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Abstract— Multi-view learning improves the learning per-
formance by utilizing multi-view data: data collected from
multiple sources, or feature sets extracted from the same
data source.This approach is suitable for primate brain state
decoding using cortical neural signals. This is because the
complementary components of simultaneously recorded
neural signals, local field potentials (LFPs) and action
potentials (spikes), can be treated as two views. In this
paper, we extended broad learning system (BLS), a recently
proposed wide neural network architecture, from single-
view learning to multi-view learning, and validated its per-
formance in decoding monkeys’ oculomotor decision from
medial frontal LFPs and spikes. We demonstrated that
medial frontal LFPs and spikes in non-human primate do
contain complementary information about the oculomotor
decision, and that the proposed multi-view BLS is a more
effective approach for decoding the oculomotor decision
than several classical and state-of-the-art single-view and
multi-view learning approaches.

Index Terms— Broad learning system, local field poten-
tials, action potentials, multi-view learning, primate oculo-
motor decision.

I. INTRODUCTION

MULTI-VIEW learning attempts to improve the learning
performance by utilizing multi-view data, which can
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be collected from multiple data sources, or different feature
sets extracted from the same data source. For example, in an
invasive brain-machine interface (BMI) using electrodes [1],
effective BMI cursor control can be achieved using action
potentials (spikes), which are high-pass filtered neural signals,
or local field potentials (LFPs), which are low-pass filtered
neural signals measured from the same electrodes. The spikes
and LFPs can represent two views of the same task.

There have been a few studies on applying multi-view
learning to human brain state decoding. Kandemir et al. [2]
combined multi-task learning and multi-view learning in
decoding a user’s affective state, by treating different types
of physiological sensors (e.g., electroencephalography, electro-
cardiography, etc.) as different views. Pasupa and Szedmak [3]
used tensor-based multi-view learning to predict where peo-
ple are looking in images (saliency prediction), by treat-
ing the image and the user’s eye movement as two views.
Spyrou et al. [4] used multi-view learning to integrate spatial,
temporal, and frequency signatures of electroencephalography
signals for interictal epileptic discharges classification. How-
ever, to our knowledge, no one has applied multi-view learning
to non-human primate brain state decoding using invasive
signals like LFPs and spikes (more details can be found in
in Section IV-G).

A broad learning system (BLS) [5] is a flexible neural
network, which can incrementally adjust the number of nodes
for the best performance. It has achieved comparable per-
formance, with much less computational cost, to deep learn-
ing approaches in two applications [5]. The main difference
between a BLS and a deep learning model is that BLS
improves the learning performance by increasing the width,
instead of the depth, of the neural network. This paper pro-
poses a multi-view BLS (MvBLS), which extends BLS from
traditional single-view learning to multi-view learning, and
applies it to monkey oculomotor decision decoding from both
LFP and spike features. By using features from different views
in generating the enhancement nodes, the proposed MvBLS
can significantly outperform some classical and state-of-the-
art single-view and multi-view learning approaches.

The main contributions of this paper are:
1) We propose three different MvBLS architectures, which

have comparable performances but different computa-
tional cost.

2) We apply MvBLS to monkey oculomotor decision
decoding using neural signals recorded in the medial
frontal cortex, and demonstrate that it outperformed
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Fig. 1. The architecture of a BLS [5]. Diverse linear de-noised features
� are extracted from data �, and further mapped into nonlinear features
�. Linear features � and nonlinear features � are then concatenated to
predict �.

some classical and state-of-the-art single-view and
multi-view learning approaches.

3) We verify through extensive experiments that combining
LFP and spike features can improve the decoding per-
formance in monkey oculomotor decision classification.
This shows that, at least in this context, LFPs and spikes
in the medial frontal cortex contain complementary
information about oculomotor decisions.

The remainder of this paper is organized as follows:
Section II introduces the single-view BLS and our proposed
MvBLS. Section III describes the neurophysiological dataset
used in this work, and the experimental results. Section IV
presents some additional discussions. Finally, Section V draws
conclusions.

II. BLS AND MVBLS

This section introduces a single-view BLS and our proposed
MvBLS for multi-class classification.

A. Broad Learning System (BLS)

Single-layer feed-forward neural networks are universal
approximators when the underlying function is continuous [6],
and have been used in numerous applications. Random vector
functional neural networks (RVFLNNs) accelerate single-layer
feed-forward neural networks by randomly generating the
weight matrix [7]. BLS is a further improvement of the
RVFLNN.

In an RVFLNN, the input and output layers are directly con-
nected. In a BLS, the input layer first passes through a feature
extractor for dimensionality reduction and noise suppression.
Due to the use of sparse auto-encoders, the extracted features
are more diverse. This helps improve the generalization per-
formance.

Let X ∈ R
N×M be the data matrix, where N is the number

of observations, and M the feature dimensionality. Let Y ∈
R

N×C be the one-hot coding matrix of the labels of X, where
C is the number of classes. The architecture of a BLS is shown
in Fig. 1. It first constructs feature nodes Z from X, and then
enhancement nodes H from Z. Finally, BLS estimates Y from
both Z and H.

