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Abstract
Objective. Multiple convolutional neural network (CNN) classifiers have been proposed for
electroencephalogram (EEG) based brain-computer interfaces (BCIs). However, CNN models
have been found vulnerable to universal adversarial perturbations (UAPs), which are small and
example-independent, yet powerful enough to degrade the performance of a CNN model, when
added to a benign example. Approach. This paper proposes a novel total loss minimization (TLM)
approach to generate UAPs for EEG-based BCIs.Main results. Experimental results demonstrated
the effectiveness of TLM on three popular CNN classifiers for both target and non-target attacks.
We also verified the transferability of UAPs in EEG-based BCI systems. Significance. To our
knowledge, this is the first study on UAPs of CNN classifiers in EEG-based BCIs. UAPs are easy to
construct, and can attack BCIs in real-time, exposing a potentially critical security concern of BCIs.

1. Introduction

A brain-computer interface (BCI) enables people to
interact directly with a computer using brain signals.
Due to its low-cost and convenience, electroenceph-
alogram (EEG), which records the brain’s electrical
activities from the scalp, has become the most widely
used input signal in BCIs. There are several popu-
lar paradigms in EEG-based BCIs, e.g. P300 evoked
potentials [1–4], motor imagery (MI) [5], steady-
state visual evoked potentials (SSVEP) [6], etc.

Deep learning, which eliminates manual fea-
ture engineering, has become increasingly popular
in decoding EEG signals in BCIs. Multiple convolu-
tional neural network (CNN) classifiers have been
proposed for EEG-based BCIs. Lawhern et al [7]
proposed EEGNet, a compact CNN model demon-
strating promising performance in several EEG-based
BCI tasks. Schirrmeister et al [8] proposed a deep
CNN model (DeepCNN) and a shallow CNN model
(ShallowCNN) for EEG classification. Therewere also
studies that converted EEG signals to spectrograms
or topoplots and then fed them into deep learning

classifiers [9–11]. This paper focuses on CNN classi-
fiers which take raw EEG signals as the input, but our
approach should also be extendable to other forms of
inputs.

Albeit their promising performance, it was
found that deep learning models are vulnerable
to adversarial attacks [12, 13], in which deliber-
ately designed tiny perturbations can significantly
degrade the model performance. Many successful
adversarial attacks have been reported in image clas-
sification [14–17], speech recognition [18], malware
detection [19], etc.

According to the purpose of the attacker,
adversarial attacks can be categorized into two types:
non-target attacks and target attacks. In a non-
target attack, the attacker wants the model out-
put to an adversarial example (after adding the
adversarial perturbation) to be wrong, but does not
force it into a particular class. Two typical non-target
attack approaches are DeepFool [20] and univer-
sal adversarial perturbation (UAP) [21]. In a target
attack, the model output to an adversarial example
should always be biased into a specific wrong class.
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Figure 1. Attacking an EEG-based BCI system [25].
© [2019] IEEE. Reprinted, with permission, from [25].

Some typical target attack approaches are the iterat-
ive least-likely class method [15], adversarial trans-
formation networks [22], and projected gradient
descent (PGD) [23]. There are also approaches that
can be used in both non-target and target attacks,
e.g. L-BFGS [12], the fast gradient sign method
(FGSM) [14], the C&W method [24], the basic iter-
ative method [15], etc.

An EEG-based BCI system usually consists of
four parts: signal acquisition, signal preprocessing,
machine learning, and control action. Zhang and
Wu [25] explored the vulnerability of CNN classi-
fiers under adversarial attacks in EEG-based BCIs,
and discovered that adversarial examples do exist
there. They injected a jamming module between sig-
nal preprocessing and machine learning to perform
the adversarial attack, as shown in figure 1. They
successfully attacked three CNN classifiers (EEGNet,
DeepCNN, and ShallowCNN) in three different scen-
arios (white-box, gray-box, and black-box). Their res-
ults exposed a critical security problem in EEG-based
BCIs, which had not been investigated before. As
pointed out in [25], ‘EEG-based BCIs could be used to
control wheelchairs or exoskeleton for the disabled [26],
where adversarial attacks could make the wheelchair or
exoskeleton malfunction. The consequence could range
from merely user confusion and frustration, to signi-
ficantly reducing the user’s quality of life, and even to
hurting the user by driving him/her into danger on pur-
pose. In clinical applications of BCIs in awareness eval-
uation/detection for disorder of consciousness patients
[26], adversarial attacks could lead to misdiagnosis.’

Albeit their success, Zhang and Wu’s approaches
[25] had the following limitations:

(a) An adversarial perturbation needs to be com-
puted specifically for each input EEG trial, which
is inconvenient.

(b) To compute the adversarial perturbation, the
attacker needs to wait for the complete EEG
trial to be collected; however, by that time the
EEG trial has gone, and the perturbation can-
not be actually added to it. So, Zhang and Wu’s
approaches are theoretically important, but may

not be easily implementable in practice. For bet-
ter practicability, we should be able to perform
the attack as soon as an EEG trial starts.

This paper introduces UAP for BCIs, which is
a universal perturbation template computed offline
and added to any EEG trial in real-time. Compared
with Zhang andWu’s approaches [25], it has two cor-
responding advantages:

(a) A UAP is computed once and applicable to any
EEG trial, instead of being computed specifically
for each input EEG trial.

(b) A UAP can be added as soon as an EEG trial
starts, or anywhere during an EEG trial, thus the
attacker does not need to know the number of
EEG channels, the starting time, and the length
of a trial.

So, it relieves the two limitations of [25] simultan-
eously, making the attack more practical4.

