Vera at
Noon in English).

e 947 emotional utterances from 47
speakers (11m/36f).

* Main c
v' Aut

v" Emotion evaluated in 3D space

Data Description

=SPRIT

naracteristics:

nentic & real life conversations

T
i

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Feature Extraction

46 acoustic features:

* Pitch features (9): fO mean, std, median, min,
max, range, 25% & 75% quantiles, and the inter-
guantile distance.

* Duration features (5): mean/std of the duration
of voiced/unvoiced segments, ratio between the
duration of unvoiced and voiced segments.

*Energy features (6): energy mean, std, max, 25%
& 75% quantiles, and the inter-quantile distance.

* MFCC features (26): mean/std of 13 Mel-
frequency cepstral coefficients.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Results: RMSE & CC vs. K
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Fig. 1. Performances of the sample selection algorithms, averaged over 100 runs, when the single-task ALR approaches focused on Valence

estimation. The last column shows the average RMSE and CC across the three tasks. RR was used as the regression model.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Results: RMSE & CC Percentage Improvement

Performances and percentages of improvement (in the parentheseé) when different ALR approaches are compared with BL1. The best two in
each row are marked in bold.

Emotion Performance K BL1 Performance and percentage improvement over BL1
Primitive Measure EMCM QBC GSx GSy 1GS MT-GSy MT-1GS
50 0380 | 0.356 (6%) 0.361 (5%) 0.326 (14%) 0.311 (18%) 0.310 (18%) 0.300 (21%) 0.299 (21%)
100 0.252 | 0.235(7%) 0.237 (6%) 0.237 (6%) 0.232 (8%) 0.230 9%)  0.226 (10%)  0.225 (11%)
RMSE 150 0.226 | 0.217 (4%) 0.217 (4%) 0.219 (3%) 0.216 (4%) 0.216 (4%) 0.214 (5%) 0.213 (6% )
200 0.213 | 0.210(2%)  0.210 (2%) 0.210 (1%) 0.210 (2%) 0.210 (2%) 0.209 (2% ) 0.208 (2% )
Valence 250 0.207 | 0.206 (1%)  0.206 (1%) 0.206 (1%) 0.206 (1%) 0.206 (1%) 0.206 (1% ) 0.205 (1% )
: 50 0354 | 0371 (53%) 0367 (4%) 0424 (20%) 0434 (23%) 0437 (23%) 0446 (26%) 0448 (26%)
100 0.529 | 0.560 (69%) 0.553 (5%) 0.560 (6%) 0.561 (6%) 0.568 (7%) 0.574 (8% ) 0.579 (9%)
CC 150 0.581 | 0.604 (49%) 0.600 (3%) 0.597 (3%) 0.599 (3%) 0.603 (4%) 0.606 (4% ) 0.609 (5% )