The steps to build a BLS are:
1) Construct the linear feature nodes1 Z. Let n be the

number of groups of features nodes, and m be the
number of features nodes in each group. We first con-
catenate X with an all-one bias vector 1 ∈ R

N×1 to
form the augmented data matrix X� = [X 1], then
construct each of the n groups of feature nodes, {Zi }n

i=1,
individually. For the i th group of feature nodes Zi ,
we first randomly generate uniformly distributed feature
weights Wr ∈ R

(M+1)×m and compute the random
feature nodes Zri = X�Wr , then use least absolute
shrinkage and selection operator (LASSO) to obtain
sparse weights Wei ∈ R

(M+1)×m:

Wei = arg min
W

(
1

2
||Zri W − X�||2F + λ1||W||1,1)

T , (1)

where ||W||1,1 = ∑m
i=1

∑M+1
j=1

∣∣wi j
∣∣, and λ1 is

the L1 regularization coefficient. Alternating direction
method of multipliers [8] is applied to solve (1). Then,
we construct Zi = X�Wei , and Z = [Z1, . . . , Zn].

2) Construct the k nonlinear enhancement nodes H. Let ξ
be the hyperbolic tangent sigmoid function, i.e.,

ξ(x) = 2

1 + e−2x
− 1 (2)

then

H� = [Z, 1]Wh, (3)

H = ξ

(
sH�

max(abs(H�))

)
, (4)

where Wh ∈ R
(nm+1)×k is a matrix of the orthonormal

bases of a randomly generated uniformly distributed
weight matrix in R

(nm+1)×k , s is a scalar normalization
factor, and max(abs(H�)) is the maximum absolute value
of all elements in H�. The goal of sH�

max(abs(H�)) is to
constrain the input to ξ to [−s, s], i.e., it performs
normalization.

3) Calculate Wo ∈ R
(nm+k)×C , the weights from [Z, H] to

Y. Ridge regression is used to compute Wo, i.e.,

Wo = arg min
W

(||[Z, H]W − Y||2F + λ2||W||2F )

= (λ2I + [Z, H]T [Z, H])−1[Z, H]T Y, (5)

where λ2 is the L2 regularization coefficient.

The pseudocode of BLS is given in Algorithm 1. Through
n random feature weight matrices Wr and L1 regularization,
BLS extracts multiple sets of diverse linear de-noised fea-
tures Z (which help increase its generalization ability). Then,
orthogonal mapping and sigmoid functions are used to con-
struct the enhancement nodes H to introduce more nonlinearity

1In Section III-A of [5], it is stated that “In our BLS, to take the advantages
of sparse autoencoder characteristics, we apply the linear inverse problem
in (7) and fine-tune the initial Wei to obtain better features.” However,
its context and Algorithms 1-3 use randomly initialized Wei , and do not
mention exactly how the sparse autoencoder is used. Here we describe the
BLS procedure according to their sample code at http://www.broadlearning.ai/,
which includes the details on how the sparse autoencoder is implemented.
We also compared Wei with and without sparse autoencoder, and found that
the former indeed worked better.
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Algorithm 1 The Single-View BLS Training Algorithm [5]
.
Input: X ∈ R

N×M , the training data matrix;
Y ∈ R

N×C , the corresponding one-hot coding label
matrix of X;

n, the number of feature node groups;
m, the number of feature nodes in each group;
k, the number of enhancement nodes;
s, the normalization factor;
λ1, the L1 regularization coefficient for determining

Wei ;
λ2, the L2 regularization coefficient for determining

Wo.
Output: BLS weight matrices Wei ∈ R

(M+1)×m (i =
1, . . . , n), Wh ∈ R

(nm+1)×k , and Wo ∈ R
(nm+k)×C .

Construct X� = [X, 1]
for i = 1 to n do

Initialize Wr randomly;
Calculate Zri = X�Wr ;
Calculate Wei using (1);
Calculate feature nodes Zi = X�Wei ;

end for
Construct Z = [Z1, . . . , Zn];
Construct an orthonormal basis matrix Wh ∈ R

(nm+1)×k

from a randomly generated matrix in R
(nm+1)×k ;

Calculate the enhancement nodes H using (3) and (4);
Calculate Wo using (5).

(which help increase its model fitting power). Finally, Z and
H are concatenated as the features for predicting Y.

B. Multi-View Broad Learning System (MvBLS)

BLS has achieved comparable performance, with much less
computational cost, with deep learning approaches on two
single-view image datasets [5]. However, it is not optimized
for multi-view data. This subsection extends single-view BLS
to multi-view.

The architecture of the proposed MvBLS is shown in Fig. 2.
Without loss of generality, we only consider two views. The
extension to more than two views is straightforward. The
general idea is to construct the linear de-noised feature nodes
of each view separately, concatenate the feature nodes from
all views to construct the nonlinear enhancement nodes, and
finally fuse the feature nodes and enhancement nodes together
for prediction. By separating the two views in the first layer
of the MvBLS and optimizing ZA and ZB separately, we may
obtain better features than optimizing Z = [ZA ZB ] directly
(as in the case that we concatenate XA and XB and feed them
altogether into a single BLS), because Z may be too long to
be optimized effectively.

Let the two views be A and B , the corresponding data
matrices be XA ∈ R

N×MA and XB ∈ R
N×MB (MA and MB

are the feature dimensionality of Views A and B , respectively),
and the shared label matrix be Y ∈ R

N×C . The procedure for
constructing the MvBLS is:

Fig. 2. Architecture of the proposed MvBLS. Diverse linear de-noised
features �A and �B are extracted from Views A and B, respectively. �A

and �B are then mapped into nonlinear features �. �A, �B and � are
next concatenated to predict �.

1) Construct the feature nodes ZA = [ZA
1 , . . . , ZA

n ] for
View A, and ZB = [ZB

1 , . . . , ZB
n ] for View B, using

Step (1) of Algorithm 1.
2) Construct the enhancement nodes H, using the con-

catenated feature nodes [ZA, ZB ] from both views and
Step (2) of Algorithm 1.