Studies on UAPs appeared in the literature very
recently. Moosavi-Dezfooli et al [21] discovered the
existence of UAPs, and verified that they can fool
state-of-the-art machine learning models in image
classification. Their method for crafting the UAPs,
based on DeepFool [20], solves a complex optim-
ization problem. The same idea was later used in
attacking speech recognition systems [28]. Behjati
et al [29] proposed a gradient projection based
approach for generating UAPs in text classification.
Mopuri et al [30] proposed a generalizable and data-
free approach for crafting UAPs, which is independ-
ent of the underlying task. All these approaches were
for non-target attacks. Target attacks using UAPs are
more challenging, because the perturbation needs to
be both universal and targeting at a particular class.
To our knowledge, the only study on UAPs for tar-
get attacks was [31], where Hirano et al integrated
a simple iterative method for generating non-target
UAPs and FGSM for target attacks to generate UAPs
for target attacks.

This paper investigates UAPs in EEG-based BCIs.
We make the following three contributions:

(a) To our knowledge, this is the first study on UAPs
for EEG-based BCIs, which make adversarial
attacks in BCIs more convenient and more prac-
tical.

(b) We propose a novel total loss minimization
(TLM) approach for generating a UAP for EEG

4 Ourmost recent research [27] also developed adversarial perturb-
ation templates to accommodate casuality, but it considered tra-
ditional P300 and SSVEP based BCI speller pipelines, which per-
form feature extraction and classification separately, whereas in
this paper the UAPs are developed for end-to-end deep learning
classifiers in P300 and MI tasks.
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trials, which can achieve better attack perform-
ance with a smaller perturbation, comparedwith
the traditional DeepFool based approach.

(c) Our proposed TLM can perform both non-
target attacks and target attacks. To our know-
ledge, no one has studied optimization based
UAPs for target attacks before.

The remainder of this paper is organized as fol-
lows: section 2 introduces two approaches to gen-
erate UAPs for EEG trials. Section 3 describes our
experimental setting. Sections 4 and 5 present the
experimental results on non-target attacks and tar-
get attacks, respectively. Finally, section 6 draws con-
clusions and points out several future research direc-
tions.

2. Universal adversarial perturbations

This section first introduces an iterative algorithm for
crafting aUAP for EEG trials, then presents the details
of our proposed TLM approach. All source code can
be downloaded at https://github.com/ZihanLiu95/
UAP_EEG.

We distinguish between two types of attacks:

• Target attacks, in which the attacker wants all
adversarial examples to be classified into a specific
class. For example, for 3-class MI (left-hand, right-
hand, and feet), the attacker may want all left-hand
and right-hand adversarial trials to be misclassified
as feet trials.

• Non-target attacks, in which the attacker wants the
adversarial examples to be misclassified, but does
not care which class they are classified into. In the
above example, a left-hand adversarial trial could
be misclassified as a right-hand trial, or a feet trial.

2.1. Problem setup
To attack a BCI system, the adversarial perturbations
need to be added to benign EEG signals in real-time.

Let Xi ∈ RC×T be the ith raw EEG trial
(i= 1, ..., n), where C is the number of EEG chan-
nels and T the number of time domain samples. Let
x ∈ RC·T×1 be the vector form of Xi, which concat-
enates all columns of Xi into a single column. Let
k(xi) be the estimated label from the target CNN

model, v ∈ RCṪ×1 be the UAP, and x̃i = xi + v be the
adversarial EEG trial after adding the UAP. Then, v
needs to satisfy:

1
n

n∑
i=1

I(k(xi + v) ̸= k(xi)) ≥ δ

∥v∥p ≤ ξ

 , (1)

where ∥ · ∥p is the Lp norm, and I(·) is the indicator
function which equals 1 if its argument is true, and
0 otherwise. The parameter δ ∈ (0, 1] determines the
desired attack success rate (ASR), and ξ constrains the

magnitude of v. Briefly speaking, the first constraint
requires the UAP to achieve a desired ASR, and the
second constraint ensures the UAP is small.

Next, we describe how a UAP can be crafted for
EEG data. We first introduce DeepFool [20], a white-
box attack (the attacker has access to all information
of the victim model, including its architecture, para-
meters, and training data) approach for crafting an
adversarial perturbation for a single input example,
and then extend it to crafting a UAP for multiple
examples. Finally, we propose a novel TLM approach
to craft UAP, which can be applied to both non-target
attacks and target attacks.

2.2. DeepFool-based UAP
DeepFool is an approach for crafting an adversarial
perturbation for a single input example.

Consider a binary classification problem, where
the labels are {−1, 1}. Let x be an input example,
and f an affine classification function f(x) = wTx+ b.
Then, the predicted label is k(x) = signf(x). Themin-
imal adversarial perturbation r∗ shouldmove x to the
decision hyperplane F = {x∗ : wTx∗ + b= 0}, i.e.

r∗ =− f(x)

∥w∥22
w. (2)

CNN classifiers are nonlinear. So, an iterative pro-
cedure [20] is used to identify the adversarial perturb-
ation, by approximately linearizing f(xt)≈ f(xt)+
∇f(xt)

Trt around xt at Iteration t, where ∇ is the
gradient of f(xt). Then, the minimal perturbation at
Iteration t is computed as:

min
rt

∥rt∥, s.t. f(xt)+∇f(xt)
Trt = 0. (3)

The perturbation rt at Iteration t is computed
using the closed-form solution in (2), and then
xt+1 = xt + rt is used in the next iteration. The itera-
tion stops when xt+1 starts to change the classification
label. The pseudocode is given in algorithm 1.

Algorithm 1 can be extended to multi-class clas-
sification by using the one-versus-all scheme to find
the closest hyperplane. Experiments in [20] demon-
strated that DeepFool can achieve comparable attack
performance as FGSM [14], but the magnitude of the
perturbation is smaller, which is more desirable.

