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Abstract: Human activity recognition (HAR) based on the wearable device has attracted more at-

tention from researchers with sensor technology development in recent years. However, personal-

ized HAR requires high accuracy of recognition, while maintaining the model’s generalization ca-

pability is a major challenge in this field. This paper designed a compact wireless wearable sensor 

node, which combines an air pressure sensor and inertial measurement unit (IMU) to provide multi-

modal information for HAR model training. To solve personalized recognition of user activities, we 

propose a new transfer learning algorithm, which is a joint probability domain adaptive method 

with improved pseudo-labels (IPL-JPDA). This method adds the improved pseudo-label strategy to 

the JPDA algorithm to avoid cumulative errors due to inaccurate initial pseudo-labels. In order to 

verify our equipment and method, we use the newly designed sensor node to collect seven daily 

activities of 7 subjects. Nine different HAR models are trained by traditional machine learning and 

transfer learning methods. The experimental results show that the multi-modal data improve the 

accuracy of the HAR system. The IPL-JPDA algorithm proposed in this paper has the best perfor-

mance among five HAR models, and the average recognition accuracy of different subjects is 93.2%. 

Keywords: human activity recognition (HAR); wearable device; air pressure sensor; inertial meas-

urement unit (IMU); transfer learning 

 

1. Introduction 

Human activity recognition (HAR) is an important research field in the world [1]. It 

has a broad range of application scenarios in industrial automation [2], sports [3], medical 

[4], security [5], smart city [6], and smart home [7]. At the same time, HAR system plays 

an essential role in human-centered applications, such as health detection [8], driver be-

havior monitoring [9], gait detection [10], fall detection [11], and other personalized ser-

vices. However, the HAR system trained through the generalized data set often does not 

reach the desired accuracy, especially when applied to new users [12]. Therefore, how to 

improve the accuracy of the HAR system in increasingly complex application scenarios 

that enabling the model to adapt to specific users and enhancing the personalization of 

the model has great significance. HAR system recognizes human activity in the real envi-

ronment by learning useful information from raw sensor data or images containing hu-

man activity [13], which falls into two categories: Sensor-based HAR [14] and vision-

based HAR [15,16]. Considering the users’ privacy problem and real-time performance of 

measurement, this study focuses on the sensor-based HAR. Recently, with the develop-

ment of wearable sensor technology, the sensor’s size is getting smaller, and the sensor’s 

portability is getting higher. Therefore, HAR system based on wearable sensors has at-

tracted the attention of many researchers [10]. 
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Wearable sensors’ perception system usually includes the accelerometer module, gy-

roscope module, and magnetic module [17]. Compared with the perception system of 

HAR based on vision systems such as RGB camera [18], depth camera [19], and laser sen-

sor [20], wearable sensor not only has the advantages of low cost, high efficiency, and easy 

portability but also avoids the invasion of users’ privacy and the limitation of the vision 

system in space. Electromyogram (EMG) is increasingly used in wearable devices for ac-

tivity recognition in recent years [21,22]. As the most commonly used method to detect 

muscle activity, EMG signals are usually collected by needle electrodes and patch elec-

trodes, both of which are perception devices close to the skin [23]. However, these two 

acquisition methods are affected not only by the interference of electrical noise but also 

by sweat. It is noteworthy that the change in muscle strength is usually accompanied by 

muscle deformation. Therefore, using an external airbag and air pressure sensor to detect 

muscle deformation can obtain muscle movement information for posture recognition 

[24,25]. Moreover, the system based on air pressure has the characteristics of safety and 

flexibility, which is widely used in human interaction systems [26,27]. Yang et al. [28] has 

proved that the HAR system’s accuracy will be improved when muscle motion data is 

added to motion information such as attitude angle and acceleration. In our study, we 

developed a compact wearable system that incorporates an inertial measurement unit 

(IMU) module and air pressure module. This system is more comfortable to wear and is 

insensitive to the wearing position due to the integrated design. It provides more dimen-

sional data without increasing sensor node and provides a good database for the transfer 

learning in the HAR system. 

HAR is performed through conventional machine learning methods or deep learning 

methods after the sensor collects the original data [29,30]. The conventional machine 

learning method recognizes activity relying on a shallow learning algorithm containing 

one or two nonlinear mapping layers. The HAR system based on machine learning algo-

rithms usually requires data preprocessing, including segmentation, feature extraction, 

and selection. Preprocessed data is used to train the classifier based on the conventional 

machine learning algorithm [31]. The accuracy of classification largely depends on the 

effect of feature extraction and selection [32]. In the study of [33], He et al. proposed a 

high-precision HAR system based on discrete cosine transform (DCT), principal compo-

nent analysis (PCA), and support vector machine (SVM). Cheng et al. [34] used SVM 

model, hidden Markov model (HMM), and artificial neural network (ANN) to train the 

classifier and proved that these three methods had achieved acceptable performance. Gao 

et al. [35] proposed the Naive Bayes (NB) classifier based on multi-sensor fusion for activ-

ity recognition. Tao et al. [36] used rank-preserving discriminant analysis to reduce the 

acceleration data’s dimensionality and used the K-Nearest Neighbor (KNN) model for 

action classification. In the study of [37], the SVM model trained multi-sensor fusion is 

proposed for HAR by Liu et al. However, all the methods mentioned above are based on 

the assumption that training and test data follows same distribution. Whereas, due to the 

difference between people, this assumption is hardly guaranteed in real HAR applica-

tions. If the training data (source domain) and the test data (target domain) come from 

different feature distributions (different people), the above-mentioned conventional 

methods cannot satisfy HAR accuracy. 