3) Calculate Wo ∈ R
(2nm+k)×C , the weights from

[ZA, ZB , H] to Y. Again, ridge regression is used to
compute Wo. Let Z� = [ZA, ZB , H]. Then,

Wo = arg min
W

(||Z�W − Y||2F + λ2||W||2F)

= (λ2I + Z�T Z�)−1Z�T Y, (6)

where λ2 is the L2 regularization coefficient.

The pseudocode for MvBLS is shown in Algorithm 2.

III. EXPERIMENT AND RESULTS

This section applies BLS and MvBLS to monkey oculo-
motor decision classification, and compares their performance

Algorithm 2 The Proposed MvBLS for Two Views

Input: XA ∈ R
N×MA , the training data matrix for View A;

XB ∈ R
N×MB , the training data matrix for View B;

Y ∈ R
N×C , the corresponding one-hot coding label

matrix;
n, the number of feature node groups;
m, the number of feature nodes in each group;
k, the number of enhancement nodes;
s, the normalization factor;
λ1, the L1 regularization coefficient for determining

Wei ;
λ2, the L2 regularization coefficient for determining

Wo.
Output: MvBLS weight matrices WA

ei
∈ R

(MA+1)×m , WB
ei

∈
R

(MB+1)×m (i = 1, . . . , n), Wh ∈ R
(2nm+1)×k , and Wo ∈

R
(2nm+k)×C

Calculate WA
ei

and WB
ei

using XA, XB , Y, and Step (1) of
BLS to construct the feature nodes ZA and ZB ;
Calculate Wh using ZA , ZB , and Step (2) of BLS;
Calculate Wo using (6).
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Fig. 3. Sequence of events in the oculomotor gambling task. The figure is
modified from Figure 2B in [9]. In the ‘target’ step, two visual cues
appeared in two random directions. After the visual cues were presented,
the monkey made a choice between the two options by making a saccade
to the corresponding visual cue (‘saccade’ step), indicted by the black
arrow (the black arrow was artificially added to the figure to better explain
the experiment design, but it was not included in the actual visual cue
displayed to the monkeys). The lines at the bottom indicate the duration
of various time periods in the gambling task.

with those using several classical and state-of-the-art single-
view and multi-view learning approaches.

A. The Neurophysiology Experiment

The invasive neurophysiological experimental setup used
here and animal behavior were reported in [9]. All animal
care and experimental procedures were in compliance with the
US Public Health Service policy on the humane care and use
of laboratory animals, and were approved by Johns Hopkins
University Animal Care and Use Committee.

Two male rhesus monkeys (Monkey A: 7.5 kg; Monkey I:
7.2 kg) were trained to perform an oculomotor gambling task,
as shown in Fig. 3. In each trial, the monkeys chose between
two gamble options by making an eye movement (saccade)
towards one of the visual cues. Two visual cues were randomly
presented in two of four fixed locations (top right, bottom
right, top left, and bottom left). Each cue was comprised of
two colors (from a four-color library of cyan, red, blue, and
green) and each color was associated with an amount of reward
(1, 3, 5 to 9 units of water respectively, where 1 unit equaled
30 μL). The background color of a visual cue was cyan (small
reward), and the foreground color was either red, or blue,
or green (larger reward). The proportion of the two colors
represented the probability of winning the corresponding
reward. For the red/cyan target in Fig. 3, there was a 60%
probability of having one unit of water (cyan color), and a
40% probability of having three units of water (red color). The
expected reward value would then be 0.6 × 1 + 0.4 × 3 = 1.8
units of water. There were a total of seven gamble options,
representing three different expected reward values, as
shown in Fig. 4.

Neural signals from the monkeys’ supplementary eye field
in the medial frontal cortex were recorded with one or more
tungsten electrodes, and the monkeys’ corresponding choices
were recorded using an eye tracking system (Eye Link,
SR Research Ltd, Ottawa, Canada).

Fig. 4. The seven visual cues used in the gambling task. The figure is
modified from Figure 2A in [9]. Four different colors (cyan, red, blue, and
green) indicated different amounts of reward (increasing from 1, 3, 5 to
9 units of water, where 1 unit equaled 30 µL). For example, the expected
value of the right green/cyan target is: 9 units (reward amount) × 0.2
(reward probability) + 1 unit (reward amount) × 0.8 (reward probability) =
2.6 units.

The goal of our study was to investigate the task of decoding
eye movements (choice intention) from neural signals in the
primate medial frontal cortex, which are causally involved in
risky decisions [10].

B. Datasets

Forty-five datasets [9] were recorded from 45 experiment
sessions from the two monkeys (33 from Monkey A, and
12 from Monkey I). Their statistics are shown in Table I,
where d1-d4 denote the four different saccade directions
(classes), nE the number of electrodes in recording the LFPs,
and nU the number of units in recording the spikes.

For each recording, electrodes were lowered into the mon-
keys’ supplementary eye field using electric microdrives.
While the monkeys were preforming the task, activity was
recorded extracellularly using 1 to 4 tungsten microelectrodes
with an impedance of 2-4 M�s (Frederick Haer, Bowdoinham,
ME, USA) spaced 1-3 mm apart. Neural activity was measured
against a local reference, a stainless steel guide tube, which
carried the electrode array and was positioned above the dura.