UAPs were recently discovered in image classific-
ation by Moosavi-Dezfooli et al [21], who showed
that a fixed adversarial perturbation can fool multiple
state-of-the-art CNN classifiers on multiple images.
They developed aDeepFool-based iterative algorithm
to craft the UAP, which satisfies (1). A UAP is
designed by proceeding iteratively over all examples
in the dataset X= {xi}ni=1. In each iteration, Deep-
Fool is used to compute aminimumperturbation△vi
for the current perturbed point xi + v, and then △vi
is aggregated into v.
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Algorithm 1. DeepFool [20] for generating an adversarial
perturbation for a single input example.

Input: x, an input example
f, the classification function.

Output: r∗, the adversarial perturbation.
x0 = x
t= 0
while signf(xt) = signf(x0) do

rt =−
f(xt)

∥∇f(xt)∥22
∇f(xt)

xt+1 = xt + rt
t= t+ 1

end

r∗ =
t∑

i=0
ri.

More specifically, if the current universal per-
turbation v cannot fool the classifier on xi, then a
minimum extra perturbation △vi that can fool xi
is computed by solving the following optimization
problem:

min
△vi

∥△ vi∥2, s.t. k(xi + v+△vi) ̸= k(xi). (4)

To ensure the constraint ∥v∥p ≤ ξ is satisfied, the
updated universal perturbation v is further projected
onto the ℓp ball of radius ξ centered at 0. The projec-
tion operator Pp,ξ is defined as:

Pp,ξ(v) = arg min
∥v ′∥p≤ξ

∥v− v ′∥2. (5)

Then, the UAP can be updated by v= Pp,ξ(v+
△vi) in each iteration. This process is repeated on the
entire dataset until the maximum number of itera-
tions is reached, or the ASR on the perturbed data-
set Xv = {xi + v}ni=1 exceeds the target ASR threshold
δ ∈ (0, 1], i.e.

ASR(Xv,X) =
1

n

n∑
i=1

I(k(xi+ v) ̸= k(xi))≥ δ. (6)

The pseudo-code of the DeepFool-based
algorithm is given in algorithm 2.

2.3. Our proposed TLM-based UAP
Different from the DeepFool-based algorithm, TLM
directly optimizes an objective function w.r.t. the
UAP by batch gradient descent. In white-box attacks,
the parameters of the victim model are known and
fixed, and hence we can view the UAP as a variable to
minimize an objective function on the entire training
set.

Specifically, we solve the following optimization
problem by gradient descent:

min
v

Ex∼Dl(x+ v,y)+α ·C(x,v), s.t.∥v∥p ≤ ξ, (7)

where l(x+ v,y) is a loss function, which evaluates
the effect of the UAP on the target model. C(x,v)

Algorithm 2. DeepFool-based algorithm for generating a
UAP [21].

Input: X= {xi}ni=1, n input examples
k, the classifier
ξ, the maximum ℓp norm of the UAP
δ, the desired ASR
M, the maximum number of iterations.

Output: v, a UAP.
v= 0
Xv = X
for m= 1, ...,M do

if ASR(Xv,X)< δ then
for Each xi ∈ X do
if k(xi + v) == k(xi) then

Use DeepFool to compute the minimal
perturbation△vi in (4);
Update the perturbation by (5):
v←Pp,ξ(v+△vi);

end
end
Xv = {xi + v}ni=1;

else
Break;

end
end
Return v.

is the constraint on the perturbation v, and α the
regularization coefficient. Our proposed approach
is highly flexible, as the attacker can choose differ-
ent optimizers, loss functions, and/or constraints,
according to the specific task.

For non-target attacks, the loss function l can be
defined as l(x,y) = log(py(x)), in which y is the true
label of x. This loss function forces the UAP to make
the model to have minimum confidence on the true
label y. TLM optimizes the perturbation by increas-
ing the expected loss of themodel on the training data
D as much as possible. When UAP can affect enough
samples in the dataset, and the distribution difference
between the test data and D is small, UAP will have
a high probability of affecting the test data. In prac-
tice, we could also use argmax

j
pj(x), i.e. the predicted

label, to replace y if the true label is not available.
For target attacks, the loss function should force

the UAP to maximize the model’s confidence on the
target label yt specified by attacker; hence, l can be
defined as l(x,yt) =− log(pyt(x)). In fact, both l(x,y)
and l(x,yt) are essentially the negative cross-entropy.

There are also various options for the constraint
function C(x,v). In most cases, we can simply set
C(x,v) as L1 or L2 regularization on the UAP v; how-
ever, it can also be a more sophisticated function, e.g.
a metric function to detect whether the input is an
adversarial example or not. When a newmetric func-
tion for detecting adversarial examples is proposed,
our approach can also be utilized to test its reliabil-
ity: we set C as the metric function to check whether
we can still find an adversarial example. Given the
diversity of metric functions, we only consider L1 or

4
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Algorithm 3. The proposed TLM approach for generating
a UAP.

Input: Xtrain = {xtrain,i}ni=1, n training examples
Xval = {xval,i}mi=1,m validation examples
k, the classifier
ξ, the maximum ℓp norm of the UAP
α, the regularization coefficient
δ, the desired ASR
M, the maximum number of epochs

Output: vbest, a UAP.
v= 0;
r= 0;
for m= 1, ...,M do

for Each mini-batch D ∈ Xtrain do
Update v in (7) for D with an optimizer
Constrain v by (5): v←Pp,ξ(v), or directly clip
v into [−ξ, ξ];

end
Xval,v = {xval,i + v}ni=1;
if ASR(Xval,v,Xval)> r then

r= ASR(Xval,v,Xval);
vbest = v;

end
if r> δ then

Break;
end

end
Return vbest.