With the rapid development of deep learning, more and more researchers try to use 

deep learning methods and reinforcement learning to solve sensor-based HAR problems 

and achieved good performance [38,39]. Compared with conventional machine learning 

methods, deep learning is an end-to-end learning method based on a multi-layered net-

work, automatically starting from the original raw data without feature extraction to ac-

tivity recognition [40]. Deep learning can also find complex structures and is adept at pro-

cessing high-dimensional data [41]. Although deep learning has advantages over conven-

tional HAR methods, the performance is still not satisfactory when it uses a small amount 

of data to solve HAR problems. 
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Conventional machine learning and deep learning obey the same distribution on the 

training data and test data, and they need enough labeled data to train the model. Differ-

ent users will significantly affect sensor data distribution due to differences between indi-

viduals and sensors’ wear locations. For example, when different people perform the 

same activity, their action-angle and speed will be different due to physical differences 

[42]. If a user-specific HAR model trains for every user, a large amount of user’s labeled 

data needs to be collected. Obtaining these labeled data and training exclusive models is 

time-consuming and expensive. The ideal HAR system is that the classification capabili-

ties learned in the generalized data set are used to identify new user’s activities. The con-

ventional machine learning and deep learning method are difficult to achieve the ideal 

HAR system, which has strong generalization ability even the newly coming samples 

have different distributions with the training data. At the same time, it should be noted 

that this kind of HAR system could be realized by transfer learning. Therefore, in order to 

solve the problems mentioned above, which uses a small amount of user data to obtain a 

high-precision recognition model, this paper applies transfer learning to establish an ac-

curate and generalized HAR model. 

Transfer learning may effectively avoid the abovementioned disadvantages of con-

ventional machine learning and deep learning. In transfer learning, training data, and test 

data may obey different distributions, and the model can be obtained without sufficient 

data annotation. This provides a basis for establishing a model with good generalization 

capabilities. Transfer learning is widely used in image classification [42], emotion recog-

nition [43], brain–computer interface [44,45]. In HAR, we define the generalized data set 

as the source domain and the new users’ data sets as the target domain. In this situation, 

the distribution of the source domain and the target domain is different, but the two do-

mains’ learning task is the same. This belongs to domain adaptation that is the subcate-

gory of transfer learning. 

In domain adaptation, researchers use various methods to align the data distribution 

of two different domains. The discrimination between the distribution of the source do-

main and the target domain reaches the minimum in the feature space [46,47]. Finally, the 

classifier trained from the source domain based on a large number of labeled data adapts 

to the limited or unlabeled target domain, thereby classifying the target domain. Accord-

ing to Yang’s study, domain adaptation is mainly divided into three categories, which are 

feature-based domain adaptation, sample-based domain adaptation, and model-based 

domain adaptation [46]. The most popular method among them is feature-based domain 

adaptation. The feature-based method minimizes the difference of distribution between 

the source and target domains, which align the two domains’ distribution to learn shared 

features. Maximum mean discrepancy (MMD) is a commonly used measurement method 

for distribution difference [45], which performs distribution matching by minimizing the 

MMD distance between the source domain and the target domain. In the study of [48], 

Long et al. extended MMD to multi-kernel MMD, aligning multiple fields’ joint distribu-

tion. Sun et al. [49] proposed the CORAL method to align the source and target domains’ 

mean and covariance. Zhang et al. [50] proposed a discriminative joint probability adap-

tive algorithm based on the discriminative joint probability MMD method, which im-

proved the migration and discrimination in the process of feature transformation. 

It is time-consuming to obtain new users’ labeled data, and the ideal HAR system 

does not require new users to provide labeled data. Therefore, domain adaptation can also 

be divided into supervised domain adaptation and unsupervised domain adaptation ac-

cording to whether the target domain has labeled data [46]. In the unsupervised domain 

adaptation, pseudo-labels are usually used to overcome the impact of missing labeled 

samples in the target domain. However, inaccurate pseudo-labels can accumulate errors 

in transfer learning and even lead to negative transfer [51]. Therefore, this paper proposes 

a joint probability domain adaptive method with improved pseudo-labels (IPL-JPDA). 

This method can avoid the accuracy decreasing caused by inaccurate pseudo-labels by 
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combining improved pseudo-labeling strategy and discriminative joint probability MMD 

method [50]. 

In this study, unsupervised domain adaptation is applied to the HAR system based 

on wearable sensors. This system does not require new users’ labeled data and directly 

transfers the HAR model trained on the generalized data set. The main contributions of 

this study are described as follows: 

1. In this paper, a compact wireless wearable sensor node is designed, which combines 

an IMU module and an air pressure module. 

2. This study proposes a brand-new domain adaption method called IPL-JPDA, which 

combining improved pseudo-labeling strategy and discriminative joint probability 

MMD method. This model can avoid reducing accuracy due to inaccurate initial 

pseudo-labels. 

3. This study uses a newly designed sensor node to collect activity data for seven users. 

These data are used to train the HAR system based on transfer learning and the HAR 

system based on machine learning. At last, the performance of different HAR systems 

is compared. 

The rest of this paper is organized as follows: Section II introduces the structure of 

wearable sensors. Section III introduces the IPL-JPDA algorithm. Section IV Experiment 

setup, and collects the sensor’s data. In Section V, the results of the experiment are pre-

sented and analyzed. Finally, the conclusions are drawn in Section VI. 

2. The Wearable Device 

2.1. Hardware of Sensor Node 

Based on the previous work [52,53], we designed a wireless wearable system that 

incorporates the IMU module and air pressure module. The system includes the sensor 

node, central node, and a host computer. The sensor node adopts an integrated design 

containing the IMU module and air pressure module, and the compact sensor node’s sam-

pling frequency is 20 Hz. When the sensor node collects data, it continuously sends the 

data to the central node through the Radio Frequency Network (RFN). After the central 

node receives and stores the data, it sends all the data through the serial port to the host 

computer that is responsible for storing all the original data. The wireless wearable sensor 

system has the advantage of small size, lightweight, low cost, and easy to wear. Figure 1 

shows the data transmission of the wireless wearable system. 

 

Figure 1. The structure of the wireless wearable system. 

The compact sensor node contains control module, sensor module and power supply 

module. Figure 2 shows the 3D model of the compact sensor node. The control module 

controls the working process, data acquisition, and data transmission. The control mod-

ule’s core in the compact sensor node is the nRF24LE1 chip made by Nordic Semiconduc-

tor Company, Norway. It has the advantages of low cost, low power consumption, and 

high performance. The chip is embedded with a 2.4 GHz low-power wireless transceiver 

core, and the highest air data rate is 2 Mbps via RFN. The control module communicates 
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with the IMU module through the serial port to obtain the Euler angle or nine-axis data, 

and data transmission rate is 50 Hz. The control module collects the voltage values of the 

air pressure sensors through the AD converter. Finally, the collected data is sent to the 

central node through the RFN. 