200 0.610 | 0.621 (29%) 0.619 (1%) 0.618 (1%) 0.618 (1%) 0.619 (1%) 0.622 (2% ) 0.623 (2%)
250 0.626 | 0.630(1%) 0.630 (1%) 0.629 (1%) 0.630 (1%) 0.631 (1%) 0.630 (1%) 0.631 (1%)
50 0374 | 0.350 (6%) 0.357 (4%) 0.330 (12%) 0.311 (17%) 0.308 (18%)  0.300 (20%)  0.298 (20% )
100 0.253 | 0.235(7%) 0.236 (7%) 0.234 (7%) 0.235 (7%) 0.232 (8%)  0.226 (11%)  0.225 (11%)
RMSE 150 0.224 | 0.217 (3%) 0.216 (4%) 0.216 (4%) 0.219 (2%) 0.217 (3%) 0.213 (5%) 0.213 (5%)
200 0.213 | 0.209 (2%)  0.209 (2%) 0.209 (2%) 0.210 (1%) 0.209 (2%) 0.208 (3% ) 0.208 (3% )
Arousal 250 0.207 | 0205 (1%)  0.205 (1%) 0.205 (1%) 0.206 (1%) 0.205 (1%) 0.205 (1%) 0.205 (1% )
‘ 50 0368 | 0393 (7%) 0379(3%) 0419(14%) 0436 (18%) 0442 (20%) 0447 21%) 0449 (22%)
100 0.529 | 0.559 (6%) 0.554 (5%) 0.567 (7%) 0.557 (5%) 0.564 (7%) 0.573 (8% ) 0.576 (9% )
CC 150 0.584 | 0.603 (3%) 0.599 (3%) 0.604 (3%) 0.593 (1%) 0.600 (3%) 0.606 (4% ) 0.608 (4% )
200 0.609 | 0.620(2%) 0.620 (2%) 0.621 (2%) 0.615 (1%) 0.619 (2%) 0.622 (2%) 0.622 (2%)
250 0.626 | 0.630(1%) 0.630 (1%) 0.630 (1%) 0.628 (0%) 0.630 (1%) 0.631 (1%) 0.631 (1%)
50 0370 | 0354 (4%) 0359 (3%) 0.321(13%) 0304 (18%) 0.303 (18%) 0.296 (20%) 0.296 (20%)
100 0.251 | 0.236 (6%) 0.235 (6%) 0.235 (7%) 0.233 (7%) 0.231 (8%)  0.224 (11%) 0.224 (11%)
RMSE 150 0.224 | 0.217 (3%) 0.217 (3%) 0.217 (3%) 0.217 (3%) 0.216 (4%) 0.213 (5%) 0.213 (5%)
200 0.213 | 0.209 (2%)  0.209 (2%) 0.209 (2%) 0.210 (2%) 0.210 (1%) 0.208 (2% ) 0.208 (2% )
Dominance 250 0.207 | 0.205(1%) 0.205 (1%) 0.205 (1%) 0.205 (1%) 0.206 (1%) 0.205 (1%) 0.205 (1% )
50 0377 | 0388 (3%) 0.384 (2%) 0433 (15%) 0.445(18%) 0.446 (18%) 0.453 (20%) 0.454 (21%)
100 0.536 | 0.560 (5%) 0.559 (4%) 0.566 (6%) 0.558 (4%) 0.566 (6%) 0.579 (8% ) 0.579 (8%)
CC 150 0586 | 0.602 (3%) 0.600 (2%) 0.601 (3%) 0.597 (2%) 0.601 (3%) 0.607 (4% ) 0.608 (4% )
200 0611 | 0.621 (2%) 0.619 (1%) 0.620 (2%) 0.616 (1%) 0.617 (1%) 0.621 (2% ) 0.623 (2%)
250 0.626 | 0.630(1%) 0.630 (1%) 0.630 (1%) 0.629 (1%) 0.629 (1%) 0.630 (1% ) 0.631 (1%)

°
DOngrul Wu, AN AOVLYLL /AU L L W Ly LILLY o/ [ 1AV UV LIl VLY
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Dongrui W

Results: Percentages of Saved Queries

Number of samples and percentages of saved queries (in the parentheses) when different ALR approaches are compared with BL1. The best two
in each row are marked in bold.