L2 regularization in this paper. Other metric func-
tions anddefense strategies for TLM-UAPwill be con-
sidered in our future research.

To ensure the constraint ∥v∥p ≤ ξ, we can project
the UAP v into the lp ball of radius ξ centered at 0 by
the projection function in (5) after each optimization
iteration, or simply clip its amplitude into [−ξ, ξ],
which is equivalent to using the l∞ ball. The latter was
used in this paper for its simplicity.

Due to the transferability of adversarial examples,
i.e. adversarial examples generated by onemodel may
also be used to attack another one, we can perform
TLM-UAP attacks in a gray-box attack scenario. In
this case, the attacker only has access to the training
set of the victimmodel, instead of its architecture and
parameters. The attacker can train a substitute model
on the known training set to generate a UAP, which
can then be used to attack the victim model.

The TLM-UAP can also be simplified, e.g. the
same perturbation is designed for all EEG channels,
or a mini TLM-UAP is added to an arbitrary loc-
ation of an EEG trail. The corresponding experi-
mental results are shown in sections 4.2 and 5. The
pseudo-code of our proposed TLM approach is given
in algorithm 3.

3. Experimental settings

This section introduces the experimental settings for
validating the performance of our proposed TLM
approach.

3.1. The three BCI datasets
The following three BCI datasets were used in our
experiments, as in [25, 32]:
P300 evoked potentials (P300): The P300 data-

set, first introduced in [33], contained eight subjects.
In the experiment, each subject faced a laptop on
which six images were flashed randomly to elicit P300
responses. The goal was to classify whether the image
was a target or non-target. The 32-channel EEG data
was downsampled to 256 Hz, bandpass filtered to
[1, 40] Hz, and epoched to [0, 1]s after each image

onset. Then, we normalized the data using x−mean(x)
10 ,

and clipped the resulting values to [−5, 5]. Each sub-
ject had about 3300 trials.
Feedback error-related negativity (ERN): The

ERN dataset [34] was used in a Kaggle challenge5.
The EEG signals were collected from 26 subjects and
consisted of two classes (bad-feedback and good-
feedback). The entire dataset was partitioned into a
training set (16 subjects) and a test set (10 subjects).
We used all 26 subjects in the experiments. The 56-
channel EEG signals were downsampled to 200 Hz,
bandpass filtered to [1, 40] Hz, epoched to [0, 1.3] s
after each stimulus, and z-normalized. Each subject
had 340 trials.
Motor imagery (MI): The MI dataset was Data-

set 2A6 in BCI Competition IV [35]. The EEG signals
were collected from nine subjects and consisted of
four classes: the imaginedmovements of the left hand,
right hand, both feet, and tongue. The 22-channel
EEG signals were downsampled to 128 Hz, band-
pass filtered to [4, 40] Hz, epoched to [0, 2] s after
each imagination prompt, and standardized using an
exponential moving average window with a decay
factor of 0.999, as in [7]. Each subject had 576 trials,
with 144 in each class.

3.2. The three CNNmodels
The following three CNN models were used in our
experiments, as in [25, 32]:
EEGNet: EEGNet [7] is a compact CNN architec-

ture for EEG-based BCIs. It consists of two convolu-
tional blocks and a classification block. To reduce the
number of model parameters, EEGNet uses depth-
wise and separable convolutions [36] instead of tra-
ditional convolutions.
DeepCNN: DeepCNN [8] consists of four convo-

lutional blocks and a softmax layer for classification,
which is deeper than EEGNet. Its first convolutional
block is specially designed to handle EEG inputs, and
the other three are standard convolutional blocks.
ShallowCNN: Inspired by filter bank common

spatial patterns [37], ShallowCNN [8] is specifically
tailored to decode band power features. Compared
with DeepCNN, ShallowCNN uses a larger kernel in

5 www.kaggle.com/c/inria-bci-challenge.
6 www.bbci.de/competition/iv/.
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Table 1. Parameters for generating DF-UAP and TLM-UAP. ∥v∥∞
was used in computing the norm of the UAPs.

ξ δ M α Constraint

DF-UAP 0.2 0.8 10 — —
TLM-UAP 0.2 1.0 500 0 No

temporal convolution, and then a spatial filter, squar-
ing nonlinearity, a mean pooling layer and logar-
ithmic activation function.

3.3. The two experimental settings
We considered two experimental settings:
Within-subject experiments: Within-subject

five-fold cross-validation was used in the experi-
ments. For each individual subject, all EEG trials
were divided into five non-overlapping blocks. Three
blocks were selected for training, one for validation,
and the remaining one for test. We made sure each
block was used in test once, and reported the average
results.
Cross-subject experiments: For each dataset,

leave-one-subject-out cross-validation was per-
formed. Assume a dataset had N subjects, and the
Nth subject was selected as the test subject. In train-
ing, trials from the first N − 1 subjects were mixed,
and divided into 75% for training and 25% for valid-
ation in early stopping.

When training the victim models on the first two
datasets, we applied weights to different classes to
accommodate the class imbalance, according to the
inverse of its proportion in the training set. We used
the cross entropy loss function and Adam optim-
izer [38]. Early stopping was used to reduce overfit-
ting.

The parameters for generating DF-UAP and
TLM-UAP are shown in table 1. It should be noted
that TLM-UAP was trained with no constraint, and
we set δ to 1.0 and used early stopping (patience =
10) to decide whether to stop the iteration or not. We
replaced the true labels y in (7) with the predicted
ones, as in real-world applications we do not have the
true labels.