At the preamplifier stage, signals were processed with
0.5 Hz 1-pole high-pass and 8k Hz 4-pole low-pass anti-
aliasing Bessel filters, and then divided into two streams for
the recording of LFPs and spiking activity. The stream used
for LFP recording was amplified (500-2000 gain), processed
by a 4-pole 200 Hz low-pass Bessel filter, and sampled at
1000 Hz. The stream used for spike detection was processed
by a 4-pole Bessel high-pass filter (300 Hz), a 2-pole Bessel
low-passed filter (6000 Hz), and was sampled at 40k Hz. Up to
four template spikes were identified using principal component
analysis. The spiking activity was subsequently analyzed off-
line. To maximize task related information in the spiking
activity, all spike waveforms above the sorting threshold were
used in the analysis. They included spiking activities from
single units, multi-units, unsorted units, and units with very
low firing rates.

Fig. 5 illustrates two single units, two multi-units and an
unsorted units we identified in a representative recording.
A single-unit is defined as a well-isolated unit (see Fig. 5(b))
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TABLE I
STATISTICS OF THE 45 DATASETS

whose interspike interval (ISI) violation rate (see Fig. 5(c))
is smaller than 0.02. A multi-unit is defined as a unit with a
clear template waveform (online or offline); however, it is not
well isolated from other clusters of waveforms (see Fig. 5(b))
and has a high ISI violation rate (≥ 0.02). An unsorted
unit is defined by the Plexon Offline Sorter, whose spike
waveforms do not belong to any category of sorted waveforms
(see Figs. 5(b) and (e)) [11]–[13]. Finally, spikes were counted
within each millisecond bin. Therefore, the temporal frequency
of the spiking activity was 1000 Hz.

In the remainder of the paper, we refer both multi-units and
unsorted units as multi-units for simplicity.

C. LFP and Spike Feature Extraction

In this study, single-unit and multi-unit spikes were
smoothed through 100-point moving average. The LFPs and
processed spikes were then epoched to [0, 400) ms with 1 ms
temporal resolution after target onset for each electrode/unit.

Fig. 5. A representative recording (a-d) and population spike waveforms
from all experimental sessions. (a) Average spike waveforms for unsorted
unit, multi-units, and single-units recorded from the same electrode;
(b) scatter plot of spike waveforms using the first two principal com-
ponents; (c) ISI histogram of a single unit (bin width 1 ms); (d) cross-
correlograms between two single-units; and (e) average spike waveforms
of all recorded units (unsorted units are in grey).

The eye movement reaction times (the time between target
onset and eye movement onset) for the monkeys ranged from
100 ms to 300 ms. Therefore, the monkeys finished their eye
movement before the end of each trial.

Each trial had two views: the spike view and the LFP view.
The spike view had 400 ·nU features, where nU is the number
of units for spikes in Table I. For each LFP trial from each
electrode, power spectrum density of the 400-ms signal was
computed by the Welch’s method with a Hamming window
of 88 ms and 50% overlap. Then, log-power in eight frequency
bands (theta, 4-8 Hz; alpha, 8-12 Hz; beta 1, 12-24 Hz; beta 2,
24-34 Hz; gamma 1, 34-55 Hz; gamma 2, 65-95 Hz; gamma 3,
130-170 Hz; gamma 4, 170-200 Hz), as used in [14], were
calculated and concatenated with the 400-ms signal as the
features. Therefore, the LFP view had 408·nE features, where
nE is the number of electrodes for LFPs in Table I. Finally,
both spike and LFP features were z-normalized.

D. Algorithms

We compared the performance of different decoding algo-
rithms, including both single-view learning and multi-view
learning approaches:

1) Support vector machine (SVM), which uses error-
correcting output codes (ECOC) [15] for multi-class
classification. SVM is a classical statistical machine
learning approach, and has achieved outstanding per-
formance in numerous applications. The box constraint
C was chosen from {10−6, 10−4, · · · , 106} by nested
cross-validation. Each binary SVM classifier was solved
by sequential minimal optimization (SMO) [16], and the
optimization stopped if the gradient difference between
upper and lower violators obtained by SMO was smaller
than 0.001.
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TABLE II
MEAN AND STANDARD DEVIATION OF 4-CLASS CLASSIFICATION ACCURACIES (%) WHEN DIFFERENT

CLASSIFIERS AND FEATURES WERE USED

2) Ridge classification (Ridge), which performs ridge
regression to approximate the {0, 1} output of each class,
and then classifies the input to the class with the largest
output. The L2 regularization coefficient λ2 was chosen
from {10−6, 10−4, · · · , 106} by nested cross-validation.

3) BLS, which has been introduced in Section II-A.
We used normalization factor s = 0.8 and L1 regulariza-
tion coefficient λ1 = 0.001, and selected the number of
feature node groups n from {10, 20}, the number of fea-
ture nodes in each group m from {10, 20}, the number of
enhancement nodes k from {100, 500}, and the L2 reg-
ularization coefficient λ2 from {10−6, 10−4, · · · , 106},
using nested cross-validation. The alternating direction
method of multipliers [8] used to solve (1) for feature
nodes construction was iterative, and it terminated after
50 iterations.

4) Multi-view discriminant analysis with view-consistency
(MvDA) [17], which extends classical single-view linear
discriminant analysis to multi-view learning, and adds a
regularization term to enhance the view-consistency.

5) Multi-view modular discriminant analysis
(MvMDA) [18], which exploits the distance between
class centers across different views.

6) MvBLS, which has been introduced in Section II-B. Its
parameter tuning was the same as that for BLS.

Note that the first three algorithms can be used for both
single-view learning and multi-view learning. When they were
used in multi-view learning, we simply combined the features
from different views as a single view input to the classifier.
The last three approaches were used in multi-view learning
only. The subspace dimensionality of MvDA and MvMDA
was set to three (the number of classes minus one). After
subspace alignment, the subspace features of all views were
concatenated and fed into an ECOC-SVM classifier, where the
same nested cross-validation was conducted as in the SVM
approach. Linear kernel was employed in all SVMs.

