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Abstract—In intracortical brain-machine interfaces (iBMIs), it
is time-consuming and expensive to label the large number of
unlabeled samples. In this paper, three greedy sampling active
learning algorithms, named denoised greedy sampling on the
inputs (DGSx), denoised greedy sampling on the outputs (DGSy)
and denoised improved greedy sampling (DiGS), were proposed
to solve the problem of labeling samples. In iBMIs, in order to
reduce the influence of abnormal points in the raw data, One-
class-SVM was assumed to denoise to improve the performance of
original greedy sampling algorithms and achieve stable or robust
decoding. Compared with Query by Committee (QBC) and
Uncertainty Sampling (US), the proposed approaches achieved
higher accuracies. The efficiency of proposed approaches was
demonstrated by the experiment with rhesus’ electrophysiological
signals in iBMIs.

Index Terms—intracortical brain–machine interface, active
learning, denoise, rhesus macaque

I. INTRODUCTION

Intracortical brain-machine interfaces (iBMIs), which estab-
lish a connection between brain and external devices, repair and
expand motor functions in paralyzed patients and amputees [1],
[2]. iBMIs can record the electrical signal of neural activities
from the cerebral cortex through the microelectrode array,
which has the advantages of high resolution and rich motion
information, making it possible to control the external devices
with multiple degrees of freedom [3]–[5]. This paper is about
the intracortical brain-machine interfaces based on spike, and
the research object is rhesus macaques. Because of their similar
anatomical nerve structure of brain with human, the study of
their brain nerve mechanism will accumulate enough practical
experience and make contribution to the future of intracortical
interfaces to clinical application.

Since Schmidt et al. showed that signals from neurons in
the cortex of monkeys could be recorded over a long period
of time, and external devices could be controlled by release
rate of a single spike in the primary motor cortex [6], [7],
the pioneering work in this field has begun. However, there
are some challenges to choose the monkeys as our research
object. If we attempt to monitor the motion of the monkeys,
the most intuitive way is installing sensors on them and get the
corresponding labels. But in practice, this approach will run into
difficulties because it will cause monkeys to be emotionally
unstable. Eventually, they may destroy the sensors in their

bodies. Thus, we end up with a lot of data without labels and
have to label it. So, it is a significant work to improve the
performance of classifiers in this field.

There are some works trying to improve the performance
of classifiers. By the leave-one-subject-out cross-validation
precedure and l1 regularization, Fazli et al. proposed a transfer
learning method in EEG classification tasks and found common
brain activity patterns in classifier aggregation step [10].
Wang et al. proposed a series of reinforcement learning
methods, attention gated reinforcement learning (AGREL) and
quantized attention gated reinforcement learning (QAGKRL),
to adaptively reconstruct 2D continuous trajectory in a center-
out task, solving the problem that Q-learning is difficult to
generalize [11]–[13]. On the one hand, when we monitor neural
signals of monkeys, small size of data will easily miss key
information. And on the other hand, to train a decoder, most
of these approaches need a large number of labeled samples,
which is time-consuming to be labeled.

Then, is there a method which can train the decoder using
a small number of labeled samples while maintaining its
performance? Active learning is a valuable direction for this
question. It selects the most valuable unlabeled samples to
label rather than random label.

Active learning is a subfield of machine learning. Its key
hypothesis is that if the learning algorithm is allowed to
choose the data actively, the classifier or regression model
would perform better with less training. This property of active
learning makes it easy to solve the problem of traditional
supervised machine learning which is trained on hundreds of
instances——it’s expensive or time-consuming. Active learning
makes it possible to train a better classifier using fewer labeled
samples. A query function Q selects one or a batch of the
most useful samples from unlabeled sample pool U , and asks
the supervisor S to label them. One or a batch of the most
useful samples from U were selected by the query function
and labeled by S. Finally, the classifier C was trained by
the samples in the set of labeled samples L, and next query
was conducted. Q is the key point of active learning. For
different query functions, active learning generally includes
three learning scenarios, namely membership query synthesis,
stream-based selective sampling and pool-based sampling [9].
The difference of these three scenarios is showed in Fig. 1.