Emotion Performance 7 No. BL1 Number of samples and percentage saving over BL1
Primitive Measure o Samples EMCM QBC GSx GSy 1GS MT-GSy MT-1GS
1% 261 242 (8%) 248 (5%) 247 (6%) 246 (6%) 242 (8%) 243 (7%) 233 (12%)
2% 241 218 (11%) 217 (11%) 221 (9%) 218 (11%) 216 (12%) 207 (16%) 202 (19%)
RMSE 3% 222 197 (13%) 197 (13%) 201 (10%) 194 (14%) 197 (13%) 183 (21%) 179 (24%)
5% 197 168 (17%) 168 (17%) 175 (13%) 164 (20%) 162 (22%) 148 (33%) 144 (37%)
Valence 10% 154 123 (25%) 126 (22%) 129 (19%) 118 (31%) 116(33%) 106 (45%) 101 (52%)
‘ 1% 258 236 (9%) 242 (7%) 242 (7%) 244 (6%) 238 (8%) 242 (7%) 230 (12%)
2% 235 202 (16%) 211 (11%) 211 (11%) 215 (9%) 208 (13%) 201 (17%) 194 (21%)
CcC 3% 215 181 (19%) 187 (15%) 190 (13%) 189 (14%) 185 (16%) 175 (23%) 172 (25%)
5% 184 149 (23%) 154 (19%) 162 (14%) 157 (17%) 150 (23%) 144 (28%) 135 (36%)
10% 138 109 (27%) 115 (20%) 112 (23%) 110 (25%) 104 (33%) 98 (41%) 93 (48%)
1% 261 239 (9%) 237 (10%) 245 (7%) 252 (4%) 247 (6%) 231 (13%) 238 (10%)
2% 242 213 (14%) 210 (15%) 216 (12%) 227 (7%) 220 (10%) 199 (22%) 196 (23%)
RMSE 3% 225 193 (17%) 192 (17%) 196 (15%) 208 (8%) 197 (14%) 176 (28%) 174 (29%)
5% 196 165 (19%) 165 (19%) 167 (17%) 175 (12%) 161 (22%) 143 (37%) 139 (41%)
Arousal 10% 152 125 (22%) 125 (22%) 126 (21%) 126 (21%) 116 (31%) 98 (55%) 97 (57%)
1% 261 235 (11%) 235 (11%) 242 (8%) 247 (6%) 241 (8%) 231 (13%) 228 (14%)
2% 241 202 (19%) 203 (19%) 208 (16%) 219 (10%) 210 (15%) 198 (22%) 188 (28%)
CcC 3% 223 181 (23%) 184 (21%) 186 (20%) 200 (12%) 188 (19%) 174 (28%) 165 (35%)
5% 185 147 (269%) 155 (19%) 155 (19%) 168 (10%) 152 (22%) 135 (37%) 132 (40%)
10% 136 110 (24%) 113 (20%) 105 (30%) 115 (18%) 105 (30%) 92 (48%) 91 (49% )
1% 261 237 (10%) 238 (10%) 237 (10%) 249 (5%) 242 (8%) 232 (13%) 235 (11%)
2% 242 210 (15%) 212 (14%) 213 (14%) 221 (10%) 216 (12%) 204 (19%) 201 (20%)
RMSE 3% 225 192 (17%) 194 (16%) 191 (18%) 204 (10%) 193 (17%) 182 (24%) 180 (25%)
5% 197 165 (19%) 166 (19%) 162 (22%) 174 (13%) 164 (20%) 148 (33%) 146 (35%)
Dominance 10% 151 123 (23%) 127 (19%) 124 (22%) 126 (20%) 121 (25%) 106 (42%) 103 (47%)
‘ 1% 258 236 (9%) 239 (8%) 231 (12%) 248 (4%) 238 (B%) 226 (14%) 229 (13%)
2% 234 200 (17%) 210 (11%) 203 (15%) 219 (7%) 211 (11%) 196 (19%) 196 (19%)
cC 3% 217 181 (20%) 190 (14%) 181 (20%) 197 (10%) 186 (17%) 175 (24%) 173 (25%)
5% 184 148 (24%) 159 (16%) 147 (25%) 167 (10%) 155 (19%) 143 (29%) 139 (32%)
10% 133 110 (21%) 116 (15%) 104 (28%) 113 (18%) 107 (24%) 96 (39%) 95 (40%)
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Multi-Task AL and SSL

* Multi-task AL: Query the unlabeled samples with maximal
inconsistency of the labels estimated from features and labels of

the other tasks.