We randomly partitioned each dataset into three subsets:
60% for training, 20% for validation, and the remaining 20%
for test. We repeated this process 30 times on each of the
45 datasets, and recorded the test classification accuracies as
our performance measure.

E. 4-Class Classification Using Only the LFPs

In the first experiment, we used only the LFPs in 4-class
classification. The classification accuracies in the 45 sessions,
each averaged over 30 cross-validation runs, are shown in the
bar graph in the top panel of Fig. 6, and also in the box plot in
the top-left panel of Fig. 7. The last group of the bar plot also
shows the average accuracies across the 45 sessions, whose
numerical values are given in Table II. Each standard deviation

TABLE III
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS, WHEN

ONLY THE LFP FEATURES (FIRST PART) AND THE SPIKE

FEATURES (SECOND PART) WERE USED IN

4-CLASS CLASSIFICATION

showed in Table II was computed from 30 average accuracies
of the 45 sessions. On average BLS slightly outperformed
SVM and Ridge, which was also true in 29 and 32 out of
the 45 individual sessions, respectively.

To find out whether there were statistically significant
differences between different algorithms, non-parametric mul-
tiple pairwise comparison tests using Dunn’s procedure [19],
with a p-value correction using the False Discovery Rate
method [20], were performed on the cross-validation accura-
cies. The null hypothesis in each pairwise comparison was the
probability of observing a randomly selected value from the
first group that is larger than a randomly selected value from
the second group equals 0.5, and it was rejected if p ≥ α/2,
where α = 0.05. The p-values, when only the LFP features
were used, are shown in the first part of Table III. There
was no statistically significant difference between any pair of
algorithms.

In summary, we have shown that when only the LFP fea-
tures were used, SVM, Ridge and BLS achieved comparable
classification performances (BLS may be slightly better, but
there was no statistically significant difference).

F. 4-Class Classification Using Only the Spikes

In the second experiment, we used only the spikes in 4-class
classification. The classification accuracies in the 45 sessions,
each averaged over 30 cross-validation runs, are shown in
the bar graph in the middle panel of Fig. 6, and also in
the box plot in the top-right panel of Fig. 7. The last group
of the bar graph shows the average accuracies across the
45 sessions, whose numerical values are also given in Table II.
For all algorithms, using spikes only achieved better classi-
fication accuracy than using LFPs only. On average Ridge
slightly outperformed BLS, which was also true in 32 indi-
vidual sessions. Interestingly, the opposite held when the
LFP features were used. This may indicate that LFPs and
spikes encode non-identical information about the oculomotor
decision.

Non-parametric multiple comparison tests were also per-
formed, and the p-values are shown in the second part of
Table III. There was no statistically significant difference
between any pair of algorithms.
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Fig. 6. 4-class classification accuracies of different algorithms, when different features were used.

In summary, we have shown that when only the spike
features were used, SVM, Ridge and BLS again achieved
comparable classification performance (Ridge may be slightly
better, but there was no statistically significant difference).

G. 4-Class Classification Using Both LFPs and Spikes

In the third experiment, we used both LFPs and spikes in
4-class classification. The classification accuracies of MvBLS
in the 45 sessions, each averaged over 30 cross-validation runs,
are shown in horizontal-axis of three scatter plots in the bottom
panel of Fig. 6, and also the box plot in the bottom panel of
Fig. 7. The average accuracies across the 45 sessions are given
in Table II. Observe that:

1) The proposed MvBLS using LFPs+Spikes outperformed
BLS using LFPs significantly, which is the best-
performing approach using LFPs.

2) The proposed MvBLS using LFPs+Spikes outperformed
Ridge using Spikes significantly, which is the best-
performing approach using Spikes.

3) On average, the two subspace multi-view learning algo-
rithms, i.e., MvDA and MvMDA, performed much
worse than the three single-view algorithms, i.e., SVM,
Ridge, and BLS.

TABLE IV
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS,

WHEN BOTH LFPS AND SPIKES WERE USED IN

4-CLASS CLASSIFICATION

4) On average, our proposed MvBLS outperformed the two
subspace multi-view learning algorithms. This suggests
that MvBLS can extract more discriminative features
and better fuse them than the other two approaches.

5) On average, our proposed MvBLS also outperformed
the three single-view learning algorithms. This suggests
that fusing the two views in a more sophisticated way
may be more advantageous than simply concatenating
and feeding them into a single-view classifier.

Non-parametric multiple comparison tests were also per-
formed, and the p-values are shown in Table IV, where the
statistically significant ones are marked in bold. There was
statistically significant difference between MvBLS and each
of the other five algorithms.
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Fig. 7. Boxplots of the 4-class classification accuracies of different
algorithms, using different features. The red line in the box indicates the
median, and the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. The whiskers extend to the most extreme
data points, excluding outliers.

TABLE V
NUMBER AND PERCENTAGE OF SESSIONS (AMONG THE 45 SESSIONS)

THAT LFPS+SPIKES OUTPERFORMED A SINGLE MODALITY OF

FEATURE ALONE

We also compared MvBLS with random guess in 4-class
classification. The results are shown in Fig. 8. Note that the
random guess approach obtained slightly different accuracies
in different sessions (not always exactly 25% in 4-class
classification), because different classes had different numbers
of trials. On average the 4-class classification accuracy of
MvBLS was about twice of that of random guess (47.94%
vs 25.04%), suggesting that a sophisticated machine learning
approach like MvBLS can indeed mine useful information
from LFPs and spikes.