 

Figure 2. The 3D model of the compact sensor node. 1: The airbag, 2: Polyvinyl chloride (PVC) base, 

3: 600 mAh lithium battery, 4: Inertial measurement unit (IMU) module (AHRS GY-953), 5: Control 

module (nRF24LE1 chip), 6: Air pressure module (XGZP6847), 7: PVC shell. 

The sensor module is responsible for sensing and measuring data, including the IMU 

module and the air pressure module. The IMU module uses the Attitude and Heading 

Reference System (AHRS) GY-953. It can measure nine-axis inertial data, including three-

axis gyroscopes, three-axis accelerometers, and three-axis magnetometer, and the full-

scale ranges are ±2000 dps, ±2 g, and ±4915 μT respectively. The built-in chip in the IMU 

module can fuse the original nine-axis inertial data to obtain Euler angle data with a meas-

urement accuracy of 2°. The air pressure module adopts the XGZP6847 air pressure sensor 

produced by CFsensor Co., Ltd., China. The air pressure sensor’s measurement range is 

from 0 kPa to 40 kPa, and the voltage output range is from 0.5 V to 4.5 V. The relationship 

between air pressure and voltage is a = (b-0.5) 10 , where a  is the air pressure in kPa, 

and b  is the voltage in V. The rubber tube is used to connect the air pressure sensor with 

the polyvinyl chloride (PVC) airbag. The air pressure sensor can convert the air pressure 

into the corresponding voltage and calculate the airbag’s pressure through the corre-

sponding electrical signal. The power module is composed of a rechargeable 600 mAh 

lithium battery weighted 8 g and a low dropout regulator (LDO) TPS7333Q. It provides a 

stable voltage of 3.3 V considering that the working voltage of the nRF24LE1 chip, IMU 

module, and air pressure module is 3.3 V. 

Figure 3 shows the physical map of the compact sensor node. The size of this node is 

50 mm × 50 mm, and the airbag size is 2 5 mm × 40 mm × 10 mm. The sensor node’s height 

has reached 27 mm without airbag height because the battery’s position and the air pres-

sure sensor’s position has not been optimized in this prototype. The sensor node is con-

nected to a non-elastic band through the Velcro stuck on the PVC shell. When using this 

node, it is necessary to fix the node to the left thigh by a non-elastic band to ensure that 

the airbag is close to the rectus femoris muscle. Figure 4 shows the different scenarios of 

wearing a compact sensor node. When the brain commands limb movement, muscles con-

tract to produce muscle strength, and muscle contraction increases cross-sectional area. 

When the muscles squeeze the airbag, the airbag volume becomes smaller while its inter-

nal pressure increases [24]. The air pressure change can be converted into the voltage 

change through the air pressure module. Therefore, the muscle movement data is col-

lected by the air pressure sensor. This device does not require directly attached to the skin, 

such as EMG, which increases this wearable device’s convenience and practicality. Mean-

while, the device uses a low-cost control module and sensor module. 
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Figure 3. The physical map of the compact sensor node. 

 

Figure 4. The different scenarios of wearing a compact sensor node. 

2.2. Characterization of Sensor Node 

The compact sensor node combines the GY-953 IMU and XGZP6847 air pressure sen-

sor. The characteristics of the IMU and air pressure sensor have been respectively illus-

trated above. Through the following load experiment results of the air pressure device, 

the device’s characteristics are explained. 

To explore the characteristics of the air pressure sensing device, this experiment input 

different loads to obtain the air pressure device’s characteristics. As shown in Figure 5, 

the load experiment platform comprises a base, a carrier, a load plate, and guide rails. The 

compact sensor node is placed on the carrier, and the load plate’s weight changes the load 

experiment input. 

 

Figure 5. The load experiment platform of air pressure sensing device. 1: Base, 2: Carrier, 3: compact 

sensor node, 4: Load plate, 5: Weight, 6: Guide rails. 

The load experiment explores the device’s static characteristics by continuously in-

creasing the static load, which explores the relationship between the device’s input and 

output when the input load is a constant signal and does not change with time. The equip-

ment’s dynamic characteristics are explored by suddenly add a constant load on the de-

vice, which the relationship between the input and output of the device when the input is 

a time-varying signal. 
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In the static experiment of the air pressure sensing device, the experiment starts from 

without load and adds 100 g static load each time. The relationship between the air pres-

sure device’s input and output is recorded in Figure 6. The experimental results show that 

the air pressure sensing device’s output increases linearly with the increase of the static 

load, and the coefficient of determination of linear fitting is 0.998. The linearity and sensi-

tivity of the air pressure sensing device are 1.08% and 1.68%, respectively. The experi-

mental results prove that the air pressure sensing device has high-grade performance on 

the static characteristics, and the measurement accuracy satisfied the following research 

requirements. 

 

Figure 6. The static characteristics of air pressure sensing device. 

In the dynamic experiment of the air pressure sensing device, a constant load, step 

signal, is suddenly added to the device at 1 s. The device’s response under different step 

input signals are recorded, and the results are shown in Figure 7. The experimental results 

show that the device’s measured value does not fluctuate greatly when the step input is a 

small constant load, such as Load 300 and Load 600. The overshoot of the air pressure 

device is 7.39% and 12.71%, respectively. When the step input is a large constant load, 

such as Load 900, Load 1200, and Load 1500, the air pressure device’s overshoot is 19.17%, 

16.83%, and 14.83%, respectively. The measured values of the device show the wave peak 

and trough. The airbag’s elastic force will exert a reaction force on the constant load when 

the load touches the airbag. When the airbag’s reaction force reaches the maximum, the 

peak value is measured, and the direction of load movement changes from downward to 

upward. The load is weightless when the load moves upward after the peak value. There-

fore, the measured value of the device will decrease sharply. 

 

Figure 7. The dynamic characteristics of air pressure sensing device. 
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The measured value of the device reaches a stable state in 0.5 s in different step input 

loads. In the small load case, the sensor’s measured value reaches a stable state in 0.25 s. 

Considering the device is used to measure the pressure produced by the muscle squeezing 

the airbag, there are few step input of small load case and no step input of large load case. 

Therefore, the dynamic characteristics of the air pressure sensing device also meet the 

following research requirements. 