* Multi-task SSL: Assign pseudo-labels for part of the unlabeled data
with maximal consistency.

e o — — — — — — — — — — — — — — — — — ——— —— — — — — — — — — — — — — — — ]

e L) N St

> I Small inconsistency | 'A55|gn pseudo-labels | i

____________________l

Y. Xu, Y. Cui, X. Jiang, Y. Yin, J. Ding, L. Li, and D. Wu, “Inconsistency-based multi-task cooperative
learning for emotion recognition,” IEEE Trans. on Affective Computing, vol. 13, no. 4, pp. 20172027, 2022.

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ 90




Inconsistency-based Multi-task Cooperative Learning

Input: Labeled training data X = {zF, y! T}z_l,
Unlabeled training data XV = {a:U} o
a, weight of the estimated label in (8)
K, number of samples to be queried;
Sample selection rules in SSL.

Output: |7 | emotion recognition models { f; }1e7.
3 X . - fort € T do
Data Multi-Task Learning Label Distribution | Use {wk, 5, V% to train fi;
Labeled trai fa : Regression for
abele rain A- e U sU AU fork=1:Kdo
XL 7" Model for Task A YiaY2.4r - IN,A Label Space of Task A Estimate {4 })T}N” of XY using (1);
: egtimate , [ == | conditional label Initialize X;” to 0, ¢ € T*;
I - ©'%  estimated labels input 9B, estimation function |94 fort € Tdﬁs do . L .
input :_. £, : Regression Construct theLcondltuj)LnalA}ibel estimation function
------- =1 B - OB — 9. 955 9 B Label Space of Task B grusing {y; rras Yihizis
*=» Model for Task B ’ ’ u Obtain the conditional task labels {yft}j\g’l of
xv using (2) for MDEE or (4) for SECE;

A T T

[ v 1nput } estimate end

. = for j =1: Ny do

for t € 7% do

i Rl ~U Add sample a:;‘[ and its corresponding

Y14 V2,40 s yNu.A pseudo-label 3; ; computed by (8) to X, if
it satisfies sample selection rules in SSL;

Multi-task Active Learning

Select sample x / to query, where g = argmax o
Jj=12,..Nu

!

& = 51,.4 ' 51,3»

0y = 52,A : 52,3,

____F___
L]
]
r 3
]
S ——

. . . .. conditional task labels end
Semi-Supervised Learning (Self-training) - end
Add pseudo-labels to samples xV with &; t <T, |e- Snw = .5 e SU sU Compute the inconsistency {; } ') using (5) for
t=AB j ’ e Viw Yo - I, MDEE or (6) for SECE;
— Select the most inconsistent sample :r:g using (7);
Cooperative Learning Inconsistency Calculation| | Conditional Label Estimation Q“ell;Y for y -, groundtruth labels of @ in all the
tasks;

XY« XU\zl/, Ny + Ny —1;
Xt e XPu(l,ylr), No< Np+1;
fort € 7 do
if t € T then
| Use {z],y}, Ne U XP to update fi;
else
| Use {z},y}, Ne to update fi;
end
end

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/ end 91




Inconsistency-based Multi-task Cooperative Learning

1. Estimate the labels from features ;7= [ﬁgl;...;@ﬂﬂ] = {fl(wﬁ’);...

2. Estimated the labels from labels in the other tasks

6.

S

y ) ) ' E
y‘;{t:gt (yj{ﬁrel) :kNN (ygﬂ’*“"-f) , te’]"dis ec

Multi-dimensional emotion estimation >

i=1 Yie i=1

Gy raie = 9(F50) = Y Gje b

NE
1 L L . L. L
h, = — Zyi,e ' [yz',cuE Yia yz’,d]