1425978-1-7281-6416-8/20/$31.00 ©2020 IEEE

Proceedings of 2020 IEEE
International Conference on Mechatronics and Automation

October 13 - 16, Beijing, China

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on January 01,2021 at 16:08:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Three kind of active learning scenarios

There are three widely used criteria in query function, infor-
mativeness, representativeness and diversity. Informativeness
measures how well an unlabeled instance which helps reduce
the uncertainty of a statistical model, whereas representative-
ness measures how well an instance which helps represent the
structure of input patterns [18]. Diversity tends to select samples
which are full of all the input space, instead of concentrating
in a small corner. Query-by-committee (QBC) and uncertainty
sampling are two famous and important approaches in active
learning. Seung [17] proposed a query selection framework
named query-by-committee (QBC) which involves maintaining
a committee C =

{
θ(1), . . . , θ(C)

}
. The committee members

vote for the samples, and the samples with the biggest vote
entropy will be selected. Uncertainty sampling trains only one
learner and selects the samples with least confidence. Wu
proposed sequential pool-based active learning for regression
(ALR) [8]. It is a greedy sampling algorithm since the selected
samples are most representative and diverse. However, these
strategies make it easy to select outliers meanwhile.

In this study, we bring the idea of ALR into iBMIs
creatively, suit it to the classification problem and improved
its performance. To solve the problem that it is easy to choose
outliers, we proposed to denoise the raw data, which is benefit
to improve classifier’s accuracy. Finally, we compare the results
with classical active learning methods (QBC and uncertainty
sampling) and verify the validity of this method. This method
selects the most representative or diverse samples in the data
pool to label, thus reducing the workload of labeling those
numerous samples, and allow using numerous samples and
experts to label them by reviewing the video.

II. METHODS

This section introduce the experimental setup and the
algorithm

A. Experimental setup and Electrophysiological recordings

All the experiments and surgical procedures relating to this
study were approved by the Institutional Animal Care and Use
Committee at Huazhong University of Science and Technology.

We use an adult rhesus macaque in the experiment. The
monkey with a restricted left arm is guide by experimental
apparatuses and will perform reaching and grasping tasks using
its another hand. The experimental apparatus (showed in Fig. 2)

Fig. 2. The experiment set of the monkey

Fig. 3. The sequence of a trial for the monkey

consists of three same target objects of the front panel and a
center pad of the bottom. The sequences of the experiment are
showed in Fig. 3. For each trail, the monkey was noticed to
look at the center pad at the time of the center light on. The
center will hold for about 500ms, then the monkey will release
its hand from the center pad (named ‘center release’, CR), and
reach the corresponding target object and grasp it when one
of the target lights goes up. We define the event when the
monkey grasped the target object as ‘target hit’ (TH). In the
end, the monkey got a few drops of water as a reward after a
target holding time. The above description was a successful
trial. Otherwise the trail will be aborted if the monkey made
mistakes [14].

We surgically implanted a 16-channel FMA array (Micro-
probe Inc.) and two 32-channel Utah arrays (Blackrock Mi-
crosystems) into the somatosensory cortex (S1), primary motor
cortex (M1), and posterior parietal cortex (PPC) respectively to
a monkey. We record neural signals by all 80 channels of the
three arrays and use a 128-channel OmniPlex system (Plexon,
Inc.) to record monkey’s behavioral data and neural signals
and filtered the signals between 250 Hz and 6 kHz. Then
the sampling rate was 40 kHz. After that, threshold detecting
was used to collect spike counts. We choose time periods
of 200ms before and after CR to decode motor intention and
classify which position the monkey would grasp (three-category
classification). In each trial, a neural activity vector (NAV) was
extracted from neural signals as the features [15], as is shown
in Fig. 4. A window size of 400ms was used with a bin size of
50ms and a total of 80 units were selected, and then compose
the NAV with 640 features.
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Fig. 4. The structure of neural data

B. Greedy sampling active learning

In iBMIs, it is not difficult to obtain a great deal of data, but
relatively expensive to label them. In this case, active learning
can proactively select the suitable samples to label. Yu and
Kim [16] proposed a series passive sampling approaches for
regression. In each iteration, these approaches require to update
the regeression model and predictions of unlabeled samples.
Wu modified the Greedy Sampling (GS) slightly, and named it
as GSx, where x means the input space [8]. Besides, he also
proposed Greedy Sampling on output space (named GSy) and
improved Greedy Sampling (named iGS). The core idea of
these active learning methods is to select the most representative
samples. In this subsection, we will briefly introduce these
three algorithms and suit them to the classification problem in
iBMIs.

