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Abstract—Fuzzy systems have achieved great success in nu-
merous applications. However, there are still many challenges in
designing an optimal fuzzy system, e.g., how to efficiently optimize
its parameters, how to balance the trade-off between cooperations
and competitions among the rules, how to overcome the curse
of dimensionality, how to increase its generalization ability, etc.
Literature has shown that by making appropriate connections
between fuzzy systems and other machine learning approaches,
good practices from other domains may be used to improve the
fuzzy systems, and vice versa. This article gives an overview on
the functional equivalence between Takagi–Sugeno–Kang fuzzy
systems and four classic machine learning approaches—neural
networks, mixture of experts, classification and regression trees,
and stacking ensemble regression—for regression problems. We
also point out some promising new research directions, inspired
by the functional equivalence, that could lead to solutions to the
aforementioned problems. To our knowledge, this is so far the most
comprehensive overview on the connections between fuzzy systems
and other popular machine learning approaches, and hopefully will
stimulate more hybridization between different machine learning
algorithms.

Index Terms—CART, ensemble regression, fuzzy systems,
mixture of experts, neural networks, stacking.

I. INTRODUCTION

RULE-BASED fuzzy systems have achieved great success
in numerous applications [1], [2]. There are two kinds of

rules for a fuzzy system: Zadeh [3], where the rule consequents
are fuzzy sets, and Takagi–Sugeno–Kang (TSK) [4], where the
rule consequents are functions of the inputs. Both types of fuzzy
systems are universal approximators [5], [6].
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Fig. 1. (a) Flowchart of a Zadeh (Mamdani) fuzzy system. (b) Flowchart of a
TSK fuzzy system.

As shown in Fig. 1(a), a Zadeh (Mamdani) fuzzy system con-
sists of four components: fuzzifier, rulebase, inference engine,
and defuzzifier. The fuzzifier maps each crisp input into a fuzzy
set, the inference engine performs inferences on these fuzzy sets
to obtain another fuzzy set, utilizing the Zadeh rules, and the
defuzzifier converts the inferred fuzzy set into a crisp output.
A TSK fuzzy system, shown in Fig. 1(b), does not need the
defuzzifier, because the output of the inference engine is already
a crisp number. Because of their simplicity and flexibility, TSK
fuzzy systems are much more popular in practice. This article
considers mainly TSK fuzzy systems for regression.

A TSK rule, as first proposed in [4], assumes the following
general form:

If f(x1 is X1, . . ., xd is Xd), then y = g(x1, . . ., xd) (1)

where x1, . . ., xd are inputs, X1, . . ., Xd are membership func-
tions (MFs), y is the output, f is a logical function connecting
the antecedent propositions, and g is a function of the inputs.

In practice, simple TSK rules are often preferred. As an
example, a TSK fuzzy system with d inputs and one output may
have K rules in the following form:

Rk : If x1 is Xk,1 and · · · and xd is Xk,d,

then yk(x) =
d∑

i=1

ak,ixi + bk, k = 1, . . .,K

1063-6706 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 08,2020 at 02:09:10 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7153-9703
https://orcid.org/0000-0001-8371-8197
https://orcid.org/0000-0002-6267-8824
https://orcid.org/0000-0003-4587-3588
mailto:drwu@hust.edu.cn
mailto:huang_jan@mail.hust.edu.cn
mailto:zgzeng@hust.edu.cn
mailto:chin-teng.lin@uts.edu.au
http://ieeexplore.ieee.org


WU ET AL.: ON THE FUNCTIONAL EQUIVALENCE OF TSK FUZZY SYSTEMS 2571

where Xk,i is the MF for xi in the kth rule, and ak,i and bk are
adjustable regression coefficients.

For a particular inputx = (x1, . . ., xd), the membership grade
on Xk,i is μXk,i

(xi), and the firing levels of the rule are

fk(x) = μXk,1
(x1)× · · · × μXK,d

(xd).

The output of the TSK fuzzy system is

yTSK(x) =

∑K
k=1 fk(x) · yk(x)∑K

k=1 fk(x)

=

∑K
k=1

[
fk(x) ·

(∑d
i=1 ak,ixi + bk

)]
∑K

k=1 fk(x)
. (2)

Or, if we define the normalized firing levels as

f̄k(x) =
fk(x)∑K
k=1 fk(x)

, k = 1, . . .,K (3)

then, (2) can be rewritten as

yTSK(x) =

K∑
k=1

f̄k(x) · yk(x)

=

K∑
k=1

[
f̄k(x) ·

(
d∑

i=1

ak,ixi + bk

)]
. (4)

As pointed out in [7], there are many questions to be answered
in designing a fuzzy system: Should singleton or nonsingleton
fuzzifier be used? How many MFs should be used for each input?
Should Gaussian or piecewise linear MFs be used? Should Mam-
dani or TSK inference be used? Should minimum or product
t-norm be used? How to optimize the fuzzy system? In this
article, we use singleton fuzzification, Gaussian MFs, TSK rules,
and product t-norm, and assume that the user can specify the
number of MFs in each input domain. We focus more on the
optimization.

The challenges in optimizing a TSK fuzzy system include:
1) Optimization: A fuzzy system can be optimized by evolu-

tionary algorithms [8], gradient descent [9], and gradient
descent plus least squares estimation [10], as in the popular
adaptive-network-based fuzzy inference system (ANFIS).
However, evolutionary algorithms may be impractically
slow on big data, gradient descent is very sensitive to the
learning rate, and ANFIS can easily result in overfitting.
So, it is necessary to develop more efficient and effective
fuzzy system optimization algorithms, especially for big
data.

2) Interpretability: A well-known advantage of fuzzy sys-
tems over many other machine learning approaches is
the interpretability, i.e., one can look at each rule and
understand how the fuzzy system is working. However,
the interpretability decreases when the number of rules
increases, and when each input activates too many rules.
How to increase the interpretability, without sacrificing
the learning performance, is another challenge.

3) Curse of Dimensionality: Fuzzy systems are particularly
suffering from the curse of dimensionality. Assume a

fuzzy system has d inputs, each with p MFs in its domain.
Then, the total number of rules is pd, i.e., the number of
rules increases exponentially with the number of inputs,
and the fuzzy system quickly becomes unmanageable.
Clustering could be used to reduce the number of rules
(one rule is extracted for each cluster) [11]–[14]. However,
the validity of the clusters also decreases with the increase
of feature dimensionality, especially when different fea-
tures have different importance in different clusters [15],
[16]. Additionally, the high dimensionality of features also
increases the number of antecedents in the rules, and hence
make them difficult to interpret.

4) Generalization: A fuzzy system should have not only good
training performance, but also good generalization ability,
i.e., it needs to perform well on the unknown test data.
It is well known in machine learning that regularization
can improve the generalization performance; however,
the concept of regularization has not been extensively
explored in training fuzzy systems.

This article gives a comprehensive overview of the functional
equivalence1 of TSK fuzzy systems to four classical machine
learning algorithms: neural networks [18], mixture of experts
(MoE) [19], classification and regression trees (CART) [20], and
stacking ensemble regression [21]. Although a few publications
on the connections of TSK fuzzy systems to some of these
approaches have scattered in the literature, to our knowledge,
no one has put everything together in one place so that the
reader can easily see the big picture and get inspired. Moreover,
we also discuss some promising hybridizations between TSK
fuzzy systems and each of the four algorithms, which could be
interesting new research directions. For example

1) By making use of the functional equivalence between TSK
fuzzy systems and some neural networks, we can design
more efficient training algorithms for TSK fuzzy systems.