3.4. The two performance measures
Both raw classification accuracy (RCA) and balanced
classification accuracy (BCA) [3] were used as the
performance measures. The RCA is the ratio of the
number of correctly classified samples to the num-
ber of total samples, and the BCA is the average of the
individual RCAs of different classes.

The BCA is necessary, because some BCI
paradigms (e.g. P300) have intrinsic significant class
imbalance, and hence using RCA alone may be mis-
leading sometimes.

4. Non-target attack results

This section presents the experimental results in non-
target attacks on the three BCI datasets. Recall that
a non-target attack forces a model to misclassify an
adversarial example to any class, instead of a specific
class.

For notation convenience, we denote the
UAP generated by the DeepFool-based algorithm
(algorithm 2) as DF-UAP, and the UAP generated by
the proposed TLM (algorithm 3) as TLM-UAP.

4.1. Baseline performances
We compared the UAP attack performance with two
baselines:

4.1.1. Clean baseline
We evaluated the baseline performances of the three
CNN models on the clean (unperturbed) EEG data,
as shown in the first part of table 2. For all three data-
sets and all three classifiers, generally RCAs and BCAs
of the within-subject experiments were higher than
their counterparts in the cross-subject experiments,
which is reasonable, since individual differences cause
inconsistency among EEG trials from different sub-
jects.

4.1.2. Noisy baseline
We added clipped Gaussian random noise ξ ·
max(−1,min(1,N (0,1))) to the original EEG data,
which had the same maximum amplitude ξ as the
UAP and satisfied the constraint ∥v∥p ≤ ξ after clip-
ping. If the random noise under the same magnitude
constraint can significantly degrade the classification
performance, then there is no need to compute a
UAP. The results are shown in table 2. Random noise
with the same amplitude as the UAP did not degrade
the classification performance in most cases, except
sometimes on the MI dataset. This suggests that the
three CNN classifiers are generally robust to random
noise, therefore we should deliberately design the
adversarial perturbations.

4.2. White-box non-target attack performances
First consider white-box attacks, wherewe have access
to all information of the victim model, including its
architecture, parameters, and training data. The per-
formances of DF-UAP and TLM-UAP in white-box
non-target attacks are shown in the second part of
table 2. We also performed non-parametric Mann–
WhitneyU tests [39] on the RCAs (BCAs) of DF-UAP
and TLM-UAP to check if there were statistically sig-
nificant differences between them (marked with ‘∗’;
p< 0.01). Observe that:

(a) After adding DF-UAP or TLM-UAP, both the
RCAs and the BCAs were significantly reduced,

6
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Figure 2. Number of EEG trials in each class (classified by EEGNet), before and after applying TLM-UAP in white-box non-target
attack. (a) P300; (b) ERN; and, (c) MI.

suggesting the effectiveness of DF-UAP and
TLM-UAP attacks.

(b) In most cases, TLM-UAP significantly outper-
formedDF-UAP. Thismay be due to the fact that,
as shown in (7), TLM-UAP optimizes the ASR
directly on the entire dataset, whereas DF-UAP
considers each sample individually, which may
be easily trapped into a local minimum.

(c) The BCAs of the P300 and ERN datasets were
close to 0.5 after DF-UAP or TLM-UAP attacks,
whereas the RCAs were lower than 0.5, imply-
ing that most test EEG trials were classified into
the minority class to achieve the best attack
performance.

Figure 2 shows the number of EEG trials in
each class on the three datasets, classified by EEGNet
before and after applying TLM-UAP. Generally, the
trials originally classified into the majority class were
misclassified into the minority class in binary classi-
fication after applying TLM-UAP. This is reasonable.
Assume the minority class contains p% (p< 50) of
the trials. Then, misclassifying all minority class trials
into the majority class gives an ASR of p%, whereas
misclassifying all majority class trials into the minor-
ity class gives an ASR of (100− p)%. Clearly, the latter
is larger. Similarly, the trials were misclassified into a
minority class (but not necessarily the smallest class)
in multi-class classification.

An example of the EEG trial before and after
applying Gaussian random noise and TLM-UAP in
the time domain is shown in figure 3(a). The sig-
nal distortion caused by the Gaussian random noise
was greater than that caused by TLM-UAP under the
same maximum amplitude, indicating the effective-
ness of the constraint on the TLM-UAP amplitude
during optimization. Figure 3(b) shows the spectro-
gram of the EEG trial before and after applying TLM-
UAP. The TLM-UAP was so small in both the time
domain and the frequency domain that it is barely
visible, and hence difficult to detect. We further show
the topoplots of an EEG trial before and after white-
box non-target TLM-UAP attack in figure 3(c). The

difference is again very small, which may not be
detectable by human eyes or a computer program.

We also investigated an easily implementable
channel-invariant TLM-UAP attack, which added the
same perturbation to all EEG channels. The white-
box attack results are shown in table 3. Compared
with the clean and noisy baselines in table 2, the
RCAs and BCAs in table 3 are smaller, i.e. the attacks
were effective; however, the attack performances were
worse than those of DF-UAP and TLM-UAP in
table 2, which is intuitive, as the channel-invariant
TLM-UAP had more constraints.

4.3. Generalization of TLM-UAP on traditional
classificationmodels
It’s also interesting to evaluate the generalization per-
formance of the proposed TLM-UAP approach on
traditional BCI classification models. We used the
TLM-UAP generated from CNN models to attack
some traditional non-CNNmodels, i.e. xDAWN [40]
spatial filtering and logistic regression (LR) for P300
and ERN, and common spatial pattern [41] filtering
and LR classifier for MI.

TLM-UAPs with three different amplitudes were
generated by three CNN models, and then used to
attack the traditional models. The results are shown
in table 4. Observe that:

(a) Generally, TLM-UAPs generated by CNN mod-
els were more effective to degrade the perform-
ance of the traditional models than random
Gaussian noise, i.e. TLM-UAP can generalize to
traditional non-CNN models.