1) GSx: The key idea of GSx is to select the most diverse
samples in the input space to label. We want to select K
samples from the unlabeled samples pool, which has N samples
{xn}Nn=1. We select the first sample which is closest to the
centroid of all N samples, and label it. Then, we attempt to
select the remaining K-1 samples incrementally. It is crucial
to make sure the current selected sample the most diverse by
computing its distance to the other samples. Finally, GSx trains
the model by these selected K samples.

In general, the first k samples are assumed to have been
selected. There is the remaining N-k samples, {xn}Nn=k+1, in
the pool, and all of them is unlabeled. GSx decides the selected
samples by computing its distance to each of the k labeled
samples:

dxnm = ‖xn − xm‖ , m = 1, . . . , k;n = k + 1, . . . , N (1)

Choose the smallest from dxnm, named dxn, as the shortest
distance from xn to the other labeled samples:

dxn = min
m

dxnm, n = k + 1, . . . , N (2)

Finally, select the sample with the maximum dxn to label.
In conclusion, the first selected sample is closest to the

centroid to label. In each subsequent iteration, the most
representative sample (farthest to the labeled samples in input
space) is selected to label.

2) GSy: GSy pays attention to the diversity in the output
space instead of the input space.

In order to select K samples to label, K0 samples are selected
by GSx firstly, where K0 is the minimum number required to
train a classifier or regression model. Next, assumed k (k ≥ K0)
samples have been selected by GSy, and labeled with outputs
{ym}km=1. Then, select the remaining K-k samples:

dynm = ‖f (xn)− ym‖ , m = 1, . . . , k;n = k + 1, . . . , N
(3)

dyn = min
m

dynm, n = k + 1, . . . , N (4)

select the sample with the maximum dyn to label. In the above
equation, different from regression problem in [8], f(x), in
the form of [p0, p1, p2], is the result of the a neural network
classifier, which represents each probability of every class
(the highest probability is then used as the category label).
Similarly, ym is also in the form of [p0, p1, p2] computing
by the classifier. This intermediate value can well reflect the
specificity of network output, so it is decided to use the norm
of the intermediate values vector to measure the specificity of
output value and measure the diversity of the output space.

In brief, GSy selects a few samples by GSx firstly. In every
subsequent iteration, to achieve diversity, we select the sample
which is furthest to all selected samples before in output space.

3) iGS: Sometimes, GSy can’t guarantee the diversity of
the most sensitive predictor as expected for it only consider
diversity of output space. Thus, we improved its performance
by combine input and output space, and named it as iGS.

Similarly, we select first K0 samples by GSx, where K0 is
the minimum number required to train a classifier or regression
model (sometimes set it to be the number of features in the
input space). Next, assumed k (k ≥ K0) samples have been
selected by iGS, and labeled with outputs {yn}Nn=k+1. To
select the next K-k samples, iGS computes first dxnm in Eq. 1
and dynm in Eq. 3, and dxynm by following equation:

dxyn = min
m

dxnmdynm, n = k + 1, . . . , N (5)

select the sample with the maximum dxyn to label.
Since ‖f (xn)− ym‖ cannot be directly used to represent

the diversity of samples in output space like [8], we also use the
intermediate output [p0, p1, p2] of neural network to represent
each probability of every class.

In summary, iGS selects K0 samples using GSx firstly. In
order to achieve diversity among the selected samples, we
selected the sample which is furthest to all selected samples
before in the input and output space, in every subsequent
iteration.

C. Denoise raw data

The GSx, GSy and iGS, these algorithms are based on
greedy sampling to select samples to label. However, this idea
guarantees the diversity of samples, while making it easy to
select the abnormal points, especially when the sample scale is
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relatively small. When there are ”abnormal points” in the raw
data, these data cannot represent the whole data set. However,
because of the large difference from normal data, these points
are easy to be selected by the active learning algorithm, which
leads to the unstable prediction accuracy in the early and
middle stages. In next section, it will be exhibited that the
classification accuracy fluctuates greatly when the number of
sample selection is small (less than 5%), even lower than the
accuracy of random selection.

