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Abstract—With the development of medical artificial intel-
ligence, automatic magnetic resonance image (MRI) segmen-
tation method is quite desirable. Inspired by the power of
deep neural networks, a novel deep adversarial network, dilated
block adversarial network (DBAN), is proposed to perform
left ventricle, right ventricle and myocardium segmentation in
short-axis cardiac MRI. DBAN contains a segmentor along
with a discriminator. In the segmentor, the dilated block (DB)
is proposed to capture and aggregate multi-scale features.
The segmentor can produce segmentation probability maps
while the discriminator can differentiate the segmentation
probability map and the ground truth at the pixel level.
In addition, confidence probability maps generated by the
discriminator can guide the segmentor to modify segmentation
probability maps. Extensive experiments demonstrate that
DBAN has achieved the state-of-the-art performance on the
ACDC dataset. Quantitative analyses indicate that cardiac
function indices from DBAN are similar to those from clinical
experts. Therefore, DBAN can be a potential candidate for
short-axis cardiac MRI segmentation in clinical applications.

Index Terms—Cardiac MRI, Medical Image Processing,
Automatic Segmentation Method, Adversarial Network.

I. Introduction

CARDIOVASCULAR disease is the most fatal diseases
in the world even if the diagnostic procedures have

been facilitated thanks to the development of cardiac
imaging technologies [1]. The short-axis cardiac magnetic
resonance image (MRI) in particular, as a non-invasive
imaging modality, is widely used by physicians for the
diagnosis of cardiovascular diseases [2]. The important
reason is that short-axis cardiac MRI with high spatial
and contrast resolution supports accurate evaluation of
cardiac function. In clinical cardiology, clinicians manually
delineate the left ventricle (LV), right ventricle (RV), and
myocardium (MYO) in short-axis cardiac MRI. In Fig. 1,
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examples are presented to show the delineated short-axis
cardiac MRI. As the prerequisite, the delineated short-
axis cardiac MRI is used to calculate cardiac function
indices such as myocardium mass in end-diastolic phase,
ventricular volume and ejection fraction. These cardiac
function indices are important references to the diagnosis
of cardiovascular diseases. However, manual delineation is
both time-consuming and prone to subjective errors due to
the large number of MRI slices and ambiguous boundaries.
Therefore, automatic and accurate short-axis cardiac MRI
segmentation approaches are demanded urgently.

RV

MYO

LV
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Fig. 1: Left: manually delineated short-axis cardiac MRI.
Right: mask of manually delineated short-axis cardiac
MRI.

In order to perform short-axis cardiac MRI segmen-
tation, some machine learning methods were proposed.
However, many of them were semi-automatic methods [3].
In order to facilitate the development of automatic short-
axis cardiac MRI segmentation technologies, Automated
Cardiac Diagnosis Challenge (ACDC) was launched in
Medical Image Computing and Computer Assisted Inter-
vention (MICCAI) 2017 where the ACDC dataset was
released [4]. Note that the ACDC is still active. Hence
it is reasonable to believe that approaches from ACDC
leaderboard represent state-of-the-art level.

In this paper we propose a novel deep adversarial
network which consists of a segmentor and a discriminator.
Under the constraint of discriminator, the segmentor can
produce accurate segmentation results automatically. The
main contributions of the work are summarized as follows:

1) A novel network, dilated block adversarial network
(DBAN), is proposed for the automatic LV, RV and MYO
segmentation. Within the segmentor, the dilated block
(DB) is designed to capture and aggregate multi-scale
features without information loss or increasing too many
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parameters. This innovation, to the best of our knowledge,
is a pioneering study in combining DB with adversarial
network to perform short-axis cardiac MRI segmentation.

2) In the discriminator, a fully convolutional scheme
is adopted to differentiate the segmentation probability
map from the ground truth at the pixel level. Moverover,
our discriminator can produce confidence probability maps
helping the segmentor refine the segmentation results.

The paper is structured as follows: The related works are
reviewed in Section II. The proposed method is detailed
in Section III. In Section IV, we present and analyze the
experiment results, and finally the conclusion is drawn in
Section V.