Finally, to validate if LFPs and spikes do contain comple-
mentary information in from another perspective, we counted
the number of sessions that LFPs+Spikes achieved bet-
ter performance than LFPs or spikes only, and show the
results in Table V. Regardless of which classifier was
used, LFPs+Spikes always outperformed LFPs or Spikes
alone, in most sessions. Moreover, when MvBLS was
used, LFPs+Spikes outperformed the best LFPs performance
(among SVM, Ridge and BLS) in 40 sessions (88.89%), and
the best Spikes performance in 32 sessions (71.11%).

In summary, we have shown that LFPs and spikes con-
tain complementary information about the brain’s oculomotor
decision, and our proposed MvBLS can better fuse these
features than several classical and state-of-the-art single-view
and multi-view learning approaches.

IV. DISCUSSIONS

This section presents some additional discussions on the
proposed MvBLS.

A. 4-Class Classification Accuracy Versus the Number
of Electrodes/Units

Figs. 6 and 8 show that sometimes the 4-class classification
accuracy was very low, e.g., close to random guess (25.91%)
or permutation tests [9] with 95% confidence (31.93%). The
main reason is that the number of electrodes/units was small in
these cases. For example, the top panel of Fig. 6 also shows the
number of LFP electrodes in different sessions. It has a strong
correlation with the classification accuracy, regardless of which
classification algorithm was used. Particularly, the sessions
with the lowest classification accuracy (Sessions 20-24) had
the smallest number of electrodes. The middle panel of Fig. 6
shows the number of units in different sessions. Similar
patterns can be observed.

Next, we performed a deeper investigation on how the
number of electrodes in LFPs and the number of units in spikes
affected the performance of BLS.2

The LFPs were studied first. We identified all datasets
with three or more electrodes, and considered each one sepa-
rately. A dataset with three electrodes is used as an example
to illustrate our experimental procedure. In the experiment,
we randomly partitioned the dataset into 60% training, 20%
validation, and 20% test. Then, we increased the number of
chosen electrodes k from one to two and then to three; for each
k, we used LFPs from the corresponding electrodes to trained a
BLS and compute its test accuracy. All possible combinations
of k electrodes were considered, and the average test accuracy
was computed. After that, we repeated the data partition
30 times and computed the grand average test accuracies,
as shown in Fig. 9(a). Intuitively, the classification accuracy
increased with the number of electrodes. We would expect that
higher classification accuracy could be obtained with more
electrodes.

We next studied the decoding performance with spikes. The
results are shown in Fig. 9(b). The experimental procedure
was very similar to that for the LFPs, except one difference:
the number of units associated with different electrodes were
generally different, so the total number of units from k
electrodes could have different values. Take the first dataset
with four electrodes (they had 4, 5, 5 and 6 units, respectively)
as an example. All possible combinations of the 4 electrodes
were considered. There were C1

4 + C2
4 + C3

4 + C4
4 = 15

combinations, represented by the 15 blue circles in Fig. 9(b).
We then connected these circles in the inclusive order, i.e., if
two points A and B are on the same curve and A is on the
left of B , then the electrodes used to obtain A were contained
in the electrodes used to obtain B (e.g., A may be obtained
from Electrodes 1 and 2, and B from Electrodes 1, 2 and
3, or B from Electrodes 1, 2, and 4). As a result, unlike in

2We studied LFPs and spikes separately. Each time there was only one view,
and hence MvBLS degraded to BLS.
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Fig. 8. 4-class classification accuracies of permutation tests [9] with 95% confidence and MvBLS.

Fig. 9. BLS classification (4-class) accuracy versus (a) the number of
electrodes, and (b) the number of units. In (a), each curve represents
a different dataset. In (b), curves with the same end-point are from the
same dataset.

Fig. 9(a), where each dataset has only one curve, in Fig. 9(b)
each dataset may have multiple branches leading to the same
end-point. To make the curves more distinguishable, we only
show the results for 10 datasets in Fig. 9(b). In general,
the classification accuracy increased with the number of units,
which is intuitive.

B. 4-Class Classification Using Single-Unit and
Multi-Unit Spikes

We calculated the violation rate of the inter spike interval
(ISI), which equalled the proportion of ISI shorter than three
milliseconds. We defined a single-unit as a well isolated unit
when the ISI violation rate is less than 0.02 [21]. The statistics

are shown in Table I (nU denotes the number of units, nS
the number of single units, and nM the number of multi-
units. Generally, nU = nS +nM , except in the third and 33rd
datasets where one unit had almost no spikes and hence was
removed).

We studied the 4-class classification performance with
single-unit (denoted as sSpikes) and multi-unit (denoted
as mSpikes) and combined units (single-unit + multi-unit,
denoted as Spikes), respectively. For each condition, we per-
formed single-view and multi-view 4-class classification on
the 45 datasets for 30 times. The mean and standard deviation
of the test classification accuracies are shown in Table VI.
Observe that:

1) For classification using LFPs only, the features did not
change, but the accuracies changed very slightly between
three cases. This is because that the partition of training,
validation and test sets were different in these three
cases.

2) For classification using only spikes, Spikes had better
performance than sSpikes and mSpikes. This indicates
that Spikes contain more information than sSpikes and
mSpikes, which is intuitive.

3) For classification using both LFPs and spikes, LFPs +
Spikes had better performance than LFPs+sSpikes and
LFPs+mSpikes. This again indicates that Spikes contain
more information than sSpikes and mSpikes.

4) Combining LFP and spike features always improved the
decoding performance.