(b) The amplitude of TLM-UAP heavily affected the
attack performance. Intuitively, a larger amp-
litude resulted in a greater model performance
reduction.

(c) Differentmodelsmay have different resistance to
TLM-UAPs. Compared with the attack perform-
ances on CNN models in table 2, the traditional
model wasmore robust thanCNNmodels on the
ERN dataset, but less robust on the MI dataset.

8
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Figure 3. An example of the EEG trial before and after white-box non-target attack on the MI dataset (ξ= 0.2). (a) time domain;
(b) frequency domain; (c) topoplot.

4.4. Transferability of UAP in gray-box attacks
Transferability is one of the most threatening prop-
erties of adversarial examples, which means that
adversarial examples generated by one model may
also be able to attack another one. This section
explores the transferability of DF-UAP and TLM-
UAP.

A gray-box attack scenario was considered: the
attacker only has access to the training set of the vic-
tim model, instead of its architecture and paramet-
ers. In this situation, the attacker can train a substi-
tutemodel on the same training set to generate a UAP,

which was then used to attack the victim model. The
results are shown in the last part of table 2. We can
observe that:

(a) The classification performances degraded after
gray-box attacks, verifying the transferability of
both DF-UAP and TLM-UAP.

(b) In most cases, TLM-UAP led to larger classific-
ation performance degradation of the RCA and
BCA thanDF-UAP, suggesting that our proposed
TLM-UAP was more effective than DF-UAP.

9
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Table 3. The ratio of the number of correctly classified samples to the number of total samples (RCAs) and the average of the individual
RCAs of different classes (BCAs) of the three CNN classifiers after channel-invariant TLM-UAP attacks on the three datasets (ξ= 0.2).

RCA/BCA

Baseline Channel-invariant

Experiment Dataset Victim model Clean Noise TLM-UAP TLM-UAP

Within-subject P300 EEGNet .81/.79 .80/.79 .17/.50 .47/.66
DeepCNN .82/.78 .82/.78 .19/.50 .60/.72
ShallowCNN .80/.75 .80/.74 .20/.51 .64/.72

ERN EEGNet .76/.73 .69/.64 .30/.50 .48/.58
DeepCNN .69/.65 .69/.65 .40/.52 .53/.59
ShallowCNN .70/.68 .69/.67 .40/.53 .56/.61
EEGNet .61/.61 .47/.48 .25/.25 .36/.37
DeepCNN .50/.50 .47/.47 .26/.26 .52/.51
ShallowCNN .74/.74 .68/.68 .25/.25 .74/.74

Cross-subject P300 EEGNet .61/.61 .47/.48 .25/.25 .36/.57
DeepCNN .69/.64 .70/.64 .18/.50 .40/.58
ShallowCNN .67/.62 .66/.62 .19/.50 .49/.61

ERN EEGNet .67/.68 .67/.65 .29/.50 .53/.62
DeepCNN .69/.69 .71/.70 .31/.50 .46/.56
ShallowCNN .69/.69 .68/.68 .29/.50 .57/.61

MI EEGNet .44/.44 .38/.38 .25/.25 .33/.33
DeepCNN .47/.47 .44/.44 .25/.25 .33/.33
ShallowCNN .47/.47 .43/.43 .25/.25 .38/.38

Table 4. The ratio of the number of correctly classified samples to the number of total samples (RCAs), and the mean RCAs of different
classes (BCAs), of the traditional classifiers after TLM-UAP attacks with different ξ on the three datasets.

RCA/BCA

Baseline Generation model

Dataset Victim model ξ Clean Noise EEGNet DeepCNN ShallowCNN

P300 xDAWN+ LR 0.05 .73/.73 .75/.73 .66/.71 .61/.70 .71/.73
0.1 .73/.73 .75/.73 .56/.68 .48/.65 .66/.71
0.2 .73/.73 .74/.73 .38/.60 .30/.56 .57/.68

ERN xDAWN+ LR 0.05 .67/.65 .67/.65 .66/.64 .65/.64 .66/.65
0.1 .67/.65 .66/.65 .64/.65 .64/.64 .65/.65
0.2 .67/.65 .67/.65 .64/.64 .62/.64 .63/.64

MI CSP+ LR 0.05 .58/.58 .57/57 .47/.47 .52/.52 .42/.42
0.1 .58/.58 .42/.42 .31/.31 .32/.32 .28/.28
0.2 .58/.58 .27/.27 .30/.30 .26/.26 .27/.27

4.5. Characteristics of UAP
Additional experiments were performed in this sub-
section to analyze the characteristics of TLM-UAP.

4.5.1. Signal-to-perturbation ratio (SPR)
We computed SPRs of the perturbed EEG tri-
als, including applying random noise, DF-UAP and
TLM-UAP in white-box attacks. We treated the ori-
ginal EEG trials as clean signals, and computed the
SPRs in cross-subject experiments. The results are
shown in table 5. We performed non-parametric
Mann–Whitney U tests on the SPRs of DF-UAP
and TLM-UAP to check if there were statistically
significant differences between them (marked in
bold; p< 0.001). In most cases, the SPRs of the
adversarial examples perturbed by TLM-UAP were
higher than those perturbed by DF-UAP, i.e. the
UAP crafted by TLM had a smaller magnitude,
and hence may be more difficult to detect. This

is because in addition to ∥v∥p ≤ ξ, TLM-UAP is
also bounded by the constraint function C(x,v)
in (7).

4.5.2. Spectrogram
In order to analyze the time-frequency characteristics
of UAP, we compared the spectrograms of DF-UAP
and TLM-UAP for the three classifiers in white-box
attacks. The results are shown in figure 4.