3. The Method of IPL-JPDA 

In the HAR system based on transfer learning, the activity recognition knowledge is 

learned from the source domain dataset with the activity label. The learned knowledge is 

transferred to the target domain dataset without the activity label so that the activity of 

the target domain is recognized. Therefore, we assume that the feature space and label 

space of source domain and target domain are the same. There are sn  labeled samples in 

the source domain s , recorded as , , 1{ , } {(x , )}  sn
S S s i s i iX Y y . There are tn unlabeled sam-

ples in the target domain t , recorded as , 1{x }  nt
t t j jX . 

1x d  is the feature vector, 

and {1, , } …y C  is its label in the C -class classification problem. The domain adapta-

tion (DA) method attempts to find a mapping h . The source domain and target domain 

are mapped to the same subspace, so that the classifier trained on s(x )h  can achieve good 

classification effect on (x )th . For example, a linear map (x) xh A  for the source and 

the target domains, where , d pA p d . In this study, all the source domain and target 

domain data are collected by the compact sensor node. 

3.1. Improved Pseudo-Labels 

The improved pseudo-labels method also belongs to unsupervised domain adapta-

tion. It uses supervised locality preserving projection (SLPP) [54] to learn the projection 

matrix P . The source domain and target domain are mapped to the same subspace, so 

the same class samples were projected to the subspace, which closed to each other regard-

less of that they originally came from the source domain or the target domain. 

In the generation of improved pseudo-labels, we use only the source domain to ob-

tain projection matrix P  at the beginning and then assign pseudo labels to the target do-

main. We update the projection matrix P  with the labeled source domain and the 

pseudo-labeled target domain, and the IPL is generated from the projection matrix P . 

In the pseudo-labels, we use nearest class prototype (NCP) [55] and structured pre-

diction (SP) [56] to label target domain. In the following sections, we present and analyze 

each component of the proposed method. 

3.1.1. Dimensionality Reduction and Alignment  

The dimension reduction method learns the transformed feature by minimizing the 

reconstruction error of the input data. For simplicity and generality, we will choose prin-

cipal component analysis (PCA) for data reconstruction [44]. n
1 1X={x ,...,x ,x ,...,x } 

s t

s s t t d
n n

represents the input data matrix, and X is after normalization, where = +s tn n n .X k n

and k d  is the dimensionality of the feature space after applying PCA. In this study, 

= 226d  and we set = 128k . PCA is to reduce the high dimensional data by linear feature 

transformation. Each feature vector in X  is ix . 

The lower-dimensional feature space   learned by PCA. We use the SLPP to learn 

a domain invariant yet discriminative subspace Z  from  . In order to promote the 

class alignment of two domains, we use SLPP to achieve domain alignment [54]. The goal 

of SLPP is to learn a projection matrix P  by minimizing the following cost function. 
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T T 2
2

p
,

min || P P || S i j ij
i j

x x

 
(1)

where P k m  and m k  is the dimensionality of the learned space. Since we have 

used PCA to reduce the dimension, in order to avoid further information loss, we set 

=m k . ix is the i -th column of the labeled data matrix ix . S ij , which is the element of 

a similarity matrix S n n , is determined as follows: 

=1,
S

0,


 



i j

ij
i j

y y

y y
. (2)

The same class samples were projected to the subspace, which closed to each other 

regardless of that they originally came from the source domain or the target domain. Sim-

ilarity matrix S  is a simplification of MMD metrics [57,58]. When we improve the invar-

iance of domains, we retain the domain differentiation. The objective function can be re-

written as [54,57]: 

Τ Τ

Τ ΤP

P X DX P
max

P (X LX +Ι)P

( )

( )

l l

l l

tr

tr
 

(3)

where L=D - P  is the laplacian matrix, D  is a diagonal matrix with ii ijj
D = S . Xl  is 

a collection of sn  labeled source data and tn  pseudo-labeled target data. ΤP P( )tr  is a 

regularization term. The maximize problem (3) is equivalent to the following generalized 

eigenvalue problem: 

Τ ΤX DX =λ X LX +Ι)(l l l lp p  (4)

solving the problem gives the optimal solution 1 mP = [ ,..., ]p p  where 1 m,...,p p  is the ei-

genvector corresponding to the maximum m  eigenvalue. 

3.1.2. The Generation of Pseudo Label 

Two methods are used to label the target domain in subspace. The one is the nearest 

class prototypes (NCP) [55]. The one is structured prediction (SP) [56]. Unlabeled target 

samples can be labeled in the learned subspace Z  where the projections of source and 

target samples are computed by: 

TPs sz x  (5)

TPt tz x . (6)

At the NCP method, the centroid of each class in the subspace is calculated, which is 

called source class prototypes [55]. The class prototype for class y   is defined as the 

mean vector of the projected source samples with label y , which can be computed by: 

1

1

( , )

( , )













s

s

n s s
i is i

y n s
ii

z y y
z

y y
 

(7)

where ( , ) 1 s
iy y  if  s

iy y  and 0 otherwise. Therefore, the probability that the target do-

main sample tx  belongs to category y  is 

1 C

1

exp( || ||)
( | )

exp( || ||)


 


 

t s
yt

t s
yy

z z
p y x

z z
. 

(8)

The second method is structured prediction (SP). The target domain samples are clus-

tered into class C by K-means [56]. The cluster centers are initialized as the source domain 
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prototype calculated by (7). The cluster center of category y  is 
t
yz . In this method, the 

probability that sample tx  belongs to category y  is as follows:  

2 | |

1

exp( || ||)
( | )

exp( || ||)


 


 

t t
yt

t t
yy

z z
p y x

z z


. 

(9)

Thus, the pseudo label can be given by the following formula: 

1 2( | ) max{ ( | ), ( | )}t t tp y x p y x p y x  (10)

ˆ arg max ( | )


t t

y

y p y x
 . 

(11)

3.2. Joint Probability Domain Adaptation  

Due to the difference between the source domain and the target domain, it is gener-

ally assumed that their probabilities distributions are not equal. The derivation of TCA, 

JDA and BDA algorithms are based on the inequality of the marginal probabilities 

( ) ( )s tP X P X  or the conditional probabilities ( | ) ( | )s s t tP Y X P Y X . However, the 

JPDA algorithm derives from the inequality assumption of joint probabilities 

( , ) ( , )s s t tP X Y P X Y . Because JPDA directly considers the difference of joint probability 

distribution, the performance of JPDA is better than the traditional DA method, which 

JPDA can improve the between-domain transferability and the between-class discrimina-

tion. The JPDA algorithm is briefly introduced. For details, please refer to [50].  