2) By making use of the functional equivalence between TSK
fuzzy systems and MoE, we may be able to achieve a better
trade-off between cooperations and competitions of the
rules in a TSK fuzzy system.

3) By making use of the functional equivalence between TSK
fuzzy systems and CART, we can better initialize a TSK
fuzzy system for high-dimensional problems.

4) Inspired by the connections between TSK fuzzy systems
and stacking ensemble regression, we may be able to
design better stacking models, and increase the general-
ization ability of a TSK fuzzy model.

The remainder of this article is organized as follows.
Sections II–V describe the functional equivalence of TSK fuzzy
systems to neural networks, MoE, CART, and stacking ensemble
regression, respectively. Section VI draws conclusion.

1It has been shown that many machine learning algorithms are universal ap-
proximators [6], [17]. However, both algorithms being universal approximators
does not mean that they are functionally equivalent: universal approximation
usually requires a very large number of nodes or parameters, so it is theoretically
important, but may not be used in real-world algorithm design. By functional
equivalence, we emphasize that two algorithms can implement exactly the same
function with a relatively small number of parameters.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 08,2020 at 02:09:10 UTC from IEEE Xplore.  Restrictions apply. 



2572 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 10, OCTOBER 2020

Fig. 2. TSK fuzzy system introduced in Section I, represented as a five-layer
ANFIS.

II. TSK FUZZY SYSTEMS AND NEURAL NETWORKS

Neural networks have a longer history2 than fuzzy systems,
and are now at the center stage of machine learning, because of
the booming of deep learning [22].

Researchers started to discover in the early 1990s that a
TSK fuzzy system can be represented similarly to a neural
network [9], [10], [23]–[25], so that a neural network learning
algorithm, such as backpropagation [18], can be used to train
it. These fuzzy systems are called neuro-fuzzy systems in the
literature [2].

A. ANFIS

Among the many variants of neuro-fuzzy systems, the most
popular one may be the ANFIS [10], which has been cited
over 15,000 times on Google Scholar, and implemented in the
MATLAB Fuzzy Logic Toolbox. The ANFIS structure of the
d-input one-output TSK fuzzy system, introduced in Section I,
is shown in Fig. 2. It has five layers.

1) Layer 1: The membership grade of xi on Xk,i (k =
1, . . .,K; i = 1, . . ., d) is computed.

2) Layer 2: The firing level of each rule Rk is computed, by
multiplying the membership grades of the corresponding
rule antecedents.

3) Layer 3: The normalized firing levels of the rules are
computed, using (3).

4) Layer 4: Each normalized firing level is multiplied by its
corresponding rule consequent.

5) Layer 5: The output is computed by (4).
All parameters of the ANFIS, i.e., the shapes of the MFs and
the rule consequents, can be trained by a gradient descent
algorithm [10]. Or, to speed up the training, a more efficient
hybrid learning algorithm [10] can be used. In the forward

2[Online]. Available: https://cs.stanford.edu/people/eroberts/courses/soco/
projects/neural-networks/History/history1.html

Fig. 3. RBFN.

pass, the antecedent parameters are fixed, the functional signals
go forward till Layer 4, and the consequent parameters are
optimized by least squares estimation. In the backward pass, the
consequent parameters are fixed, the errors propagate backward,
and the antecedent parameters are updated by gradient descent.

B. Functional Equivalence Between TSK Fuzzy Systems and
Radial Basis Functional Networks (RBFN)

A variant of neural networks, the radial basis function net-
work (RBFN) [26], which is a universal approximator [27], is
functionally equivalent to a TSK fuzzy system under certain
constraints. A radial basis function is a real-valued function
whose value depends only on the distance from a center c, i.e.,
f(x, c) = f(‖x− c‖).

An RBFN [26] uses local receptive fields, inspired by biolog-
ical receptive fields, for function mapping. Its diagram is shown
in Fig. 3. For an input x = (x1, . . ., xd), the output of the kth
(k = 1, . . .,K) receptive field unit, using a Gaussian response
function, is

fk(x) = exp

(
−
∑d

i=1(xi − ck,i)
2

σ2
k

)
(5)

where ck,i is the center of the Gaussian function for xi, and σk

is the common standard deviation of the Gaussian functions.
With the addition of lateral connections (not shown in Fig. 3)

between the receptive field units, the output of the (normalized)
RBFN is

y(x) =

∑K
k=1 fk(x) · yk∑K

k=1 fk(x)
(6)

where yk is a constant output associated with the kth receptive
field unit.3

Jang and Sun [29] have shown that a TSK fuzzy system
[see (4)] is functionally equivalent to an RBFN [see (6)], if the
following constraints are satisfied.

1) The number of receptive field units equals the number of
fuzzy rules.

3There is a related machine learning approach called local model net-
works [28], which can be viewed as a decomposition of a complex nonlinear
system into a set of locally accurate submodels smoothly integrated by their
associated basis functions. It replaces the constant output of each receptive unit
in an RBFN by a function of the inputs.
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2) The output of each fuzzy rule is a constant, instead of a
function of the inputs.

3) The antecedent MFs of each fuzzy rule are Gaussian
functions with the same variance.

4) The product t-norm is used to compute the firing level of
each rule.

5) The fuzzy system and the RBFN use the same method (i.e.,
either weighted average or weighted sum) to compute the
final output.

Actually, the Gaussian function requirement in Constraint (3)
may not be necessary. When the other four constraints are
satisfied, as long as the MFs in the TSK fuzzy system are in
the same form as the radial basis functions (not necessarily
Gaussian) in the RBFN, the TSK fuzzy system and the RBFN
are equivalent.

Hunt et al. [30] proposed a generalized RBFN, which has
the following main features, compared with the above standard
RBFN.

1) A receptive field unit may be connected with only a subset
of the inputs, instead of all inputs in the standard RBFN.

2) The output associated with each receptive field unit can
be a linear or nonlinear function of the inputs, instead of
a constant in the standard RBFN.

3) The Gaussian response functions of the receptive field
units can have different variances for different inputs,
instead of identical variance in the standard RBFN.

Then, the generalized RBFN is functionally equivalent to a TSK
fuzzy system, under the following constraints [30].

1) The number of receptive field units equals the number of
fuzzy rules.

2) The antecedent MFs of each fuzzy rule are Gaussian.
3) The product t-norm is used to compute the firing level of

each rule.
4) The fuzzy system and the RBFN use the same method (i.e.,

either weighted average or weighted sum) to compute the
final output.

Again, the Gaussian constraint can be relaxed to other radial
basis functions.

The training of an RBFN consists of two steps.
1) Determine the center vectors of the RBFs in the hidden

layer. They can be initialized randomly, or through clus-
tering, or by grid partition of the input space.

2) Fit a linear model to the hidden layer’s outputs accord-
ing to some loss function, e.g., the least squares loss in
regression.

Because of the functional equivalence between an RBFN and a
TSK fuzzy system, the techniques used in Step (1) above can
also be used to initialize the MFs in a TSK fuzzy systems. For
example, in evolutionary fuzzy systems design [8], the input MFs
are randomly initialized, and a fitness function is used to select
the configuration that achieves the best performance. In Yen
et al.’s approach [31], to increase the interpretability of a TSK
fuzzy system, the antecedent fuzzy partitions are determined
by starting with an oversized number of partitions, and then
removing redundant and less important ones using the SVD-QR
algorithm [32]. There have also been many approaches for gen-
erating initial fuzzy rule partitions through clustering [11]–[14].