Simultaneous emotion classification and estimation

Compute the inconsistency of the above two estimated labe

= D = ),

teT dis teTdis

~UJ ~UJ
Yjt — yj,t‘ or ‘53' =

S

2

Query true labels of the sample xg with maximal inconsistency
Assign pseudo-labels of dimensional emotions for samples having low

inconsistency by ¥, = a X yJUt + (1 —a) X :&ft

Use the samples with manual labels and pseudo-labels to update the models

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Data Description

Dataset Feature Extraction
D Si d Valence Arousal Dominance : : : :

ataset 1ze (meantstd) (meantstd) (meanstd) VAM Nine pitch features, five duration features, six energy

B features, and 26 MFCC features
VAM 947 46 0.2282 0.0280 0.0924

+0.1991 +0.3425 +0.3025 IAPS Principal component analysis was applied to the features
IAPS 1,178 30 5.0314 4.8159 5.1580 extracted by the ResNet-50 pretrained on ImageNet

+1.7708 +1.1509 +1.0811

IEMOCAP Two amplitude features, two energy features, one pause
[EMOCAP 2815 35 2.8272 3.1829 3.2481 p gy p

+1.0576 +0.7606 +0.8077 feature, one harmonics feature, two pitch features, one zero-
crossing rate feature, and 26 MFCC features

GOCOO

no title >
O T mﬁwm D e e e e

interface of annotation pictures in IAPS that elicit different emotions
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Results: RMSE & CC in

Multi-Dimensional Emotion Estimation
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Average performance of different sample selection algorithms

in MDEE on three datasets
Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/

The proposed
active learning and
learning outperformed the single
task AL approaches and the previous

inconsistency base

cooperative

with Holm's p-value adjustment (a = 0.05).

Iteration 5 10 20 50
Rand 1.2232*  1.1975*  1.1302*  1.0083*
ST-V 1.1731*  1.0854*  1.0087*  0.9140*
ST-A 1.1610*  1.1031*  1.0307* 0.9287*
ST-D 1.1536*  1.0865*  1.0210*  0.9303*

MT-iGS 1.1579*  1.0512*  0.9664*  0.9072*

IMAL (ours) | 1.1351*%  1.0441*  0.9550%  0.8869
IMCL (ours) | 1.0362 0.9470 0.8951 0.8860

K Average RMSEs of the three emotion dimensions at the 5th, 10th, 20th
and 50th iterations, on IEMOCAP in MDEE. * means IMCL
outperformed the corresponding approach significantly in paired ¢-test
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Results: RMSE & CC in
Simultaneous Emotion Classification and Estimation

Valence Arousal Dominance Category
1.5 1.00+ > 0.405- —— BL-all
] 0.95- 2 ] —_—
1.4 £ 0.400 Rand
0.90- 8 0.395- ST
0 ] = (0.85- <
7 1.3 Zh e < 0.390- i
p= = 0.80- = 0. MT-iGS
~ 1.2 ~ (.75 _3:*3 0.385- RankComb
11 0.70- -20.380 IMAL (ours)
| 828 = 0375 IMCL (ours)
| 0 10 50100 300 0 10 50100 300
K K
Average RMSEs of the three emotion dimensions at the 5th, 10th, 20th
0.35- 0.60- 0.40- and 50th iterations, on IEMOCAP in SECE. * means IMCL
' : outperformed the corre§ponding app_roach significantly in paired t-test
0.30/ 0.55 0.351 with Holm’s p-value adjustment (o = 0.05).
@) w 0.504 L 0.301 Iteration 5 10 20 50
© 0.25] o 0.45 © Rand 11441%  1.1087* 1.0350* 09210
45 0.251 ST 1.1430%  1.1043%  1.0403*  0.9247*
0.20+ 0.40- 020 MT-iGS | 1.0742% 0.9845* 0.8993* 0.8377*
. RankComb | 1.0852%  1.0265%  0.9481*  0.8595*
0.151 0.351 0.151 IMAL (ours) | 1.0616%  0.9696*  0.8796*  0.8163
0 10 50100 300 0 10 50100 300 0 10 50100 300 IMCL (ours) | 09975 09325 OBGL 0817

Average performance of different sample selection algorithms on IEMOCAP in SECE
(valence-arousal-dominance estimation and also emotion classification). Generally our
proposed IMCL achieved the best performance, and IMAL the second best
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plication 3: Adversarial Attacks

Deliberat P designed small perturbations, which may be hard to notice
even by human, are added to normal examples to fool a machine
learning model and cause dramatlc performance degradation.