Let the source domain one-hot coding label matrix be ,1 ,[y ; y ] …;
ss s s nY , and the pre-

dicted target domain one-hot coding label matrix be ,1 ,
ˆ ˆ ˆ[y ; y ] …;

tt t t nY . Where 
1

,y  C
s i

and 
1

,ŷ  C
t i . Define  

[ (:,1) ( 1),..., (:, ) ( 1)]    s s sF Y C Y C C
 (12)

ˆ ˆ1
ˆ ˆ ˆ[ (:,1 : ) , ..., (:,1 : ) ] t t c t c CF Y C Y C  (13)

where (:, )sY C  denotes the c -th column of sY , (:, ) ( 1) sY C C  repeats (:, )sY C . -1C  

times to form a matrix in 
( 1)  sn C

, and ˆ 1
ˆ (:,1: ) t cY C is formed by the 1st to the c -th (except 

the 1st) columns of tY . Clearly, ( ( 1))  sn C C
sF  and 

( ( 1))ˆ   tn C C
tF . sF  is fixed, and tF  is 

constructed from the pseudo labels, which are updated iteratively. 

Therefore, the objective function of JPDA can be written as follows: 

2 2 2min || || || || || ||

        s. .

    



 

   



s s t t F s s t t F FA X N A X N A X M A X M A

t A XHX A I  

(14)

where 0   is a trade-off parameter and   is a regularization parameter. We simply set 

= 0.1  and = 0.1  by cross-validation. sN , tN , sM  and tM  are defined as: 

ˆ
, s t

s t

s t

Y Y
N N

n n  
(15)

ˆ
, s t

s t

s t

F F
M M

n n  
(16)

where 1  nH I  is the centering matrix, in which  s tn n n  and 1 n nn  is a matrix 

with all elements being 
1

n
. 

Let [ , ] s tX X X , then we reach the Lagrange function of Equation (14) 
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min maxtr( ( ( ) ) )+tr( ( ))        A X R R X I A I A XHX A�  (17)

where 

min

 

 

 
  
 

s s s t

t s t t

N N N N
R

N N N N
 

(18)

max

 

 

 
  

 

s s s t

t s t t

M M M M
R

M M M M
. 

(19)

maxR  has dimensionality n n , which does not change with the number of classes. 

By setting the derivative 0 A , (17) becomes a generalized eigen-decomposition prob-

lem: 

min max( ( ) ) =    X R R X I A XHX A . (20)

A  is then formed by the p  trailing eigen-vectors. A classifier can then be trained on 

sA X and applied to 

tA X . 

3.3.. The Proposed Method IPL-JPDA 

In this part, we combine JPDA with improved pseudo-labels based on SP and NCP 

to construct an improved algorithm IPL-JPDA. Before starting the JPDA loop, the selective 

pseudo-labeling is used to provide the optimized pseudo-labels to avoid JPDA’s cumula-

tive error. The pseudocode of IPL- JPDA for classification is summarized in Algorithm 1. 

Algorithm 1: Joint Probability Distribution Adaptation with improved pseudo-labels 

(IPL-JPDA) 

Input: 

SX and tX , source and target domain feature matrices; 

SY , source domain one-hot coding label matrix; 

p , subspace dimensionality in JPDA; 

 , trade-off parameter; 

 , regularization parameter; 

T , number of iterations; 

k , dimension of PCA; 

m , dimension of SLPP subspace; 

Output: 

ˆ
tY , estimated target domain labels. 

for n = 1, ..., T  do 

if n == 1 

Dimensionality reduction by PCA. 

Learn the projection 0P  using only source data sD . 

Assign pseudo labels 0Ŷ  for all target data using (11). 

Leaning P  using sD  and tD̂ , where t 0
ˆD̂ { , } tX Y . 

Assign and update pseudo labels 1Ŷ  for all target data using (11). 

else 

Construct the joint probability matrix minR  and maxR  by (18) and (19). 

Solve the generalized eigen-decomposition problem in (20) and select. the p 

trailing eigenvectors to construct the projection matrix A. 
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Train a classifier f on ( 
sA X , SY ) and apply it to 

tA X  to obtain ˆ
tY . 

end 

4. Design of HAR Experiment 

This study includes experiment A and experiment B. In experiment A, the HAR mod-

els trained with and without air pressure sensors’ data are compared, verifying whether 

the additional air pressure sensor can increase the HAR system’s accuracy. Experiment B 

compares the HAR models based on transfer learning and conventional machine learning 

and verifies whether the proposed transfer learning method performs better when applied 

to HAR systems. This section introduces four parts: Data collection, data preprocessing, 

HAR model training, and evaluation. 

4.1. Experimental Data Collection 

There are seven subjects in this experiment, of which six are males and one female. 

The subjects were between 20 and 28 years old, with a height between 160 cm and 180 cm 

and weight between 55 kg and 75 kg. Table 1 shows the height, weight, and gender of the 

seven participants. All subjects wore a compact sensor node and performed seven activi-

ties in their way without external intervention. Table 2 shows these different activities and 

labels. The compact sensor node’s sampling frequency is 20 Hz. The raw data includes 

one-dimensional air pressure signal, three-dimensional acceleration signals, three-dimen-

sional gyroscope signals, and three-dimensional Euler angle signals. Seven different ac-

tivities were averagely collected in seven subjects. Figure 8 shows the number of sample 

segments in each class for each subject. The total number of sample segments was about 

1900, and each segment contains 40 samples with 50% overlap rate, which the samples’ 

quantity exceeds the Ref. [1]. 

 

Figure 8. The number of sample segments in different class. 

Table 1. The height, weight, and gender of the seven participants. 

Subjects Height (cm) Weight (kg) Gender 

No.1 180 72 Male 

No.2 172 75 Male 

No.3 165 63 Male 

No.4 177 66 Male 

No.5 170 69 Male 

No.6 160 55 Female 
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No.7 176 75 Male 

Table 2. The different activities and labels. 