Different clustering algorithms, e.g., mountain clustering [11],
fuzzy c-means clustering [12], aligned clustering [14], etc., have
been used.

Moreover, some efficient and effective training approaches for
RBFN have been proposed recently, which may also be extended
to TSK fuzzy system. For example, multicolumn RBFN [33],
which divides a large dataset into smaller subsets using the
k-d tree algorithm and then trains an RBFN for each subset,
has demonstrated faster speed and higher accuracy than the
traditional RBFN. This approach could be extended to TSK
fuzzy systems for big data problems.

C. Discussions and Future Research

As ANFIS is an efficient and popular training algorithm for
type-1 TSK fuzzy systems, it is natural to consider whether it can
also be used for interval and general type-2 fuzzy systems [1],
which have demonstrated better performance than type-1 fuzzy
systems in many applications. There have been limited research
in this direction [34], [35]. Unfortunately, it was found that
interval type-2 ANFIS may not outperform type-1 ANFIS. One
possible reason is that when the Karnik–Mendel algorithms [1]
are used in type-reduction of the interval type-2 fuzzy system,
the least squares estimator in the interval type-2 ANFIS does
not always give the optimal solution, due to the switch point
mismatch [34]. A remedy may be to use an alternative type-
reduction and defuzzification approach [36], which does not
involve the switch points, e.g., the Wu–Tan method [37]. This is
a direction that we are currently working on.

Many novel approaches have been proposed in the last few
years to speed up the training and increase the generalization
ability of deep neural networks, e.g., Dropout [38], dropCon-
nect [39], and batch normalization [40]. Dropout randomly
discards some neurons and their connections during the training.
DropConnect randomly sets some connection weights to zero
during the training. Batch normalization normalizes the acti-
vation of the hidden units, and hence reduces internal covariate
shift.4 Similar concepts may also be used to expedite the training
and increase the generalization ability of TSK fuzzy systems. For
example, inspired by Dropout, we recently developed a novel
dropRule approach [41] for training TSK fuzzy systems for
regression problems, which drops some rules randomly in each
epoch of the training. A batch normalization approach has also
been proposed for training TSK fuzzy systems for classification
problems [42].

Although deep learning has achieved great success in numer-
ous applications, its model is essentially a black-box because it is
difficult to explain the acquired knowledge or decision rationale.
This may hinder it from safety-critical applications such as
medical diagnoses. Explainability of deep learning models has
attracted a rapidly growing research interest in the past few
years. According to Amarasinghe and Manic, there have been

4As explained in [40], internal covariate shift means “the distribution of each
layer’s inputs changes during training, as the parameters of the previous layers
change. This slows down the training by requiring lower learning rates and
careful parameter initialization, and makes it notoriously hard to train models
with saturating nonlinearities.”

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 08,2020 at 02:09:10 UTC from IEEE Xplore.  Restrictions apply. 



2574 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 10, OCTOBER 2020

Fig. 4. Mixture of experts (MoE).

two groups of research on this [43]: 1) altering the learning
algorithms to learn explainable features; and, 2) using additional
methods with the standard learning algorithm to explain existing
deep learning algorithms. They [43] also presented an interesting
methodology for linguistically explaining the knowledge a deep
neural network classifier has acquired in training, using linguis-
tic summarization [44], which generates Zadeh fuzzy rules. This
work shows a novel and promising application of fuzzy rules in
deep learning. Similarly, TSK fuzzy rules could also be used to
linguistically explain a deep regression model.

Finally, fuzzy logic and deep learning could be hybridized
to take the advantages of both sides [45], [46]. Deng et al.
[45] proposed a hierarchical deep neural network that derives
information from both fuzzy and neural representations, which
are then fused to form the final features for classification. Zheng
et al. [46] proposed a Pythagorean fuzzy deep Boltzmann ma-
chine, in which the deep Boltzmann machine parameters are
expressed by Pythagorean fuzzy numbers so that each neuron
can learn how a feature affects the output both positively and
negatively. We expect that more hybridizations like these will
emerge in the near future.

III. TSK FUZZY SYSTEMS AND MOE

MoE was first proposed by Jacobs et al. in 1991 [19]. It is
established based on the divide-and-conquer principle, in which
the problem space is divided among multiple local experts,
supervised by a gating network, as shown in Fig. 4. MoE
trains multiple local experts, each taking care of only a small
local region of the problem space; for a new input, the gating
network determines which experts should be used for it, and then
aggregates the outputs of these experts by a weighted average.
MoE models are universal approximators [47].

A. MoE

Assume there are N training examples (xn, yn), n =
1, . . ., N . The K experts are trained from minimizing the
following error:5

E =
N∑

n=1

K∑
k=1

f̄k(xn)(yn − yk(xn))
2 (7)

5In practice, transforms of (7), e.g., E = − log
∑N

n=1

∑K

k=1
f̄k(xn)

exp [− 1
2 (yn − yk(xn))

2], may be used to speed up the optimization [19].

where yk(xn) is the output of the kth expert for input xn,
and f̄k(xn) is the corresponding normalized weight for the kth
expert, assigned by the gating network

f̄k(xn) =
exp(fk(xn))∑K
i=1 exp(fi(xn))

(8)

in which fk(xn) is a tunable function.
Once the training is done, the final output of the MoE is

y
MoE

(x) =

K∑
k=1

f̄k(x)yk(x). (9)

B. Functional Equivalence Between TSK Fuzzy
Systems and MoE

It is easy to see that the TSK fuzzy system in (4) and the
MoE in (9) are conceptually equivalent. More specifically, when
the following conditions are satisfied, they are functionally
equivalent, i.e., (4) is identical to (9).

1) The TSK fuzzy system uses Gaussian MFs and the product
t-norm. Assume the Gaussian MF Xk,i of the TSK fuzzy
system [see (1)] has center ck,i and standard deviationσk,i.
Then, fk(xn) in (8) of the MoE should be

fk(xn) = −
d∑

i=1

(xn,i − ck,i)
2

2σ2
k,i

. (10)

2) yk(x) in the TSK fuzzy system is identical to yk(x) in the
MoE, for every k.

A few publications [48], [49] have made the connection
between TSK fuzzy systems and MoE. The regression function
in each rule consequent of the TSK fuzzy system can be viewed
as an expert, and the rule antecedents work as the gating network:
for each input, they determine how much weight should be
assigned to each rule consequent (expert) in the final aggrega-
tion. Of course, the experts and gating network in MoE can be
constructed by more complex models, such as neural networks
and support vector machines [50], but the structure resemblance
remains unchanged.

C. Discussions and Future Research

Lots of progresses on MoE have been made since it was first
proposed in 1991 [50], [51], e.g., different training algorithms,
different gating networks, and different expert models. Since
MoE is essentially identical to a TSK fuzzy system, these ideas
could also be applied to fuzzy systems, particularly the training
algorithms and expert models (the gating network is a little more
challenging because in a TSK fuzzy system, we always use MFs
to perform gating; there is not too much freedom).