“panda” “gibbon”
a/7.7% confidence $9.3% confidence

LN NWMApA APV, AN WV I MMWV\}V\MWVW\A[\
PAANMMAT AN VAL AN S S 111 (WL A LAV MAMAIA ANV
SAN VWAL AAAMWASN VA WA Ty I ] VIV A SN VAN ANV A (B
SAANMAN A AN VVIAA, AN Y SAANMPANNANAANNN VI AN
MAAMMMAMA AN VA, s E MAANAAMA AN WA,
MWV\AWWVVVWW + lx _m_m\_r = I V JWV\’\/W’\/\’\WMWJ\
VANV MMANN AAAAIAANNAINA, A Wyw LAY ! ! WAV NN AAAMAASIN VI
IANMANA ANV IWA, AN AN AW MANPAANA AN AV, SN
PAA MMM AN AN, A 1 — LU VAWM AAAPANNANINM, | -
PAAN AL AAAMANNN AV, WA AL W PAANAPA N AN AN, AN
Original EEG epoch Adversarial perturbation Adversarial example

Class A Class B

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/




Adversarial Attack Types

According to how much the attacker knows the target model:

* White-Box Attacks: The attacker has access to all information of
the target model, including its architecture and parameters.

 Black-Box Attacks: The attacker knows neither the architecture

nor the parameters of the target model, but can observe its
responses to inputs.

Target model information | White-Box Black-Box
Know its architecture v X
Know its parameters 6 v X

Can observe its response — v
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Adversarial Attacks in BCls

An adversarial perturbation should be: Jamming

1. Small, hardly detectable. Module
2. Effective, fool the ML model. \

MMWV\A«MNWN\A/\ /
MWWVV\WWVMA/\,\/\
YRR Signal Signal Feature
acquisition preprocessing extraction
H

0 ) ( Control Classification
‘ @ L action /Regression

\_ /

* EEG-based BCls controlled wheelchairs or exoskeleton: User confusion and
frustration, significantly reduce the user's quality of life, and even hurt the
user by driving him/her into danger on purpose.

—

Buiuiea

aulyoen /

Applications:

* Clinical applications of BCls in awareness evaluation/detection for disorder

of consciousness patients: Misdiagnosis.
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3 Strategies in Black-Box Attacks

* Black-Box Attack: The attacker krows—the—architecture—and-parameters—of
the-target-meodel: can only sends input to the target model and observe its

output.
* 3 Strategies:

1) Decision-based: Gradually reduce the magnitude of the adversarial
perturbation while ensuring its effectiveness

2) Score-based: Use the model's output scores, e.g., class probabilities or
logits, to estimate the gradients and then generate adversarial examples

3) Transferability-based: Train a substitute model, which solves the same
classification problem as the target model, to generate adversarial
examples for the target model
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Transferability-Based
Black-Box Attacks
e QOur previous approach has 3 steps:

1) Query the target model to obtain some input-
output pairs

2) Train a substitute model

3) Use UFGSM to generate adversarial examples.

* How to reduce the number of queries?

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Query Synthesis Based AL
 Can query any sample in the input space, including synthesized

ones
:> generate
- instance

\\ de novo

label & add to \
training set input
space
<£C, ?> - N

sonil

oracle query

(a) query synthesis (b) an example from handwriting recognition

* Not popular in traditional classification tasks, because the
synthesized samples may be hardly recognizable by a human

* Very suitable for query generation in constructing the substitute
model in black-box attacks: The target model can label any inputs

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Our Query Synthesis Based AL
1. Binary Search Synthesis

Assume a small labeled training set Sp has been obtained from
querying the target model. An initial substitute model f] can be
trained on this set. Suppose {x{,x; } is an opposite-pair in Sj.
Then, we query their middle point on the substitute model to find
another opposite-pair closer to the decision boundary.