DF-UAPs and TLM-UAPs share similar spectro-
grampatterns: for EEGNet andDeepCNN, the energy
was mainly concentrated in the low-frequency areas,
whereas it wasmore scattered for ShallowCNN. There
were also some significant differences. For EEGNet,
the energy of DF-UAP was concentrated in [0.1, 0.9]s
and [0, 7]Hz, whereas the energy of TLM-UAP was
concentrated in [0.1, 0.8]s and [3, 8] Hz. For Deep-
CNN, TLM-UAP seemed to affect a longer period of
signals, i.e. [0.4, 0.8]s. For ShallowCNN, TLM-UAP

10
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Table 5. SPRs (dB) of EEG trials perturbed by DF-UAP and TLM-UAP in white-box non-target attacks (ξ= 0.2). Statisticallysignificantly
different SPRs between DF-UAP and TLM-UAP were marked in bold (non-parametric Mann-Whitney U test; p< 0.001).

Dataset EEGNet DeepCNN ShallowCNN

DF-UAP P300 16.99 17.00 17.85
ERN 16.22 16.73 17.73
MI 21.71 13.08 14.57

TLM-UAP P300 21.17 19.92 20.58
ERN 21.03 21.67 17.72
MI 23.48 17.85 17.80

Figure 4. Spectrograms of DF-UAPs and TLM-UAPs on the P300 dataset in white-box non-target within-subject experiments.
Channel Cz was used. (a) DF-UAP; (b) TLM-UAP.

mainly perturbed the high-frequency areas, which
were less uniform than DF-UAP.

These results also explained the cross-subject
transferability results of TLM-UAP on the P300
dataset in table 2: TLM-UAPs generated fromEEGNet
and DeepCNN were more similar than those from
ShallowCNN, so TLM-UAP generated from EEGNet
(DeepCNN) was more effective in attacking Deep-
CNN(EEGNet), and their RCAs andBCAswere close.

4.5.3. Hidden-layer feature map
Section 4.2 shows that there is no big difference
between the EEG trial before and after TLM-UAP
attack in the time domain and the frequency domain,
and on the topoplot. Figure 5 visualizes the feature
map from the last convolution layer of EEGNet before
and after adding the TLM-UAP to a clean MI EEG
trial. The small perturbation was amplified by the
complex nonlinear transformation of EEGNet, and
hence the hidden layer featuremapswere significantly
different. This is intuitive, as otherwise the output of
EEGNet would not change much.

4.6. Hyper-parameter sensitivity
This subsection analyzes the sensitivity of TLM-UAP
to its hyper-parameters.

4.6.1. The magnitude of TLM-UAP
ξ is an important parameter in algorithm 3, which
directly bounds the magnitude of the perturbation.
We evaluated the TLM-UAP attack performance with
respect to different ξ. As shown in figure 6, the RCA
decreased rapidly as ξ increased and converged at
ξ= 0.2 in most cases, suggesting that a small UAP is
powerful enough to attack the victim model.

4.6.2. Training set size
It’s interesting to study if the training set size affects
the performance of TLM-UAP. Figure 7 shows the
white-box non-target attack performance of TLM-
UAP, which were trained with different numbers of
EEG trials in cross-subject experiments on the MI
dataset. It seems that we do not need a large training
set to obtain an effective TLM-UAP. The same phe-
nomenon was also observed in [21].

11
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Figure 5. Feature map of EEGNet before and after white-box non-target within-subject TLM-UAP attack on the MI dataset
(ξ= 0.2).

Figure 6. RCAs of the victim model after white-box non-target within-subject TLM-UAP attack, with respect to different ξ.
(a) P300 dataset; (b) ERN dataset; and, (c) MI dataset.

Figure 7. ASRs in white-box non-target cross-subject
experiment on the MI dataset, with respect to different
training set sizes. ‘All’ means all 4608 training EEG trials in
the MI dataset were used in algorithm 3.

4.6.3. Constraint
We also compared different constraint C in (7):
No constraint, L1 regularization (α= 10/10/5 for
EEGNet/DeepCNN/ShallowCNN), and L2 regulariz-
ation (α= 100). The SPRs on the three datasets are
shown in table 6. Albeit similar attack performances,
TLM-UAP trainedwith constraints led to a larger SPR
(the SPRs in the ‘L1’ and ‘L2’ rows are larger than
those in the corresponding ‘No’ row).

Figure 8 shows that adding different constraints
significantly changed the waveforms of TLM-UAP. L1
regularization introduced sparsity, whereas L2 regu-
larization reduced the perturbation magnitude.

We may also generate a TLM-UAP which satisfies
other requirements by changing the constraint func-
tion C, such as perturbing certain EEG channels, or
even against a metric function which is used to detect
adversarial examples.Wewill leave these to our future
research.

4.7. Influence of the Batch size
Mini-batch gradient descent was used to optimize
TLM-UAP. Table 7 shows the change of RCAs and
BCAs w.r.t. different batch sizes. Generally, the pro-
posed TLM-UAP is insensitive to batch size within
[16, 64].

5. Target attack results

Our TLM approach is also capable of performing tar-
get attacks, which can be easily achieved by changing
the loss function l in (7).

We performed white-box target attacks in
cross-subject experiments on the three datasets and

12
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Table 6.Mean RCAs (%) and SPRs (dB) on the three datasets using different constraints in white-box non-target attacks (ξ= 0.2).