First, in training a TSK fuzzy system for regression, the error
function is usually defined as

E =

N∑
n=1

(yn − yTSK(xn))
2

=

N∑
n=1

[
yn −

K∑
k=1

f̄k(xn)yk(xn)

]2
. (11)
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However, as pointed out in [19], “this error measure compares
the desired output with a blend of the outputs of the local experts,
so, to minimize the error, each local expert must make its output
cancel the residual error that is left by the combined effects of
all the other experts. When the weight in one expert change, the
residual error changes, and so the error derivatives for all other
local experts change.” This strong coupling between the experts
facilitates their cooperation, but may lead to a solution in which
many experts are used for each input. That is why in training the
local experts, the error function is defined as (7) to facilitate the
competition among them. Equation (7) requires each expert to
approximate yn, instead of a residual. Hence, each local expert
is not directly affected by other experts (it is indirectly affected
by other experts through the gating network, though).

It is thus interesting to study if changing the error function
from (11) to (7) in training a TSK fuzzy system can improve
its performance, in terms of speed and accuracy. Or, the error
function could be a hybridization of (11) and (7), to facilitate
both the cooperations and competitions among the local experts,
i.e.,

E =

N∑
n=1

[
yn −

K∑
k=1

f̄k(xn)yk(xn)

]2

+ λ

N∑
n=1

K∑
k=1

f̄k(xn) [yn − yk(xn)]
2 (12)

where λ is a hyperparameter defining the trade-off between
cooperation and competition. This idea was first explored in [31],
which proposed a TSK fuzzy system design strategy to increase
its interpretability, by forcing each rule consequent to be a
reasonable local model (the regression function in each rule con-
sequent needs to fit the training data that are covered by the rule
antecedent MFs well), and also the overall TSK fuzzy system
to be a good global model. However, the algorithms in [31] are
very memory-hungry,6 and hence may not be applicable when
N is large. A more efficient solution to this problem is needed.

Second, when the performance of an initially designed TSK
fuzzy system is not satisfactory, there could be two strategies
to improve it: 1) increase the number of rules, so that each rule
covers a smaller region in the input domain, and hence may
better approximate the training examples in that region; and,
2) increase the fitting power (nonlinearity) of the consequent
function, so that it can better fit the training examples in its
local region. The first strategy is frequently used in practice;
however, it can increase the number of parameters of the TSK
fuzzy system very rapidly. Juang and Lin [14] proposed an
interesting approach to incrementally add linear terms to the
rule consequent to increase its fitting power. However, they
only considered linear terms. Inspired by MoE, whose expert
models could use complex models like the neural networks and
support vector machines [50], the TSK rule consequents (local
experts) could also use more sophisticated models, particularly,

6Let N be the number of training examples, r the dimensionality of the input,
and L the number of rules. The algorithms in [31] need to construct matrices in
RNL×L(r+1) and RNL×NL, which are hardly scalable.

Fig. 5. (a) Example of CART for regression; and (b) its input–output mapping.

support vector regression [52], which outperforms simple linear
regression in many applications. The feasibility of this idea has
been verified in [53], [54].

Third, TSK fuzzy rules could also be used as experts in
MoE. For example, Leski [55] proposed such an approach for
classification: each expert model in the MoE was constructed
as a TSK fuzzy rule (whose input region was determined by
fuzzy c-means clustering), and then a gating network was used
to aggregate them. This may increase the interpretability of MoE.
This idea can also be extended to regression problems.

IV. TSK FUZZY SYSTEMS AND CART

CART [20] is a popular and powerful strategy for constructing
classification and regression trees. It is a universal approxima-
tor [56], and has also been used in ensemble learning such as
random forests [57] and gradient boosting machines [58]. This
section focuses on regression only.

A. CART

Assume there are two numerical inputs, x1 and x2, and one
output, y. An example of CART is shown in Fig. 5(a). It is
constructed by a divide-and-conquer strategy, in which the input
space is partitioned by a hierarchy of Boolean tests into multiple
nonoverlapping partitions. Each Boolean test corresponds to an
internal node of the decision tree. The leaf node (terminal node)
is computed as the mean y of all training examples falling into
the corresponding partition; thus, CART implements a piecewise
constant regression function, as shown in Fig. 5(b). The route
leading to each leaf node can be written as a crisp rule, e.g., if
x1 < 5 and x2 < 5, then y = 30. Note that each leaf node can
also be a function of the inputs [59]–[63], instead of a constant.
In this way, the implemented regression function is smoother;
however, the trees are more difficult to train.

B. Functional Equivalence Between TSK Fuzzy
Systems and CART

Both CART and fuzzy systems use rules. The rules in CART
are crisp: each input belongs to only one rule, and the output is
the leaf node of that rule. On the contrary, the rules in a fuzzy
system are fuzzy: each input may fire more than one rules, and
the output is a weighted average of these rule consequents.
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Fig. 6. (a) An example of fuzzy CART for regression; and (b) its input–output
mapping.

The regression output of a traditional CART has discontinu-
ities, which may be undesirable in practice. So, fuzzy CART,
which allows an input to belong to different leaf nodes with
different degrees, has been proposed to accommodate this
[64]–[67]. As pointed out by Suarez and Lutsko [67], “in
regression problems, it is seen that the continuity constraint
imposed by the function representation of the fuzzy tree leads
to substantial improvements in the quality of the regression and
limits the tendency to overfitting.” An example of fuzzy CART
for regression is shown in Fig. 6(a), where X1 is a fuzzy set for
x1, and X2,1 and X2,2 are fuzzy sets for x2. Its input–output
mapping is shown in Fig. 6(b), which is continuous.

Let the kth constant leaf node in a fuzzy CART be yk. Then,
given an input x, the output of a fuzzy CART is a weighed
average of the predictions at all leaves

yfCART(x) =

∑K
k=1 fk(x)yk∑K
k=1 fk(x)

(13)

where fk(x) is the product of all membership grades in the path
to yk. In this way, y

fCART
(x) is a smooth function. Clearly,

yfCART(x) is functionally equivalent to the output of a TSK fuzzy
system in (2), when each rule consequent of the fuzzy system is
a constant (instead of a function).

Chaudhuri et al. [61] proposed smoothed and unsmoothed
piecewise-polynomial regression trees (SUPPORT), in which
each leaf node is a polynomial function of the inputs. The SUP-
PORT tree is generally much shorter than a traditional CART
tree, and hence enjoys better interpretability. The following
three-step procedure is used to ensure that its output is smooth.

1) The input space is recursively partitioned until the data
in each partition are adequately fitted by a fixed-order
polynomial. Partitioning is guided by analyzing the distri-
butions of the residuals and the cross-validation estimates
of the mean squared prediction error.

2) The data within a neighborhood of the kth (k = 1, . . .,K)
partition are fitted by a polynomial yk(x).

3) The prediction for an input x is a weighted average of
yk(x), where the weighting function fk(x) diminishes
rapidly to zero outside the kth partition.

If the weighting functions are Gaussian-like, i.e.,

fk(x) = exp

(
− (x1 −mk,1)

2

σ2
k,1

− (x2 −mk,2)
2

σ2
k,2

)
(14)

where mk,i is the mean of the Gaussian function for the ith
input, and σk,i is the standard deviation, then the output of

SUPPORT is

ySUPPORT(x) =

∑K
k=1 fk(x)yk(x)∑K

k=1 fk(x)
. (15)

Clearly, ySUPPORT(x) is functionally equivalent to the output of the
TSK fuzzy system in (2).