2. Mid-Perpendicular Synthesis

* If we always use binary search to generate training epochs, they may
concentrate in one area and lack diversity.

* We synthesize the next query along the mid-perpendicular direction
after we find an opposite-pair close enough to the decision boundary.

X. Jiang, X. Zhang and D. Wu, Active Learning for Black-Box Adversarial Attacks in EEG-Based Brain-
Computer Interfaces, IEEE Symposium Series on Computational Intelligence, Xiamen, China, Dec. 2019.
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Mid-Perpendicular Synthesis

Algorithm 2:  Mid-perpendicular synthesis. x; =
MidPerp({x;.x; }, f'.k,q)

Input: {x;,x; }, an opposite-pair of EEG epochs; f’,
current substitute model; m, maximum number of
binary search iterations; ¢, magnitude of the
orthogonal vector.

Output: x,, an synthesized EEG epoch.

X1 = X;_ — Xy

Generate an EEG epoch x5 randomly;

Find the orthogonal direction by Gram-Schmidt process:

Xy = q - (X2 — (X1,%X2)/(X1,X2) X X1);

{x*,x"} = BinarySearch({x;",x; }, f,m);

Xs = X9 + (X7 +x7)/2.

return x;

Dongrui Wu, BCI&ML Lab@Fk . .,

LALLUE o/ / LAV . UV LLLLILVLL/




Attack Performance

— — ,

Dataset | Target Model f — Baselines _ Method 1 Substitute Model / ‘
Original Noisy EEGNet DeepCNN ShallowCNN

- 40/42.44  32.66/39.75 4.95/64.
EEGNet 73.59/71.95 | 73.52/71.83 ours HAjEaAd RGBT 619376451
Jacobian-based 47.02/48.49 39.79/41.99 65.16/64.16

- 53.29/55. 36.57/44.55 3.78/66.
P300 DeepCNN | 75.99/74.10 | 76.20/73.94 ours DAIRSAD 36 7ALAS o 68.78/66.89
Jacobian-based 59.18/60.01 44.54/49.66 70.05/66.98

: 59.66/60. 51.76/35.15  53.80/49.6
ShallowCNN | 72.23/71.90 | 72.24/71.85 ours L6607 SLTORSS - 53.8079.60
Jacobian-based 59.75/61.73 51.40/57.91 52.38/52.54

- 5.71/47.29 78/48.9 2777112
EEGNet 73.89/72.94 | 73.23/72.72 Ours B7147.29 - 46.78/48.94 712777114
Jacobian-based 54.42/54 47 52.54/54.53 71.22/70.97
| _ | Our 36.78/55.07 _ 53.85/53.33  72.44/70.89

ERN DeepCNN 7404/72.69 | 73.86/72.38 JUrs S0- 19193 D2.03/52.5

Jacobian-based 59.64/58.32 57.77/57.54 72.73/71.43
| Our 70.15/7046  68.49/69.28 _ 58.28/39.42

ShallowCNN | 71.86/71.45 | 71.77/71.21 JUrs DA D0 201978
Jacobian-based 70.44/70.30 70.31/70.18 63.51/63.80
EEGNet 60.85/60.71 | 59.48/59.39 Ours 35A035.27 - 46.47/46.45  43.60/43.67
Jacobian-based 39.13/39.13 46.58/46.61 53.19/53.17
- - ~ - ’- q _
MI DeepCNN 55.83/55.57 | 55.65/55.39 Ours 17.06/46.50° - 45.3295.31 - 42.54/42.46
Jacobian-based 48.68/48.59 48.45/48.38 48.72/48.57

- 37.26/57.3 37.94/57.9 74/46.8-
ShallowCNN | 64.71/64.62 | 64.18/64.09 Ours 37.26/57.32  STH4ST.I8 — 46.74/46.54
Jacobian-based 59.44/59 .49 59.04/59.07 54.56/54.56
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Attack Performance vs # of Queries

EEGNet/EEGNet
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Fig. 1.
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RCA/BCA

RCA/BCA

RCA/BCA
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RCAs and BCAs of the two black-box attack methods with different number of queries on P300 (top row), ERN (middle row) and MI (bottom row).