II. Related Work
Starting from the 21st century, machine learning ap-

proaches have been used for segmentation. For example,
a region growing method was proposed by Codella et
al. [5] to segment the LV. However, the seed points
needed to be picked manually. Pluempitiwiriyawej et al.
[6] presented a novel stochastic active contour scheme
(STACS) which could overcome some unique challenges in
cardiac MRI, such as adverse effect of papillary muscles
on segmentation. Unfortunately, this method was less
sensitive to the contour and the accuracy was still limited.
In addition, Zhang et al. [7] proposed a novel external force
named as gradient vector flow over manifold (GVFOM)
for active contours to perform image segmentation. The
GVFOM active contours presented good results with
respect to cardiac image segmentation. However, this
method required an appropriate choice of parameters.
Some researchers also used a priori probabilistic atlas
to perform ventricular segmentation [8], which primarily
required a priori knowledge about shape and appearance.
The performance of this approach relied on whether prior
knowledge was sufficient [9]. In general, there are still some
drawbacks in machine learning methods, such as manual
interaction or limited accuracy.

With the rapid development of deep learning technol-
ogy, many automatic segmentation approaches have been
proposed in the last few years. Jonathan Long et al.
[10] proposed fully convolutional networks (FCN) which
opened a new period of the field of automatic segmen-
tation. Based on FCN, U-Net [11] was proposed which
can produce reasonable segmentation result with a small
training dataset. By adding skip connections between the
contracting and expanding paths, this network architec-
ture is very effective in medical image processing. Except
for the above classic segmentation architectures, Ngo et
al. [12] introduced a new methodology that combined
deep learning and level set to train small datasets for
the automated segmentation of the LV. Wang et al.
[13] developed the cascaded segmentation and regression
network (CSRNet) which firstly generated contours of the
LV and then estimated the desired LV metrics. In order
to improve segmentation performance, some researchers
also used dilated convolution in neural networks to aggre-
gate features [14] [15]. Generally, the emergence of deep

learning based method further improves the performance
of automatic segmentation.

In addition to the works mentioned above, Goodfellow
et al. [16] proposed generative adversarial networks (GAN)
which borrowed the idea from game theory. Based on
GAN, conditional generative adversarial nets (CGAN) was
raised by Mirza et al. [17]. This architecture consisting of
a generator and a discriminator could produce particular
data, which provided researchers with new ideas. Luc et al.
performed segmentation using adversarial networks firstly
[18]. Since then, many segmentation methods based on ad-
versarial networks have emerged [19]. For example, Zhang
et al. introduced a GAN-based method with a multi-scale
feature fusion (MSFF) module to perform cardiac MRI
segmentation [20]. Moeskops et al. developed a GAN-
based methods with dilated convolution to conduct brain
MRI segmentation [21]. Singh et al. combined adversarial
networks with a convolutional neural network (CNN) to
perform segmentation and classification [22]. GAN-based
methods bring the development of network structures,
which provides the possibility of further improving seg-
mentation accuracy.

Overall, machine learning approaches are effective, but
their performance is limited. Deep learning bring the
improvement for the biomedical image segmentation ac-
curacy and GAN-based methods provide the possibility
of further improvment for segmentation performance.
However, there still exist some limitations in current GAN-
based methods. For the segmentor, multi-scale features
are still not fully exploited for segmentation [22]. Even
if some researchers have realized this issue and tried to
fix it, new problems arise, such as information loss due
to the gridding problem or dramatic parameter increase
[20] [21]. In addition, the discriminator in most GAN-
based method can only perform identification at the
image level, which may limit the update of segmentor
parameters [18] [19] [20] [21] [22]. Therefore, DBAN
is proposed to address these issues. In the segmentor,
DBs are designed to capture and aggregate multi-scale
features without information loss or increasing too many
parameters. In the discriminator, a fully convolutional
scheme is adopted to perform identification at the pixel
level. Moverover, confidence probability maps produced by
our discriminator can guide the segmentor to refine the
segmentation results. In the next section, we will detail
the proposed DBAN.

III. Method
A. Network Architecture

The block diagram of the proposed method is shown in
Fig. 2. Firstly we implement adversarial training on the
proposed DBAN, as shown in TABLE I, after which the
segmentation results are available from the model.

1) Segmentor: In deep learning, classical neural net-
works such as FCN commonly use large-scale features
to perform segmentation, which is not able to handle
the variation of morphology appropriately [23].There are
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Fig. 2: The block diagram of the proposed method. EM
denotes element-wise multiplication. During the training
stage, the segmentor and the discriminator are trained
alternately. When training the discriminator, only the
parameters of the discriminator are updated, and the same
scheme is applied on the segmentor. After training, the
segmentation results can be obtained from the model.