Activity Label 

Sit SIT 

Stand STAND 

Lie LIE 

Walk WALK 

Run RUN 

Go upstairs UP 

Go downstairs DOWN 

4.2. Data Preprocessing 

In the HAR model based on machine learning, the sensor’s raw data needs to be pre-

processed, including segmentation, feature extraction, and selection before training the 

classifier [31]. The accuracy of the HAR model largely depends on data preprocessing [32]. 

Sliding window technology is applied in sensor data segmentation. The sliding window 

divides the collected data into several small segments. The overlap among the segments 

divided by the sliding window is allowed. This study’s sliding window size is 2 s and has 

a 50% overlap rate, in which the sliding window moves backward one second each time 

and covers 40 sample points. Feature extraction is performed on the segmented data. In 

this experiment, 19 features were extracted according to [59,60]. Table 3 lists the types of 

features. 

Table 3. The list of used features. 

Type Features 

Air 

Pressure 

Data 

Mean, Median, Maximum, Minimum, Rang, Variance, Standard deviation, Root 

mean square, Interquartile range, Number of mean crossing, Kurtosis, Skewness, 

DC Component of FFT 

IMU 

Data 

Mean, Median, Maximum, Minimum, Rang, Variance, Standard deviation, Root 

mean square, Interquartile range, Number of zero crossing, Number of mean 

crossing, DC Component of FFT, Entropy, Energy, Kurtosis, Skewness, Sum of 

wavelet coefficients, Sum of squares of wavelet coefficients, Wavelet energy 

4.3. Experimental Groups 

The random validation test was conducted before the experimental grouping to en-

sure the rationality of the experimental group. In the random validation test, seven sub-

jects were divided into two groups for this test. Two subjects’ data were selected as the 

test target group, and the test source’s data are randomly composed of one to five subjects’ 

data in the test source group. In order to verify the personalized recognition performance 

of transfer learning for new users, a small amount of unlabeled data is used for activity 

recognition in the test target group in the HAR system. Therefore, only ten valid sample 

segments are taken for each movement in the subject of the test target group, and there 

are 70 valid sample segments in total for each subject. The IPL-JPDA is used as the algo-

rithm of the HAR system in the random validation test. In the combination of source do-

mains with different numbers of people, five calculate samples from each kind of source 

domain are randomly selected for calculation. The calculated samples’ mean value and 

standard deviation of the accuracy are analyzed. Figure 9 shows the statistical results of 

the mean value and standard deviation of the accuracy. 
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Figure 9. The experimental statistics in the different kind of test source group. 

As shown in Figure 9, the mean values of the two subjects’ recognition accuracy are 

more than 90% in the test source group randomly composed of four people. Subject T1 

has the best performance with 91.8% mean recognition accuracy. In the test source group 

randomly composed of three people, Subject T1 has 90.9% mean recognition accuracy, and 

Subject T2 has 89.4% average recognition accuracy. Both of the two subjects’ standard de-

viation of the recognition accuracy is decreased with the increase of people in the test 

source group. It shows that with the increase of people that constitute the test source 

group, the transfer learning algorithm’s recognition accuracy, based on IPL-JPDA, is more 

stable. 

Therefore, the experiment grouping randomly selected three people as the source 

group and four people as the target group after comprehensively considering the recog-

nition accuracy and test subjects’ diversity. In the source group, the total number of sam-

ple segments is about 5700. In the target group, only 70 valid sample segments in total for 

each subject. 

4.4. Training HAR Model 

The training HAR model is divided into training based on transfer learning and con-

ventional machine learning. In transfer learning, the source domain consists of all the sub-

ject’s data in the source group, and the member’s data in the target group are respectively 

used in the target domain of the model. Three domain adaptation methods, JDA, BDA, 

and IPL-JPDA, are used for transfer learning. The KNN model is used to obtain the 

pseudo-label of the target domain in domain adaptation. 

In machine learning, there are two types of classifiers in this study, which the classi-

fier trained with other sources (Classifier-OS) and the classifier trained with self sources 

(Classifier-SS). In this study, KNN, SVM, and Decision Tree (DT) are used as classifiers. 

Taking the KNN model as an example, the KNN-OS uses all subjects’ data in the source 

group to train the KNN classifier, and this classifier recognizes each member’s activities 

in the target group. The KNN-SS uses the subject’s data in the target group to train the 

KNN classifier and recognize corresponding participants’ activities. This study also 

adopted a 10-fold cross-validation method in classifier training. The model performance 

in Section 5 is the average values of 10 validation models. 

In order to verify whether an air pressure sensor can improve the HAR model’s ac-

curacy in Experiment A, all the HAR model mentioned above are trained with and with-

out air pressure data. 
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4.5. Evaluation 

The evaluation result of activity recognition is an essential part of the HAR system. 

This article evaluates the above HAR model from accuracy, recall, precision, and F-meas-

ure [1,61]. We assume that TF, FN, FP, and TN represent the true positive, false negative, 

false positive, and true negative in binary classification. The four evaluation indicators’ 

formula is as follows: 

P N

P N P N

T T
Acurracy

T T F F




  
 (21)

P

P N

T
Recall

T F



 (22)

P

P P

T
Precision

T F



 (23)

2 recall precision
F measure

recall precision

 
 


. (24)

5. Experimental Results 

This research includes air pressure verification experiment (Experiment A) and the 

comparison of HAR models (Experiment B). This section analyzes the results of experi-

ment A and experiment B respectively. 

5.1. Experiment A-Air Pressure Verification Experiment 

The classifier in experiment A uses the features with and without air pressure data 

to train the HAR model. The model whose training sample contains air pressure data is 

named Model-CP, and the model whose training sample deducts air pressure data is 

named Model-DP. In the target group, the four participants were called Subject A, Subject 

B, Subject C, and Subject D, respectively. Table 4 shows the mean accuracy value of activ-

ity recognition of four subjects in nine different HAR models. 

Table 4. The mean accuracy value of activity recognition in different human activity recognition 

(HAR) models. 