Visualization of the Perturbations

—— Adversarial Example —— Original Example
101 WMM"WWW
9 1 WVWW
8 1 VMW‘WM\'\MM/I

Channel
(9, ] ()] ~

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time (s)
Original EEG example Adversarial example Adversarial perturbation
15 15 1.8 15 0.08
5 3 s 2 ol
< 10 < 10 1'2 o 1 0.06
o (=) 3 (=)
= c 10 £ 0.05
LY Q = Y]
& ) 0.8 o 0.04
v 5 2 B , o = 3
w (e . w 0.03
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Outline

 Weakly Supervised Learning

* Active Learning

* Active Learning for Classification
e Active Learning for Regression

* Deep Active Learning

* Applications

e Conclusions
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Conclusions

* Active Learning Goal: Minimize the number of queries such that
the labeling cost for training a good model can be minimized.

* Typical considerations:

v Informativeness: Measured by uncertainty (entropy, distance
to the decision boundary, confidence of the prediction, etc.),
expected model change, expected error reduction, etc.

v Representativeness: Evaluated by the number of samples that
are similar or close to a target sample (or its density)

v’ Diversity: The selected sample should scatter across the full
feature space, instead of concentrating in a small local region
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Active Learning Warning

* Choice of data is only as good as the model itself

* Assume a linear model, then two samples are sufficient

* What happens when data are not linear?

X
T
,,,,,, 0
——————— X X
X
| X X |
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Entropy Function

* A measure of information in random event
X with possible outcomes {x,,...,xy

N
H(z) == plx;)log, p(z;)
1 =1
 Comments on entropy function:

— Entropy of an event is zero when the outcome is
known

— Entropy is maximal when all outcomes are
equally likely

* The minimum number of yes/no questions
to answer some question

— Related to binary search

Dongrui Wu, BCI&ML Lab@HUST, http://lab.bciml.cn/
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Kullback Leibler (KL) Divergence

e P =True distribution;
* (= Alternative distribution that is used to encode data

* KL divergence is the expected extra message length per
datum that must be transmitted using QO

DKL PHQ ZP CL‘z 10g QE ;

Mz

P(x;)log P(x;) ZP x;) log Q(x;)

= H (P, Q) — H(P) Cross -entropy - entropy

e Measures how different the two distributions are
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KL Divergence Properties

* Non-negative:
D(P||Q) = 0

* Divergence O if and only if P and Q are equal:
D(P||Q)=0iff P=Q

D(P||Q) # D(QIIP) T necs

* Non-symmetric: — distance
metric!
D(P||Q) £ D(P||R) + D(R||Q) _

* Does not satisfy triangle inequality
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KL Divergence as Gain

* KL divergence of the posteriors measures the amount of
information gain expected from query (x’is the queried data):

D(p(0|z,2")||p(0]x))

* Goal: Choose a query that maximizes the KL divergence
between the posteriors after and before the query

e Basic idea: Largest KL divergence between updated posterior
probability and the current posterior probability represents
largest gain
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Reminder: Risk Function

* Given an estimation procedure/decision function d

* Frequentist risk given the true parameter 0 is the expected
loss after seeing new data.

— Z L(0, d(@new))p(Tnew|0)

Lnew

e Bayesian integrated risk given a prior w is defined as the

posterior expected loss:
m, d|z) = ZL (0, d(z))p(0|z, 7)

* Loss includes cost of query, prediction error, etc.
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