C. Discussions and Future Research

It is well known that fuzzy systems are particularly subject to
the curse of dimensionality: as the number of features increases,
the number of rules may increase exponentially, and the inter-
pretability also decreases quickly as the number of antecedents
increases.

CART may offer a solution to this problem. For example,
Jang [65] first performed CART on a regression dataset to
roughly estimate the structure of a TSK fuzzy system, i.e.,
number of MFs in each input domain, and the number of rules.
Then, each crisp rule antecedent was converted into a fuzzy set,
and consequent to a linear function of the inputs. For example,
a crisp rule

Rk : If x1 > xk,1 and x2 < xk,2, then yk = ck

can be converted to a TSK fuzzy rule

Rk : If x1 is Xk,1 and x2 is Xk,2

then yk = akx1 + bkx2 + c′k

where ak, bk, and c′k are regression coefficients, and Xk,1 and
Xk,2 are fuzzy sets defined as

μXk,1
(x1) =

1

1 + exp[−αk,1(x1 − xk,1)]
(16)

μXk,2
(x2) =

1

1 + exp[αk,2(x2 − xk,2)]
(17)

in which αk,1 and αk,2 are tunable parameters. Once all crisp
rules have been converted to TSK fuzzy rules, ANFIS [10] can
be used to optimize the parameters of all rules together, e.g., ak,
bk, c′k, αk,1, and αk,2.

The above TSK fuzzy system design strategy offers at least
three advantages.

1) Simplicity: We can prune the CART tree on a high-
dimensional dataset to obtain a regression tree with a
desired number of leaf nodes, and hence a TSK fuzzy
system with a desired number of rules. So, we can directly
control the simplicity of the resulted TSK fuzzy system.

2) Interpretability: Rules in a traditionally designed fuzzy
system usually have the same number of antecedents
(which equals the number of inputs), which are difficult
to interpret when there are many antecedents. Rules ini-
tialized from CART may have different number of an-
tecedents (which are usually smaller than the number of
inputs), depending on the depths of the corresponding leaf
nodes, i.e., we can extract shorter and more interpretable
rules that may not be extractable using a traditional fuzzy
system design approach.

3) Performance: In a traditional fuzzy system, each input
(feature) is independently considered in rule antecedents.
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Fig. 7. Stacking ensemble regression.

However, some variants of CART [59] allow to split on the
linear combinations of the inputs, which is equivalent to
using new (usually more informative) features in splitting.
These new features are also used by fuzzy rules when they
are converted from CART leaf nodes, which may achieve
better performance than traditional fuzzy systems.

In summary, initializing TSK fuzzy systems from CART regres-
sion trees is a promising solution to high-dimensional problems,
and may achieve better interpretability-performance trade-off.
Hence, it deserves further research.

V. FUZZY SYSTEM AND STACKING

Ensemble regression [21] improves the regression perfor-
mance by integrating multiple base models. Stacking may be
the simplest supervised ensemble regression approach. Its final
regression model is a weighted average of the base models,
where the weights are trained from the labeled training data.
As long as the base models are universal approximators, the
stacking model should also be a universal approximator.

A. Stacking

The base models in stacking may be trained from other related
tasks or datasets [68]. However, when there are enough training
examples for the problem under consideration, the base models
may also be trained directly from them. Fig. 7 illustrates such
a strategy. For a given training dataset, we can resample (e.g.,
using bootstrap [69]) it multiple times to obtain multiple new
training datasets, each of which is slightly different from the
original training dataset. Then, a base model can be trained
using each resampled dataset. These base models could use
the same regression algorithm, but different regression algo-
rithms, e.g., LASSO [70], ridge regression [71], support vector
regression [52], etc., can also be used to increase their diversity.
Because the training datasets are different, the trained base
models will be different even if the same regression algorithm
is used.

Once the K base models are obtained, stacking trains another
(linear or nonlinear) regression model to fuse them. Assume the
outputs of the K base regression models are {yk}Kk=1. Stacking
finds a regression model y = f(y1, . . ., yK) on the training
dataset to aggregate them.

B. Connections Between TSK Fuzzy Systems and Stacking

A TSK fuzzy system for regression can be viewed as a
stacking model. Each rule consequent is a base regression model,
and the rule antecedent MFs determine the weights of the base

models in stacking. Note that in stacking, usually the aggregated
output y is a function of {yk}Kk=1 only, but in a TSK fuzzy
system, the aggregation function also depends on the input x, as
the weights are computed from them, and change with them. So,
a TSK fuzzy system is actually an adaptive stacking regression
model.

A key issue in stacking is the partition of the original train-
ing dataset, after which a base regression model can be built
from each partition. Two commonly used data partition ap-
proaches are: 1) bootstrap sampling, where each base model
is trained from about 63.2% unique samples of the original
training dataset; and 2) k-fold partition, where each of the k

base models is trained from 100(k−1)
k % samples of the original

training dataset. Similar dataset partition concepts have also
been used to construct or initialize TSK fuzzy systems; however,
they may be better interpreted from a possibility point of view,
where the possibility (weight) of a sample in constructing a TSK
rule is usually a function of the corresponding firing level.

For example, Nozaki et al. [72] proposed a simple yet pow-
erful heuristic approach for generating TSK fuzzy rules (whose
rule consequents are constants, instead of functions of the inputs)
from numerical data. Assume there are N training examples
(xn,1, . . ., xn,d, yn), n = 1, . . ., N , i.e., the fuzzy system has d
inputs and one output. Then, Nozaki et al.’s approach consists
of the following steps [72].

1) Determine how many MFs should be used for each input,
and define the shapes of the MFs. Once this is done, the
input space is partitioned into several fuzzy regions.

2) Generate a fuzzy rule in the form of

Rk : If x1 is Xk,1 and · · · and xd is Xk,d,

then yk = ck

in the kth fuzzy region, where the MFs Xk,i (i = 1, . . ., d)
have been determined in Step (1), and

ck =

∑N
n=1

[∏d
i=1 μXk,i

(xn,i)
]α

yn∑N
n=1

[∏d
i=1 μXk,i

(xn,i)
]α (18)

in which α is a positive constant. ck could also be
computed using a least squares approach [72].

Essentially, the above rule-construction approach reweights each
training example in a fuzzy partition using an exponential
function of the firing level of the corresponding rule, and then
computes a simple base model yk = ck from them. The final
TSK fuzzy system is an aggregation of all such rules. This is
exactly the idea of stacking in Fig. 7.

Another example is the local learning part in [31], where an
approach for constructing a local TSK rule for each rule partition
is proposed. Using again the d-input one-output example in
Section 1, a local TSK rule is in the form of

Rk : If x1 is Xk,1 and · · · and xd is Xk,d

then yk =

d∑
i=1

aixi + bk.
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Given Xk,i (i = 1, . . ., d), the weight for each training example
(xn,1, . . ., xn,d, yn) is fk(xn) =

∏d
i=1 μXk,i

(xn,i), i.e., its fir-
ing level of the rule, and then the regression coefficients ak,i and
bk are found from minimizing the following weighted loss:

E =

N∑
n=1

fk(xn)

[
yn −

(
d∑

i=1

ak,ixn,i + bk

)]2
. (19)

Each local rule is equivalent to a base model in stacking.