HAR Model Accuracy-CP (%) Accuracy-DP (%) 

KNN-OS 79.64 77.86 

KNN-SS 89.64 87.14 

SVM-OS 77.14 65.36 

SVM-SS 87.50 83.93 

DTO-S 87.50 85.36 

DT-SS 91.79 88.57 

JDA 86.79 81.43 

BDA 91.43 86.07 

IPL-JPDA 93.21 85.36 

As shown in Table 4, the bold number represents the evaluation indicator's maxi-

mum value. We can clearly find that the performance of the HAR model trained with air 

pressure data is better than the model trained without air pressure data on the mean ac-

curacy value. At the conventional machine learning classifier, the HAR model’s mean 

recognition accuracy using air pressure data is at least 1.78% higher than the HAR model 

that is not applicable to air pressure data. Meanwhile, the HAR model’s mean recognition 

accuracy based on the transfer learning algorithm is at least 5.36% higher when the HAR 
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model uses air pressure data. Therefore, we can conclude that the air pressure data can 

improve the HAR model’s recognition accuracy. 

In the target group, the experiment result of four participants performed similarly in 

experiment A. Hence, we take Subject A as a sample for result analysis. Figure 10 shows 

the evaluation indicators of Subject A in different HAR models. The other subjects’ data 

can be found in Appendix A (Figure A1, Figure A2, Figure A3). 

 

Figure 10. The evaluation indicators of Subject A in different HAR models. 

Figure 10 shows the classification results of 18 different HAR models. The value of 

four evaluation indicators has been improved when the HAR model using air pressure 

data. Meanwhile, the air pressure data greatly impacts the HAR model based on the trans-

fer learning algorithm. This kind of HAR model that does not use air pressure data has a 

10% performance loss on Subject A’s accuracy index. It also significantly decreases in the 

other evaluation indicators. This is because that the air pressure data provides a broader 

data dimension for the source domain and the target domain. The source domain and the 

target domain can be better aligned, and this kind of HAR model can be better to identify 

the target domain’s activities. 

On the other hand, the classifier based on conventional machine learning is not sen-

sitive to the lack of air pressure data. Taking KNN as an example, as a lazy learning clas-

sifier, it mainly relies on the limited nearby samples around to determine its category. 

Therefore, the lack of air pressure data in the training sample has a small impact on the 

KNN model, but there is also a slight drop in recognition performance. 

The F-measure indicator is the harmonic mean of precision and recall. The HAR 

model based on transfer learning performs better than the HAR model based on machine 

learning in the F-measure indicator. This shows that the former model has a higher quality 

than the latter model. Besides, the precision value is greater than the recall value in Subject 

A’s HAR model based on transfer learning. This indicated that this type of model is more 

conservative, and the model only makes predictions for its very confident samples. 

Among the remaining subjects’ evaluation indicators, the precision value of the HAR 

model based on transfer learning is almost all greater than the recall value, while the HAR 

model based on machine learning has no such feature. 

5.2. Experiment B—The Comparison of HAR Models  

Experiment A proves that the necessity and significance of air pressure data for HAR 

model. Therefore, Experiment B only compares models trained with air pressure data. 
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Table 5 shows the mean value of recognition evaluation indicators of four subjects in nine 

different HAR models. 

Table 5. The mean value of recognition evaluation indicators in different HAR models. 

HAR Model Accuracy (%) F-Measure (%) Precision (%) Recall (%) 

KNN-OS 79.64 88.61  85.84  91.88  

KNN-SS 89.64 94.52  94.41  94.76  

SVM-OS 77.14 87.09  97.04  79.23  

SVM-SS 87.50 93.27  94.39  92.61  

DT-OS 87.50 93.14  94.61  92.16  

DT-SS 91.79 95.71  95.19  96.26  

JDA 86.79 92.89  92.71  93.07  

BDA 91.43 95.51  95.90  95.18  

IPL-JPDA 93.21 96.48  97.04  95.97  

As shown in Table 5, the bold number represents the evaluation indicator's maxi-

mum value. The mean values of all the four subjects’ recognition evaluation indicators are 

more than 90% in the HAR model of DT-SS, BDA, and IPL-JPDA. The IPL-JPDA model 

has the best performance in this evaluation indicator from the mean recognition accuracy, 

reaching 93.21%. The mean recognition accuracy of the IPL-JPDA algorithm is 1.42% 

higher than DT-OS, which has the best performance in traditional classifiers in this study. 

In traditional classifiers, KNN and SVM have similar performance in four average 

evaluation indicators, and DT has the best performance. The DT can better deal with the 

irrelevant feature data and understand the data’s inherent meaning compared with the 

HAR model based on SVM and KNN. We can also notice that in the three traditional clas-

sifiers, the performance of Classifier-SS is better than that of Classifier-OS, and the average 

recognition accuracy of Classifier-SS is 10% higher than Classifier-OS. This is because 

Classifier-SS is a classifier trained based on its data. However, Classifier-SS has a fatal 

disadvantage, which belongs to supervised machine learning. Training the HAR model 

of Classifier-SS needs labeled data but collecting these labeled data is time-consuming and 

expensive. Meanwhile, due to the small amount of data in the target group’s dataset, 

which the training samples of Classifier-SS are insufficient, the Classifier-SS model’s av-

erage standard deviation is much higher than that of the Classifier-OS model. 

The IPL-JPDA model has the best performance among the HAR models based on 

transfer learning. The mean recognition accuracy of IPL-JPDA is 6.2% higher than JDA 

and 1.78% higher than BDA. Because IPL-JPDA is based on the joint probability discrimi-

nant MMD metric, this method improves the traditional MMD metric by minimizing the 

difference in the joint probability distribution of the same category in different domains 

and maximizing the difference between different categories. Both JDA and BDA are based 

on marginal distribution and conditional distribution MMD. Not only that, IPL-JPDA im-

proves the initial pseudo-label and avoids the negative migration caused by the accumu-

lation of errors caused by the inaccurate initial pseudo-label.  

In Appendix B, we also compare the convergence steps of the different transfer learn-

ing algorithms. 

Figure 11 presents four indicators of six unsupervised HAR models among the sub-

jects in target group. The HAR model based on IPL-JPDA and BDA exceeded 90% in all 

the four subjects’ evaluation indicators, and almost all the indicators were better than 

KNN-OS and SVM-OS. The performance of JDA is slightly worse than the above two 

transfer learning algorithms but better than KNN-OS and SVM-OS in most cases. Simul-

taneously, the recognition accuracy of the three transfer learning algorithms in different 

subjects is stable. KNN-OS and SVM-OS model has poor recognition performance, and 

the recognition accuracy of all subjects in the target group is less than 85%. DT-OS is the 

best traditional classifier, and its performance on both Subject B and Subject C exceeds 
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90%. In Subject B, DT-OS has the best recognition accuracy, which is 2.86% higher than 

IPL-JPDA. However, the recognition accuracy of DT-OS in Subject D is only 74.29%, which 

is 17.14% less than that of JDA. This shows that DT-OS has weak generalization ability. 