5) Our proposed MvBLS achieved the best decoding per-
formance in all conditions.

C. Binary Classification Using Single-Unit and
Multi-Unit Spikes

Four-class classification was considered in previous sub-
sections, where we decoded one location out of all four
possibilities. This subsection considers binary classification,
where we decode one location out of the two available choices.
Specifically, based on the classification confidences of the four
possible locations, we calculated the binary test accuracies
given the two locations available for choice. We performed
single-view and multi-view classification on the 45 datasets
for 30 times. The mean and standard deviation of binary test
classification accuracies are shown in Table VII.
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TABLE VI
MEAN AND STANDARD DEVIATION OF 4-CLASS CLASSIFICATION ACCURACIES (%) WHEN DIFFERENT CLASSIFIERS AND FEATURES WERE USED

TABLE VII
MEAN AND STANDARD DEVIATION OF BINARY CLASSIFICATION ACCURACIES (%) WHEN DIFFERENT CLASSIFIERS AND FEATURES WERE USED

The binary classification accuracies in Table VII are sig-
nificantly above chance (50%). Intuitively, they are also
much higher than their 4-class classification counterparts
in Table VI. However, the observations made in the pre-
vious subsection still hold. Specifically, Spikes outper-
formed sSpikes and mSpikes, LFPs+Spikes outperformed
LFPs+sSpikes and LFPs+mSpikes, combining LFP and spike
features always improved the decoding performance, and
our proposed MvBLS always achieved the best decoding
performance.

D. MvBLS Parameter Sensitivity

MvBLS has three structural parameters and three nomal-
ization/regularization parameters (n, m, k, s, λ1 and λ2 in
Algorithm 2). It is important to know the sensitivity of MvBLS
to them, which will provide valuable guidelines in selecting
these parameters in future applications.

By default n = 15, m = 15, k = 300, s = 0.8, λ1 = 0.001
and λ2 = 1. When studying the sensitivity of MvBLS to n,
we fixed m, k, s, λ1 and λ2 at their default values, and varied
n from 10 to 100. For each n on each dataset, we trained
30 MvBLSs on 30 different partitions of the dataset (80%
for training and 20% for test), and recorded the average test
accuracy across the 30 runs. Finally we took the average of
the 45 datasets, and show the results in the top-left panel of
Fig. 10. Similarly, we varied m from 10 to 100, k from 50 to
500, s from 0.25 to 2.5, λ1 from 10−5 to 0.1, and λ2 from
0.01 to 100, and show the results in Fig. 10. Observe that:

1) As n or m increased, the training accuracy increased
quickly, but the test accuracy slightly decreased. This
suggests that smaller n and m should be used for better
generalization performance, which is beneficial to the
computational cost.

2) The training and test accuracies almost did not change
with k and λ1. So, we can set k to be a small value

Fig. 10. MvBLS classification (4-class) accuracy versus its parameters.

to save the computational cost, and choose λ1 safely in
[0.00001, 0.1].

3) As s increased, the training accuracy increased slowly,
but the test accuracy almost did not change. So, we can
choose s safely in [0.25, 2.5].

4) As λ2 increased, the training accuracy decreased very
quickly, but the test accuracy first increased slightly and
then decreased slightly. This suggests that the regular-
ization should not be too small or too large, which is a
well-known fact in machine learning.

In general, we conclude that MvBLS is robust to its
parameters.

E. Computational Cost

Next, we compared the computational cost of different
algorithms, as in practice a faster algorithm is preferred over
a slower one, given similar classification accuracies.
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TABLE VIII
MEAN AND STANDARD DEVIATION OF RUNNING TIME (SECONDS; INCLUDING CROSS-VALIDATION TO IDENTIFY THE BEST MODEL PARAMETERS)

WHEN DIFFERENT CLASSIFIERS AND FEATURES WERE USED IN 4-CLASS CLASSIFICATION

We recorded the mean running time (including training,
validation and test time) of 45 sessions for different classifiers,
when different features were used. Since this process was
repeated 30 times, we obtained 30 mean running time for
each algorithm-feature combination. The mean and standard
deviation for each combination were computed from these
30 numbers and shown in Table VIII. The platform was a
Linux workstation with Intel Xeon CPU (E5-2699@2.20GHz)
and 500GB RAM. SVM was the most efficient single-view
learning algorithm, and MvBLS the most efficient multi-view
learning algorithm. Particularly, MvBLS was several times
faster than the other two state-of-the-art multi-view learning
approaches, and it also achieved the best performance. In sum-
mary, our proposed MvBLS is both effective and efficient.

It is important to note that identifying the best model
parameters in training is time-consuming, because a lot of
cross-validations are needed; however, once the optimal model
parameters are found, all models can be run very fast in test,
which involves mostly matrix operations.

To better illustrate the above point, we removed the valida-
tion set and compared SVM and MvBLS when both LFPs and
spikes were used as features. The box constraint of SVM was
set to 10−4, which was the most frequently chosen value in
Section III-G. The parameters of MvBLS were n = 15, m =
15, k = 300, s = 0.8, λ1 = 0.001 and λ2 = 1, which were
the default values in Section IV-D. We also compared them
with a multi-view deep learning approach, deep canonically
correlated autoencoders (DCCAE) [22]. DCCAE aligned the
two views of data in a common subspace and then used an
ECOC-SVM classifier for classification. Its parameters were
adjusted from the open source code3 by changing the mini-
batch size for the correlation and the reconstruction error
terms from 800 to 16, and the maximum number of epoches
from 14 to 9, and the box constraint of SVM was set to 1,
as they gave higher classification accuracies. We ran the three
models on each of the 45 sessions eight times. Each time
we randomly partitioned the datasets into 80% training and
20% test. The platform was a laptop computer with AMD
Ryzen 5 CPU (3550H@2.10GHz) and 16GB RAM, running
Windows 10 x64 and Matlab 2020a. The mean and standard
deviation of 4-class and binary classification accuracies on the
test set, as well as the computing time (including both training
and test on one dataset), are shown in Table IX.4 MvBLS
achieved the highest classification accuracies, and was also
the fastest.