C. Discussions and Future Research

Traditional stacking assigns each base model a constant
weight. As pointed out in the previous subsection, a TSK fuzzy
system can be viewed as an adaptive stacking model, because
the weights for the base models (rule consequents) change with
the inputs. Inspired by this phenomenon, we can design more
powerful stacking strategies, by replacing each constant weight
by a linear or nonlinear function7 of the input x. The rationale
is that the weight for a base model should be dependent on its
performance, whereas its performance is usually related to the
location of the input: each base model may perform well in some
input regions, but not well in the rest. A well-trained function of
x may be able to reflect the expertise of the corresponding base
model, and hence help achieve better aggregation performance.

Moreover, if the weighting functions and the base models
are trained simultaneously, then the weighting functions may
encourage the base models to cooperate: each focuses on a
partition of the input domain, instead of the entire domain in
traditional stacking. Even better performance could be expected,
than training the base models first and then separately the
weighting functions to aggregate them.

Some proven strategies in stacking may also be used to
improve the performance of a TSK fuzzy system. For example,
regularization is frequently used to increase the generalization
of the stacking model [68], [74]. When LASSO [70] is used to
build the stacking model, L1 regularization is added, and hence
some regression coefficients may be zero, i.e., it increases the
sparsity of the solution. When ridge regression [71] or support
vector regression [52] is used to build the stacking model, L2

regularization is added, and hence the regression coefficients
usually have small magnitudes, i.e., they reduce overfitting.
Some new regularization terms, e.g., negative correlation [74],
can be used to create negatively correlated base models to
encourage specialization and cooperation among them. These
concepts may also be used in training the rule consequents (base
models) of a TSK fuzzy system, and also the antecedent MFs
(so that the MFs for the same input are neither too crowded, nor
too far away from each other).

VI. CONCLUSION

TSK fuzzy systems have achieved great success in numerous
applications. However, there are still many challenges in
designing an optimal TSK fuzzy system, e.g., how to efficiently
optimize its parameters, how to balance the trade-off between

7This idea was first used in [73] for classification, under the name “modified
stacked generalization.” It outperformed traditional stacking.

cooperations and competitions among the rules, how to
overcome the curse of dimensionality, how to improve
its performance without adding too many parameters, etc.
Literature has shown that by making appropriate connections
between fuzzy systems and other machine learning approaches,
good practices from other domains may be used to improve the
fuzzy systems, and vice versa.

This article has given an overview on the functional equiv-
alence between TSK fuzzy systems and four classic ma-
chine learning approaches—neural networks, MoE, CART, and
stacking—for regression problems. We also pointed out some
promising new research directions, inspired by the functional
equivalence, that could lead to solutions to the aforementioned
problems. For example, by making use of the functional equiv-
alence between TSK fuzzy systems and some neural networks,
we can design more efficient training algorithms for TSK fuzzy
systems; by making use of the functional equivalence between
TSK fuzzy systems and MoE, we may be able to achieve a better
trade-off between cooperations and competitions of the rules in a
TSK fuzzy system; by making use of the functional equivalence
between TSK fuzzy systems and CART, we can better initialize a
TSK fuzzy system to deal with the curse of dimensionality; and,
inspired by the connections between TSK fuzzy systems and
stacking, we may design better stacking models, and increase
the generalization of a TSK fuzzy model.

To our knowledge, this article is so far the most comprehensive
overview on the connections between fuzzy systems and other
popular machine learning approaches, and hopefully will stim-
ulate more hybridization between different machine learning
algorithms.

REFERENCES

[1] J. M. Mendel, Uncertain Rule-Based Fuzzy Systems: Introduction and New
Directions, 2nd ed., Cham, Switzerland: Springer, 2017.

[2] C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Syner-
gism to Intelligent Systems. Upper Saddle River, NJ, USA: Prentice Hall,
1996.

[3] S. S. L. Chang and L. A. Zadeh, “On fuzzy mapping and control,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-2, no. 1, pp. 30–34, Jan. 1972.

[4] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plication to modeling and control,” IEEE Trans. Syst. Man Cybern.,
vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[5] J. Buckley, “Sugeno type controllers are universal controllers,” Fuzzy Sets
Syst., vol. 53, pp. 299–303, 1993.

[6] L.-X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approxi-
mation, and orthogonal least-squares learning,” IEEE Trans. Neural Netw.,
vol. 3, no. 5, pp. 807–814, Sep. 1992.

[7] D. Wu and J. M. Mendel, “Recommendations on designing practical inter-
val type-2 fuzzy systems,” Eng. Appl. Artif. Intell., vol. 95, pp. 182–193,
2019.

[8] D. Wu and W. W. Tan, “Genetic learning and performance evaluation of
type-2 fuzzy logic controllers,” Eng. Appl. Artif. Intell., vol. 19, no. 8,
pp. 829–841, 2006.

[9] L.-X. Wang and J. M. Mendel, “Back-propagation of fuzzy systems as
nonlinear dynamic system identifiers,” in Proc. IEEE Int. Conf. Fuzzy
Syst., San Diego, CA, USA, 1992, pp. 1409–1418.

[10] J. R. Jang, “ANFIS: Adaptive-network-based fuzzy inference sys-
tem,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685,
May/Jun. 1993.

[11] R. R. Yager and D. P. Filev, “Generation of fuzzy rules by mountain
clustering,” J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 209–219, 1994.

[12] M. Delgado, A. F. Gómez-Skarmeta, and F. Martín, “A fuzzy clustering-
based rapid prototyping for fuzzy rule-based modeling,” IEEE Trans.
Fuzzy Syst., vol. 5, no. 2, pp. 223–233, May 1997.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 08,2020 at 02:09:10 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: ON THE FUNCTIONAL EQUIVALENCE OF TSK FUZZY SYSTEMS 2579

[13] S. L. Chiu, “Fuzzy model identification based on cluster estimation,”
J. Intell. Fuzzy Syst., vol. 2, no. 3, pp. 267–278, 1994.

[14] C.-F. Juang and C.-T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,” IEEE Trans. Fuzzy Syst., vol. 6,
no. 1, pp. 12–32, Feb. 1998.

[15] L. Jing, M. K. Ng, and J. Z. Huang, “An entropy weighting k-
means algorithm for subspace clustering of high-dimensional sparse
data,” IEEE Trans. Knowl. Data Eng., vol. 19, no. 8, pp. 1026–1041,
Aug. 2007.

[16] H. Jia and Y.-M. Cheung, “Subspace clustering of categorical and numer-
ical data with an unknown number of clusters,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 8, pp. 3308–3325, Aug. 2018.

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[18] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, U.K.:
Oxford University Press, 1995.

[19] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Comput., vol. 3, no. 1, pp. 79–87, 1991.

[20] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and
Regression Trees, 1st ed., Boca Raton, FL: Routledge, 2017.

[21] Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms.
Boca-Raton, FL, USA: CRC Press, 2012.

[22] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, pp. 1527–1554, 2006.

[23] S. K. Halgamuge and M. Glesner, “Neural networks in designing fuzzy
systems for real world applications,” Fuzzy Sets Syst., vol. 65, no. 1,
pp. 1–12, 1994.

[24] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic con-
trollers through reinforcements,” IEEE Trans. Neural Netw., vol. 3, no. 5,
pp. 724–740, Sep. 1992.

[25] J. J. Buckley and Y. Hayashi, “Fuzzy neural networks: A survey,” Fuzzy
Sets Syst., vol. 66, no. 1, pp. 1–13, 1994.