One-class-SVM is suitable for denoising in a certain pro-
portion, or in cases where most of the known training samples
are positive samples and few are negative samples. One-
class-SVM has a good application effect in the problem of
denoising only one kind of data. In this study, we used One-
class-SVM to denoise the original data, and then applied
three active learning algorithms to realize the classification
of the electrophysiological data in iBMIs. This method is
named denoised GSx (DGSx). For clarity, we have listed the
pseudocode for DGSx in Algorithm 1:

Algorithm 1 The DGSx AL algorithm

Input: N unlabeled samples, {xn}Nn=1

K, the maximum number to query
Output: The classification model f(x)

1: // Raw data denoising
2: Set Z = {xn}Nn=1 , and S = ∅
3: Remove the abnormal points from Z by One-class-SVM,

the sample set after denoising is Z ′ = {xn}N
′

n=1

4: // Initialize the first selection
5: Identify x′, the cloest sample to the controid of Z ′

6: Move x′ from Z ′ to S
7: Re-index the sample in S as x1, and the samples in Z ′ as

{xn}N
′

n=2;
8: // Select K − 1 more samples incrementally
9: for k = 1, . . . ,K − 1 do

10: for n = k + 1, . . . , N ′ do
11: Compute dxn in (2)
12: end for
13: Identify the x′ that has the largest dxn;
14: Move x′ from Z ′ to S;
15: Re-index the samples in S as {xm}k+1

m=1, and the
samples in Z ′ as {xn}N

′

n=k+2;
16: end for
17: Query to label all K samples in S;
18: Construct the classification model f(x) from S.

Similarly, the pseudocode of denoised GSy (DGSy) is shown
in Algorithm 2:

Finally, the pseudocode of denoised iGS (DiGS) is in
Algorithm 3:

III. RESULTS

A. Greedy sampling active learning in the iBMIs

This section will demonstrate the application of three
active learning algorithms in iBMIs. Four days of monkey

Algorithm 2 The DGSy ALR approach.

Input: N unlabeled samples, {xn}Nn=1

K, the maximum number to query
Output: The classification model f(x)

1: // Raw data denoising
2: Set Z = {xn}Nn=1 , and S = ∅
3: Remove the abnormal points from Z by One-class-SVM,

the sample set after denoising is Z ′ = {xn}N
′

n=1

4: // Initialize the first selection
5: Identify x′, the cloest sample to the controid of Z ′

6: Move x′ from Z ′ to S
7: Re-index the sample in S as x1, and the samples in Z ′ as

{xn}N
′

n=2;
8: // Select K0 − 1 more samples incrementally using GSx
9: Identify K0, the minimum number of labeled samples

required to construct f(x);
10: for k = 1, . . . ,K0 − 1 do
11: for n = k + 1, . . . , N ′ do
12: Compute dxn in (2)
13: end for
14: end for
15: Query to label the K0 samples in S;
16: Construct the classification model f(x) from S;
17: // Select K −K0 more samples incrementally
18: for k = K0, . . . ,K − 1 do
19: for n = k, . . . , N do
20: Compute dyn n in (4);
21: end for
22: Identify the x′ that has the largest dyn;
23: Move x′ from Z ′ to S;
24: Re-index the samples in S as {xm}k+1

m=1, and the
samples in Z ′ as {xn}N

′

n=k+2;
25: Update the classification model f(x) using S.
26: end for

electrophysiological signals, named D1/D2/D3/D4, were used
in the experiment. As previously mentioned, each NAV has 640
features, and the electrophysiological data of monkey consists
of 630 NAV. So, the input data is 630× 640 dimensional. A
part of the 630 samples is selected to label to train the classifier,
and then the rest is used as the test set. The three algorithms
proposed were compared in this section (in Fig. 5). Generally,
as K increased, it’s intuitive that all algorithms performed
better, because more labeled training samples generally lead
to a more reliable classifier. As is shown in Fig. 5 :

(1) Compared with random algorithm, GSx, GSy and iGS
have advantage if the scale of selected data is large (more
than 10%), and the accuracy is improved by 5% to 10%. But
random selection performs better in the case of small data
scale (less than 5%).

(2) All proposed algorithms perform better than random
selection. This means GS active learning strategy will make it
easy to label data in iBMIs.

(3) From the best to the worst, the average performances
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Algorithm 3 The DiGS ALR approach.