3https://ttic.uchicago.edu/∼wwang5/dccae.html
4The accuracies here were slightly higher than those in Tables VI and VII,

because the training set was larger.

TABLE IX
MEAN AND STANDARD DEVIATION OF 4-CLASS AND BINARY

CLASSIFICATION ACCURACIES, AS WELL AS THE COMPUTING

TIME, FOR DIFFERENT MODELS, WHEN BOTH LFPS AND

SPIKES WERE USED AS FEATURES

Fig. 11. Two additional configurations of MvBLS. (a) MvBLS2;
(b) MvBLS3.

F. Additional MvBLS Approaches

In addition to the MvBLS model in Fig. 2, other MvBLS
architectures can also be configured, by constructing the inputs
to Y differently. Two additional configurations are shown in
Fig. 11, and denoted as MvBLS2 and MvBLS3, respectively.
Compared with MvBLS in Fig. 2, MvBLS2 in Fig. 11(a) first
constructs enhancement nodes HA from ZA and HB from ZB ,
and then feeds all of them into Y; so, it has more nodes and
weights than MvBLS. Compared with MvBLS2, MvBLS3 in
Fig. 11(b) further constructs enhancement nodes H from ZA

and ZB , and then feeds H, HA, HB , ZA and ZB into Y. So,
MvBLS3 has even more nodes and weights than MvBLS2.

The 4-class classification performances of MvBLS,
MvBLS2 and MvBLS3 in the 45 sessions are shown
in Fig. 12. Their classification accuracies were almost
identical, which is interesting, considering that MvBLS2 and
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Fig. 12. 4-class classification accuracies of the three different MvBLSs.

MvBLS3 had more parameters and connections. Indeed,
non-parametric multiple comparisons showed that there was
no statistically significant difference between any two of
them. Since MvBLS has much simpler configuration and is
easier to train, it is preferred in our application.

G. Related Work

Both LFPs and spikes contain information about the mon-
keys’ oculomotor decision, and there has been independent
research on both. Spikes are high-pass filtered neural signals,
which can be used to decode high-performance movement
control signals [23], [24]. However, since spikes often dete-
riorate as electrodes degrade over time, more stable LFPs,
which are low-pass filtered neural signals, are used in long
term BMIs [25]–[30].

Because LFPs and spikes can be recorded from the same
electrodes [31], and convey complementary information
[32]–[35], a natural approach is to combine them for more
accurate decoding [1], [14], [36]–[39].

Bokil et al. [36] trained two macaque monkeys to perform a
memory-saccade task and collected LFPs and spikes from the
lateral intraparietal area. Two-dimensional Fourier transforms
were performed to extract the features. Saccade prediction
was achieved by maximizing the log-likelihood function of the
observed neural activity. This approach was novel in that it did
not use trial start time or other trial-related timing information.
However, the performance degraded when switching from
the preferred-or-anti-preferred binary classification to four-
direction and eight-direction classifications.

Bansal et al. [39] trained two male macaque monkeys to
perform reach-and-grasp tasks in three dimensions, and col-
lected 192-channel LFPs and spikes from primary and ventral
premotor areas. Linear Gaussian state-space representation and
Kalman filter were then used to decode the reach-and-grasp
kinematics. The decoding was first conducted for each chan-
nel, then about 30 channels were iteratively chosen based on
the decoding performance (the Pearson correlation coefficient
between the measured and the reconstructed kinematics). This
approach required a large number of channels to be chosen
from, which may not available in many human and non-human
primate studies, including ours.

Hsieh et al. [14] trained one adult rhesus macaque to
perform a center-out-and-back task and collected 137-channel
LFPs and spikes from dorsal premotor cortex and ventral

premotor cortex of both hemispheres. They then developed
a multi-scale encoding model, a multi-scale adaptive learning
algorithm, and a multi-scale filter for decoding the millisecond
time-scale of spikes and slower LFPs. This approach solved a
trajectory regression problem, whereas we focused on oculo-
motor decision classification.

Most studies, except [39] and [14] introduced above have
not shown significant improvements in decoding performance,
compared with using LFPs or spikes alone. Our research has
shown that sophisticated machine learning approaches like
MvBLS can better fuse LFPs and spikes, and hence achieve
significant decoding performance improvements.

V. CONCLUSION

Multi-view learning is beneficial for decoding oculomotor
decisions using medial frontal neural signals from non-human
primates. This is because these simultaneously recorded neural
signals comprise both low-frequency LFPs and high-frequency
spikes, which can be treated as two views of the brain
state. In this paper, we have extended single-view BLS to
MvBLS, and validated its performance in monkey oculomo-
tor decision decoding from medial frontal LFPs and spikes.
We demonstrated that primate medial frontal LFPs and spikes
do contain complementary information about the oculomotor
decisions, and that the proposed MvBLS is a more effective
approach to use these two types of information in decoding the
decision, than several classical and state-of-the-art single-view
and multi-view learning approaches. Moreover, we showed
that MvBLS is fast, and robust to its parameters. Therefore,
we expect that MvBLS will find broader applications in other
primate brain state decoding tasks, and beyond.
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