[26] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Comput., vol. 1, no. 2, pp. 281–294, 1989.

[27] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257, 1991.

[28] R. Murray-Smith and T. A. Johansen, “Local learning in local model net-
works,” in Proc. 4th IEEE Int. Conf. Artif. Neural Netw., Perth, Australia,
Jun. 1995, pp. 40–46.

[29] J.-S. R. Jang and C.-T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference systems,” IEEE Trans. Neural
Netw., vol. 4, no. 1, pp. 156–159, Jan. 1993.

[30] K. J. Hunt, R. Haas, and R. Murray-Smith, “Extending the func-
tional equivalence of radial basis function networks and fuzzy infer-
ence systems,” IEEE Trans. Neural Netw., vol. 7, no. 3, pp. 776–781,
May 1996.

[31] J. Yen, L. Wang, and C. W. Gillespie, “Improving the interpretability of
TSK fuzzy models by combining global learning and local learning,” IEEE
Trans. Fuzzy Syst., vol. 6, no. 4, pp. 530–537, Nov. 1998.

[32] G. Golub, V. Klema, and G. W. Stewart, “Rank degeneracy and least
squares problems,” Tech. Rep. STAN-CS-76-559, Department of Com-
puter Science, Stanford University, 1976.

[33] A. O. Hoori and Y. Motai, “Multicolumn RBF network,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 766–778, Apr. 2018.

[34] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, “An extended
ANFIS architecture and its learning properties for type-1 and interval
type-2 models,” in Proc. IEEE Int. Conf. Fuzzy Syst., Vancouver, Canada,
Jul. 2016, pp. 602–609.

[35] C. Chen, R. John, J. Twycross, and J. M. Garibaldi, “Type-1 and interval
type-2 ANFIS: A comparison,” in Proc. IEEE Int. Conf. Fuzzy Syst.,
Naples, Italy, Jul. 2017, pp. 1–6.

[36] D. Wu, “Approaches for reducing the computational cost of interval type-2
fuzzy logic systems: Overview and comparisons,” IEEE Trans. Fuzzy Syst.,
vol. 21, no. 1, pp. 80–99, Feb. 2013.

[37] D. Wu and W. W. Tan, “Computationally efficient type-reduction strategies
for a type-2 fuzzy logic controller,” in Proc. IEEE Int. Conf. Fuzzy Syst.,
Reno, NV, May 2005, pp. 353–358.

[38] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[39] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus, “Regularization
of neural networks using DropConnect,” in Proc. Int. Conf. Mach. Learn.,
Atlanta, GA, USA, Jun. 2013, pp. 1058–1066.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., Lille, France, Jul. 2015, pp. 448–456.

[41] D. Wu, Y. Yuan, and Y. Tan, “Optimize TSK fuzzy systems for big
data regression problems: Mini-batch gradient descent with regularization,
DropRule and AdaBound (MBGD-RDA),” 2019, arxiv preprint. [Online].
Available: https://arxiv.org/abs/1903.10951

[42] Y. Cui and D. Wu, “Optimize TSK fuzzy systems for big data classifi-
cation problems: Bag of tricks,” IEEE Trans. Fuzzy Syst., submitted for
publication.

[43] K. Amarasinghe and M. Manic, “Explaining what a neural network has
learned: Toward transparent classification,” in Proc. Int. Joint Conf. Neural
Netw., Rio, Brazil, Jul. 2018.

[44] D. Wu and J. M. Mendel, “Linguistic summarization using IF-THEN rules
and interval type-2 fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 19, no. 1,
pp. 136–151, Feb. 2011.

[45] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, “A hierarchical fused
fuzzy deep neural network for data classification,” IEEE Trans. Fuzzy
Syst., vol. 25, no. 4, pp. 1006–1012, Aug. 2017.

[46] Y.-J. Zheng, W.-G. Sheng, X.-M. Sun, and S.-Y. Chen, “Airline passenger
profiling based on fuzzy deep machine learning,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 12, pp. 2911–2923, Dec. 2017.

[47] H. D. Nguyen, L. R. Lloyd-Jones, and G. J. McLachlan, “A universal
approximation theorem for mixture-of-experts models,” Neural Comput.,
vol. 28, no. 12, pp. 2585–2593, 2016.

[48] H. Bersini and G. Bontempi, “Now comes the time to defuzzify neuro-
fuzzy models,” Fuzzy Sets Syst., vol. 90, no. 2, pp. 161–169, 1997.

[49] H. Andersen, A. Lotfi, and L. Westphal, “Comments on ‘Functional
equivalence between radial basis function networks and fuzzy inference
systems’ [with reply],” IEEE Trans. Neural Netw., vol. 9, no. 6, pp. 1529–
1532, Nov. 1998.

[50] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mix-
ture of experts,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8,
pp. 1177–1193, Aug. 2012.

[51] S. Masoudnia and R. Ebrahimpour, “Mixture of experts: A literature
survey,” Artif. Intell. Rev., vol. 42, no. 2, pp. 275–293, 2014.

[52] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statist. Comput., vol. 14, no. 3, pp. 199–222, 2004.

[53] C. Juang, R. Huang, and W. Cheng, “An interval type-2 fuzzy-neural
network with support-vector regression for noisy regression problems,”
IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 686–699, Aug. 2010.

[54] M. Komijani, C. Lucas, B. N. Araabi, and A. Kalhor, “Introducing evolv-
ing Takagi-Sugeno method based on local least squares support vector
machine models,” Evolving Syst., vol. 3, no. 2, pp. 81–93, 2012.

[55] J. Leski, “A fuzzy if-then rule-based nonlinear classifier,” Int. J. Appl.
Math. Comput. Sci., vol. 13, pp. 215–223, 2003.

[56] M. W. Berry and M. Browne, Eds., Lecture Notes in Data Mining.
Singapore: World Scientific, 2006.

[57] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 5, pp. 5–32,
2001.

[58] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, 2001.

[59] W.-Y. Loh, “Fifty years of classification and regression trees,” Int. Statis-
tical Rev., vol. 82, no. 3, pp. 329–348, 2014.

[60] W. P. Alexander and S. D. Grimshaw, “Treed regression,” J. Comput.
Graphical Statist., vol. 5, no. 2, pp. 156–175, 1996.

[61] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao, “Piecewise-
polynomial regression trees,” Statistica Sinica, vol. 4, no. 1, pp. 143–167,
1994.

[62] J. R. Quinlan, “Learning with continuous classes,” in Proc. 5th Aus-
tralian Joint Conf. Artif. Intell., Hobart, Tasmania, Nov. 1992, vol. 92,
pp. 343–348.

[63] A. Dobra and J. Gehrke, “SECRET: A scalable linear regression tree
algorithm,” in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Edmonton, Canada, Jul. 2002, pp. 481–487.

[64] R. L. Chang and T. Pavlidis, “Fuzzy decision tree algorithms,” IEEE Trans.
Syst. Man Cybern., vol. SMC-7, no. 1, pp. 28–35, Jan. 1977.

[65] J.-S. R. Jang, “Structure determination in fuzzy modeling: A fuzzy CART
approach,” in Proc. IEEE Int. Conf. Fuzzy Syst., Orlando, FL, USA,
Jun. 1994, pp. 480–485.