Input: N unlabeled samples, {xn}Nn=1

K, the maximum number to query
Output: The classification model f(x)

1: // Raw data denoising
2: Set Z = {xn}Nn=1 , and S = ∅
3: Remove the abnormal points from Z by One-class-SVM,

the sample set after denoising is Z ′ = {xn}N
′

n=1

4: // Initialize the first selection
5: Identify x′, the cloest sample to the controid of Z ′

6: Move x′ from Z ′ to S
7: Re-index the sample in S as x1, and the samples in Z ′ as

{xn}N
′

n=2;
8: // Select K0 − 1 more samples incrementally using GSx
9: Identify K0, the minimum number of labeled samples

required to construct f(x);
10: for k = 1, . . . ,K0 − 1 do
11: for n = k + 1, . . . , N ′ do
12: Compute dxn in (2)
13: end for
14: end for
15: Query to label the K0 samples in S;
16: Construct the classification model f(x) from S;
17: // Select K −K0 more samples incrementally
18: for k = K0, . . . ,K − 1 do
19: for n = k, . . . , N do
20: Compute dxyn n in (5);
21: end for
22: Identify the x′ that has the largest dyn;
23: Move x′ from Z ′ to S;
24: Re-index the samples in S as {xm}k+1

m=1, and the
samples in Z ′ as {xn}N

′

n=k+2;
25: Update the classification model f(x) using S.
26: end for

of the four algorithms was iGS>GSy>GSx>random. iGS
outperformed other algorithms with the stable accuracy over
98%.

B. Denoised greedy sampling active learning

The outliers in the original data will influence the selecting
results of active learning algorithm, leading to accuracy
fluctuations. It is especially obvious in the case of small size
of data. Therefore, we adopted One-class-SVM to denoise
raw data, and apply denoised greedy sampling algorithms. We
removed the outliers, and projected it to 2D space by Principal
Component Analysis (PCA). As is shown in Fig. 6:

After removing outliers, the accuracy of classifier went up
and accuracy fluctuates went down obviously. As a contrast,
classical active learning methods, QBC and US were also used
to classify neural signals. The result is shown in Fig. 7, Fig. 8
and Fig. 9. We can conclude that:

(1) As was expected, the fluctuation of accuracy decreased
after denoising, especially when selected data is less than 5%.
The result is clearly shown in Fig. 7.

(a) D1 (b) D2

(c) D3 (d) D4

Fig. 5. The comparison accuracy of GSX/GSY/iGS/random (a)D1 (b)D2
(c)D3 (d)D4

Fig. 6. Denoised original data and diminished by PCA to 2D space

(2) From best to worst, the ranking of the algorithms was
DiGS>DGSy>QBC>US>DGSx>random. On average, the
accuracy of DGSy or DiGS is 10% to 15% more accurate than
QBC and US when selected data is less than 5%, as Fig. 8.

(3) Consistent with the above description, DGSx/DGSy
outperformed random selection and QBC/US. The average
maximum accuracy of each algorithm is shown in Fig. 9.

(4) The standard deviations of DGSx/DGSy/DiGS are smaller
than classical active learning algorithms (QBC and US).
Understandably, it is denoising raw data that results in stable
performance of the classifiers.

After removing abnormal data, all of the three kinds of
classification accuracy are improved, and the accuracy fluctuates
decreased significantly at the same time. Through experiments,
it is easy to see that the proposed algorithms outperformed
classical active learning algorithms (QBC and US) in neural
signal classification, verifying the validity of them.

IV. CONCLUSIONS

Beneficially, iBMIs translate brain signals into commands to
control external devices. But in practice, it would be difficult
to obtain an accurate classifier without a large number of
samples. At the same time, it is time-consuming to label these
considerable unlabeled samples. In this paper, we creatively
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(a) GSx/DGSx D1 (b) GSy/DGSy D1 (c) iGS/DiGS D1

(d) GSx/DGSx D2 (e) GSy/DGSy D2 (f) iGS/DiGS D2

(g) GSx/DGSx D3 (h) GSy/DGSy D3 (i) iGS/DiGS D3

(j) GSx/DGSx D4 (k) GSy/DGSy D4 (l) iGS/DiGS D4

Fig. 7. The performances of DGSx/DGSy/DiGS

Fig. 8. Performance of six algorithms. (a) The accuracy of six algorithms.
(b) Classification accuracy when the queries is 5%

Fig. 9. Comparison of maximum accuracy

put forward the greedy sampling algorithm in iBMIs. However,
they tend to select the abnormal points in the raw data, which
will reduce the performance of classifier. We proposed three
denoised greedy sampling algorithms (DGSx, DGSy and DiGS),
improving the performance of original algorithms. Denoising
ensures the accuracy and stability of decoding, especially when
the labeled data is less than 5%, which is significant in practice.
Compared with classical active learning approaches, QBC and
US, the outstanding advantages of our algorithms are verified.

Besides classification problems, we will also try to combine
active learning with transfer learning for regression problems.
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