SPR of TLM-UAP

Dataset Constraint Mean RCA EEGNet DeepCNN ShallowCNN

P300 No 17.18 14.89 14.71 14.45
L1 17.36 18.39 17.82 17.16
L2 17.85 21.17 19.92 20.58

ERN No 30.96 19.91 20.70 17.02
L1 29.24 21.45 22.05 17.11
L2 30.66 21.03 21.67 17.72

MI No 25.05 22.88 15.46 16.11
L1 25.08 23.35 53.76 16.88
L2 25.06 23.48 17.85 17.80

Figure 8. TLM-UAP trained with different constraints on the MI dataset in white-box non-target attacks. Channels Pz , Cz and Fz

were used.

Table 7. The ratio of the number of correctly classified samples to the number of total samples (RCAs), and the mean RCAs of different
classes (BCAs), of the three CNN classifiers after TLM-UAP attacks with different batch sizes on the three datasets.

RCA/BCA

Dataset Victim model Batch size 16 Batch size 32 Batch size 64

P300 EEGNet .17/.50 .17/.50 .17/.50
DeepCNN .17/.50 .17/.50 .19/.50
ShallowCNN .21/.51 .20/.51 .20/.51

ERN EEGNet .31/.50 .31/.50 .30/.50
DeepCNN .41/.52 .40/.52 .40/.52
ShallowCNN .38/.51 .38/.51 .40/.53

MI EEGNet .25/.25 .25/.25 .25/.25
DeepCNN .29/.29 .29/.29 .26/.26
ShallowCNN .26/.26 .26/.26 .25/.25

evaluated the target rate, which is the number of
samples classified to the target class divided by the
number of total samples. The results are shown in
table 8. TLM-UAPs had close to 100% target rates in
white-box target attacks, indicating that our approach
can manipulate the BCI systems to output whatever
the attacker wants, which may be more dangerous
than non-target attacks. For example, in a BCI-driven
wheelchair, a target TLM-UAP attack may force all

commands to be interpreted as a specific command
(e.g. going forward), and hence run the user into
danger.

To further simplify the implementation of
TLM-UAP, we also considered smaller template size,
i.e. mini TLM-UAP with a small number of chan-
nels and time domain samples, which can be added
anywhere to an EEG trail. Mini TLM-UAPs are more
practical and flexible, because they do not require the

13
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Table 8. Target rates of the three CNN classifiers in cross-subject white-box target TLM-UAP attacks on the three datasets (ξ= 0.2).

Baseline TLM-UAP

Dataset Victim model Target class Clean Noisy Attack

P300 EEGNet Non-target .6627 .6463 .9629
Target .3373 .3510 .9572

DeepCNN Non-target .6755 .6637 .9416
Target .3245 .3116 .9373

ShallowCNN Non-target .6505 .6597 .8904
Target .3495 .3499 .8306

ERN EEGNet Bad .3537 .3741 .9980
Good .6463 .6300 .9971

DeepCNN Bad .3770 .3309 .9912
Good .6230 .6739 .9976

ShallowCNN Bad .3033 .2910 .9741
Good .6967 .7160 .9888

MI EEGNet Left .3152 .1350 .9821
Right .2830 .2056 .9850
Feet .1545 .1954 .9994
Tongue .2473 .5380 1.000

DeepCNN Left .2535 .1765 .8839
Right .3491 .2207 .9238
Feet .2282 .3155 .9659
Tongue .1692 .2544 .9938

ShallowCNN Left .2872 .1952 .9151
Right .2537 .1746 .9443
Feet .2647 .2838 .9819
Tongue .2124 .3673 .9983

Figure 9. Target rates of cross-subject mini TLM-UAP target attacks, with different UAP template size (Cm,Tm), where Cm is the
number of EEG channels and Tm the number of time domain samples. The original trial sizes of P300/ERN/MI datasets were
(32, 256)/(56, 260)/(22, 256), respectively. (a) P300 dataset, non-target class; (b) ERN dataset, bad-feedback class; (c) MI dataset,
left-hand class.

attacker to know the exact number of EEG channels
and the exact length and starting time of an EEG trial.
During optimization, we randomly placed the mini
TLM-UAP at different locations (both channel-wise
and time-wise) of EEG trials and tried to make the
attacks successful. During test, the mini TLM-UAP
was randomly added to 30 different locations of each
EEG trail. The results are shown in figure 9. Gen-
erally, all mini TLM-UAPs were effective. However,
their effectiveness decreased when the number of
used channels (Cm) and/or the template length (Tm)
decreased, which is intuitive. These results suggest
that a mini TLM-UAP may be used to achieve a bet-
ter compromise between the attack performance and
the implementation difficulty.

6. Conclusions and future research

Multiple CNN classifiers have been proposed
for EEG-based BCIs. However, CNN models
are vulnerable to UAPs, which are small and
example-independent perturbations, yet powerful
enough to significantly degrade the performance of a
CNN model when added to a benign example. This
paper has proposed a novel TLM approach to gen-
erate UAP for EEG-based BCI systems. Experimental
results demonstrated its effectiveness in attacking
three popular CNN classifiers for both non-target
and target attacks. We also verified the transferabil-
ity of the UAPs in EEG-based BCI systems. To our
knowledge, this is the first study on UAPs of CNN
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classifiers in EEG-based BCIs. It exposes a potentially
critical security problem in BCIs, and hopefully will
lead to the design of safer BCIs.

Our future research will enhance the transferabil-
ity of TLM-UAP in deep learning, and also consider
how to attack traditional machine learning models in
EEG-based BCIs. More importantly, we will design
effective strategies to defend against UAP attacks.
Multiple approaches, e.g. adversarial training [14],
defensive distillation [42], ensemble adversarial train-
ing [43], and so on [23, 44–46], have been proposed to
defend against adversarial examples in other applica-
tion domains. As TLM is a perturbation based first-
order gradient optimization approach, PGD [23]
training may be used to defend against it.
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