[66] C. Z. Janikow, “Fuzzy decision trees: Issues and methods,” IEEE Trans.
Syst. Man, Cybern. B, Cybern., vol. 28, no. 1, pp. 1–14, Feb. 1998.

[67] A. Suárez and J. F. Lutsko, “Globally optimal fuzzy decision trees for
classification and regression,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 21, no. 12, pp. 1297–1311, Dec. 1999.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 08,2020 at 02:09:10 UTC from IEEE Xplore.  Restrictions apply. 

https://arxiv.org/abs/1903.10951


2580 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 28, NO. 10, OCTOBER 2020

[68] D. Wu, F. Liu, and C. Liu, “Active stacking for heart rate estimation,” Inf.
Sci., submitted for publication.

[69] B. Efron and R. Tibshirani, An Introduction to the Bootstrap. New York,
NY, USA: Chapman & Hall, 1993.

[70] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Roy.
Statistical Soc., vol. 58, no. 1, pp. 267–288, 1996.

[71] A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for
nonorthogonal problems,” Technometrics, vol. 12, no. 1, pp. 55–67, 1970.

[72] K. Nozaki, H. Ishibuchi, and H. Tanaka, “A simple but powerful heuristic
method for generating fuzzy rules from numerical data,” Fuzzy Sets Syst.,
vol. 86, no. 3, pp. 251–270, 1997.

[73] R. Ebrahimpour, H. Nikoo, S. Masoudnia, M. R. Yousefi, and M. S.
Ghaemi, “Mixture of MLP-experts for trend forecasting of time series:
A case study of the Tehran stock exchange,” Int. J. Forecasting, vol. 27,
no. 3, pp. 804–816, 2011.

[74] Y. Liu and X. Yao, “Ensemble learning via negative correlation,” Neural
Netw., vol. 12, no. 10, pp. 1399–1404, 1999.

Dongrui Wu (S’05–M’09–SM’14) received the B.E.
degree in automatic control from the University of
Science and Technology of China, Hefei, China, in
2003, the M.E. degree in electrical engineering from
the National University of Singapore, Singapore, in
2005, and the Ph.D. degree in electrical engineer-
ing from the University of Southern California, Los
Angeles, CA, USA, in 2009.

He is currently a Professor with the School of Ar-
tificial Intelligence and Automation, Huazhong Uni-
versity of Science and Technology, Wuhan, China,

and Deputy Director of the Key Laboratory of Image Processing and Intelligent
Control, Ministry of Education, China. He has more than 120 publications,
including a book entitled Perceptual Computing (Wiley-IEEE Press, 2010).
His research interests include affective computing, brain–computer interface,
computational intelligence, and machine learning.

Dr. Wu received the IEEE Computational Intelligence Society Outstanding
Ph.D. Dissertation Award in 2012, the IEEE TRANSACTIONS ON FUZZY SYSTEMS

Outstanding Paper Award in 2014, the North American Fuzzy Information
Processing Society (NAFIPS) Early Career Award in 2014, the IEEE Systems,
Man, and Cybernetics (SMC) Society Early Career Award in 2017, and the
IEEE SMC Society Best Associate Editor Award in 2018. He was also a finalist
of another three Best Paper Awards. He was/is an Associate Editor of the
IEEE TRANSACTIONS ON FUZZY SYSTEMS (2011–2018), IEEE TRANSACTIONS

ON HUMAN–MACHINE SYSTEMS (2014), IEEE COMPUTATIONAL INTELLIGENCE

MAGAZINE (2017), and IEEE TRANSACTIONS ON NEURAL SYSTEMS AND RE-
HABILITATION ENGINEERING (2019).

Chin-Teng Lin (S’88–M’91–SM’99–F’05) received
the M.S. and Ph.D. degrees in electrical engineering
from Purdue University, West Lafayette, IN, USA, in
1989 and 1992, respectively.

He is currently a Distinguished Professor with the
Faculty of Engineering and Information Technology,
University of Technology Sydney, Ultimo, Australia,
the University Chair Professor of electrical and com-
puter engineering with National Chiao Tung Univer-
sity, Hsinchu, Taiwan, the International Faculty of the
University of California at San Diego, San Diego, CA,

USA, and the Honorary Professorship of the University of Nottingham, Notting-
ham, U.K. He has authored over 200 journal papers including approximately 110
IEEE journal papers in the areas of fuzzy systems, neural networks, and cognitive
neuro-engineering.

Dr. Lin was elevated to an International Fuzzy Systems Association Fellow
in 2012. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON FUZZY

SYSTEMS from 2011 to 2016. He also served on the Board of Governors at the
IEEE Circuits and Systems Society from 2005 to 2008, IEEE Systems, Man, and
Cybernetics Society from 2003 to 2005, and IEEE Computational Intelligence
Society (CIS) from 2008 to 2010. He is a Distinguished Lecturer of the IEEE
CIS Society from 2015 to 2017. He served as the Deputy Editor-in-Chief for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-II from 2006 to 2008.

Jian Huang (M’07–SM’17) received the B.E.,
M.Eng., and Ph.D. degrees from the Huazhong Uni-
versity of Science and Technology (HUST), Wuhan,
China, in 1997, 2000, and 2005, respectively.

From 2006 to 2008, he was a Postdoc-
toral Researcher with the Department of Micro-
Nano System Engineering and Department of
Mechano-Informatics and Systems, Nagoya Univer-
sity, Nagoya, Japan. In 2015, he was a Research
Fellow with Nagoya University, supported by JSPS
invitation fellowship. He is currently a Full Professor

with the School of Artificial Intelligence and Automation, HUST, Wuhan,
China. He is also a Guest Professor with the Nagoya University of Japan and
University Paris-Est Creteil (UPEC) of France. He has 14 authorized patents.
He has published more than 190 papers (including 22 research articles in
several IEEE Transactions and more than 50 conference papers in many IEEE
conferences). His main research interests include rehabilitation robot, robotic
assembly, networked control systems, and bioinformatics.

Dr. Huang serves as an Associate Editor of the IEEE TRANSACTIONS ON

FUZZY SYSTEMS, Editor of the Springer ROBOMECH Journal, and Technical
Editor of PLoS ONE. He has received the Grand Prize of Science and Technology
award of China General Chamber of Commerce and golden medal at Geneva
Inventions in 2017.

Zhigang Zeng (SM’07) received the Ph.D. de-
gree in systems analysis and integration from the
Huazhong University of Science and Technology,
Wuhan, China, in 2003.

He is currently Professor and Dean of the School
of Artificial Intelligence and Automation, Huazhong
University of Science and Technology, and Direc-
tor of the Key Laboratory of Image Processing and
Intelligent Control, Education Ministry of China,
Wuhan, China. He has published over 100 interna-
tional journal papers. His current research interests

include theory of functional differential equations and differential equations
with discontinuous right-hand sides, and their applications to dynamics of neural
networks, memristive systems, and control systems.

Dr. Zeng was an Associate Editor of the IEEE TRANSACTIONS ON NEURAL

NETWORKS from 2010 to 2011, and has been an Associate Editor of the IEEE
TRANSACTIONS ON CYBERNETICS since 2014, and IEEE TRANSACTIONS ON

FUZZY SYSTEMS since 2016. He has been an Editorial Board Member of Neural
Networks since 2012, Cognitive Computation since 2010, and Applied Soft
Computing since 2013.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 08,2020 at 02:09:10 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