 

Figure 11. Four indicators of unsupervised HAR models among target group subjects. 

Considering the stability and accuracy of recognition, we can conclude that the HAR 

model’s performance based on transfer learning is better than that based on the traditional 

classifier. HAR model based on transfer learning has a strong generalization capability, 

and the recognition accuracy will not degrade on particular samples. However, under the 

influence of negative transfer on the classical BDA and JDA algorithms, activity recogni-

tion performance is worse than the DT-OS model in some subject samples. 

Tables 6 and 7 are the confusion matrices of the subjects in the target group. In the 

traditional classifiers, the performance of three unsupervised HAR models is similar. 

KNN-OS has been used as a sample for comparative analysis with the IPL-JPDA algo-

rithm. In the static activity (SIT, STAND, LIE), the transfer learning algorithm of IPL-JPDA 

has 100% recognition accuracy. The generalization ability of KNN-OS is low. When the 

KNN model trained by the source group is used to recognize the target group, some LIE 

is wrongly recognized as STAND. These two models have strong recognition ability to 

RUN in dynamic activities (WALK, RUN, UP, DOWN). However, the recognition ability 

of WALK, RUN, and UP are weak. The results show that the JPDA model’s recognition 

accuracy is more than 75% in these three activities, and that of the KNN-OS model is only 

more than 45%. Therefore, it can be concluded that the har algorithm based on transfer 

learning can better identify the action, which is easy to be confused, and it has an accurate 

recognition rate on the action, which is easy to distinguish compared with the traditional 

classifier. 
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Table 6. The confusion matrix for 4 subjects obtained with K-Nearest Neighbor (KNN)-OS. 

 Predicted Classes 

True 

Classes 

 SIT STAND LIE WALK RUN UP DOWN 

SIT 100% 0 0 0 0 0 0 

STAND 0 100% 0 0 0 0 0 

LIE 20% 0 80% 0 0 0 0 

WALK 0 0 0 65% 25% 7.5% 2.5% 

RUN 0 0 0 0 100% 0 0 

UP 0 0 0 17.5% 0 67.5% 15% 

DOWN 0 2.5% 0 22.5% 0 30% 45% 

Table 7. The confusion matrix for 4 subjects obtained with the joint probability domain adaptive 

method with improved pseudo-labels (IPL-JPDA). 

 Predicted Classes 

True 

Classes 

 SIT STAND LIE WALK RUN UP DOWN 

SIT 100% 0 0 0 0 0 0 

STAND 0 100% 0 0 0 0 0 

LIE 0 0 100% 0 0 0 0 

WALK 0 0 0 87.5% 2.5% 2.5% 7.5% 

RUN 0 0 0 0 97.5% 0 2.5% 

UP 0 0 0 12.5% 0 75% 12.5% 

DOWN 0 0 0 0 0 7.5% 92.5% 

6. Conclusions and Future Research 

We propose a compact wireless wearable sensor node that combines an air pressure 

sensor and an IMU sensor. We train the HAR model using features with and without air 

pressure data. The results show that the HAR model trained with air pressure data is bet-

ter in recognition performance than the model trained without air pressure data. We also 

found that the performance of the HAR model based on transfer learning is more sensitive 

to the lack of air pressure data. In the comparison experiment of nine HAR models, the 

IPL-JPDA algorithm proposed in this paper has the best recognition performance, and the 

average recognition accuracy of different subjects is 93.2%. The traditional BDA and JDA 

transfer learning algorithms have negative transfer in the process, affecting the recogni-

tion accuracy. However, compared with the traditional classifier, the BDA and JDA mod-

els did not show performance degradation due to the model‘s weak generalization.  

There are many possible expansion studies based on existing work in the future. 

Firstly, the structure of the sensor can be optimized. The integrated design, the battery, 

air pressure sensor, and base of the sensor are integrated. The sensor node thickness is 

reduced to less than 10 mm, which makes it more convenient to wear. Secondly, we have 

completed the HAR of seven daily activities in this study. However, there are still many 

meaningful activities to research and identification, such as fall detection [11] and motion 

transformations [32]. Finally, several nodes can be used to identify more complex motion, 

such as gait detection [10] and step distance measurement [62]. 
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Appendix A. The Evaluation Indicators of Subjects in Different HAR Models 

 

Figure A1. The evaluation indicators of Subject B in different HAR models. 

 

Figure A2. The evaluation indicators of Subject C in different HAR models. 
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Figure A3. The evaluation indicators of Subject D in different HAR models. 

Appendix B. The Comparison of Convergence Steps of Transfer Learning Algorithms 

There is no comparison between IPL-JPDA and JPDA in the above text because the 

compact sensor node provides good original data. The recognition performance of IPL-

JPDA is similar to JPDA in the above experiment.  

We statistic the convergence steps of the four transfer learning algorithms. Each al-

gorithm runs the abovementioned experiments, and there are eight groups of data in total. 

The number of convergence steps is the average of eight experiments. Table A1 shows the 

statistics for the number of iterations. We find that IPL-JPDA has the least number of con-

vergence iterations, followed by JDA, BDA, and JPDA has the most. JDA is the summation 

of marginal probability and conditional probability MMD, and BDA is weighed marginal 

probability and conditional probability MMD. Consequently, BDA has more convergence 

iterations than JDA because the complexity of BDA is higher than JDA. JPDA is based on 

the joint probability discriminant MMD metric, which minimizing the difference in the 

joint probability distribution of the same category in different domains and maximizing 

the difference between different categories. Considering the complexity of JPDA, it has 

more convergence iterations than BDA and JDA algorithms. As the most complex algo-

rithm in this study, the IPL-JPDA algorithm has the minimum number of iterations for 

convergence because the IPL-JPDA algorithm provides a more accurate label for the first 

cycle. 

Table A1. The average convergence steps. 

Algorithm Steps 

IPL-JPDA 2.125 

JPDA 4.50 

BDA 3.00 

JDA 2.625 
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