TABLE I: Steps of adversarial training for DBAN

Algorithm1 Training of DBAN.
⊗

denotes element-wise mul-
tiplication.
for number of training epochs do
for number of iterations do
• the preprocessed data is put into the segmentor
• the preprocessed image

⊗
the segmentation probability

map from the segmentor to construct Input I
• the ground truth is one-hot encoded
• the preprocessed image

⊗
the one-hot encoded ground

truth to construct Input II
• Input I and II are put into the discriminator, respectively
• the discriminator is updated by minimizing discriminator

loss: LossD
• the preprocessed data is put into the segmentor
• the preprocessed image

⊗
the segmentation probability

map from the segmentor to construct Input III
• Input III is put into the discriminator
• the segmentor is updated by minimizing segmentor loss:

LossS
end for
end for

various variations on the shape of the LV and RV due
to different breath hold during MRI acquisition. Such
situation needs multi-scale features to eliminate ambiguity
and suppress the false prediction. Therefore, multi-scale
features are crucial for improving the segmentation per-
formance of short-axis cardiac MRI [24]. In general, the
scale of the learned features is determined by the size of
the receptive field, while the size of the receptive field

is determined by the size of the convolution kernel [25].
However, calculation costs and the number of parameters
will be increased dramatically if large convolution kernels
are applied to learn large-scale features. Such situation
is easy to causes overfitting on a limited dataset [26].
To the best of our knowledge, there are two options to
alleviate the above problem. One solution is to stack
convolution layers with small convolution kernels to obtain
large receptive fields. Another one is to adopt dilated
convolution which can expand the receptive fields without
increasing too many parameters and calculation costs. The
dilated convolution operation is defined as [24]:

D(p) =
∑

s+lt=p

F (s)k(t) (1)

where F : Z2 → R is a discrete function which denotes
the input of dilated convolution. Ωr = [−r, r]

2 ∩Z2 and
k : Ωr → R represents a convolution kernel whose size is
(2r + 1)2. D(·) denotes the output of dilated convolution
operation, p is an element of D(·) and l represents the
dilation rate of convolution.

      (a) dilation rate = 1                        (b) dilation rate = 2 

Fig. 3: Examples of dilated convolution. Blue region is the
receptive field and red dots denote convolution kernel.
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Fig. 4: The structure of DB. n denotes the number of
convolutional kernels, which is equal to the number of the
output channels. Note that convolutions in DB will not
change the size of feature maps.

Examples of dilated convolution operation are presented
in Fig. 3. Fig. 3 (a) and Fig. 3 (b) illustrate dilated
convolutions with 3×3 kernel at different dilation rates.
Fig. 3 (a) is a 1-dilated convolution. Through (a), each
element of the output has a 3×3 receptive field. Fig. 3
(b) denotes a 2-dilated convolution. If we perform (b)
after (a), the element in the output of (b) has a 7×7
receptive field. To obtain the same size of the receptive
field, three stacked convolution layers with 3×3 kernel
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Fig. 5: The structure of the segmentor in DBAN.
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Fig. 6: The structure of the discriminator in DBAN.

are required. Therefore, compared to stacked convolution
layers with small convolution kernels, dilated convolution
is able to obtain large receptive field through fewer layers.
Enlightened by this observation, we design the DB within
the segmentor to extract multi-scale features for the LV,
RV and MYO segmentation.

The structure of DB is displayed in Fig. 4. In the
DB, dilated convolution with 3×3 kernels at different
dilation rates is adopted so that multi-scale features
can be extracted. However, there is a theoretical issue
in the dilated convolution called gridding problem: The
sample from the input can be very sparse, which is
detrimental to learning because: 1) local information is
omitted completely; 2) the information can be irrelevant
across large distances. Besides, the consistency of local
information may be impaired. To fix this issue, we follow
the HDC scheme [27] to stack dilated convolution layers
and to set the dilation rates to 1, 2, 3 and 5 respectively. In
this way, reception fields with the size of 3×3, 7×7,13×13
and 17×17 can be acquired to capture multi-scale features.
Then feature maps produced by dilated convolution layers
are concatenated. Multi-scale features in the output of the
concatenation layer are aggregated by the 1×1 convolution
layer which can be applied for different feature fusion [26].
Compared with the classical convolution operations, the
proposed DB is capable of obtaining multi-size receptive

fields and capturing multi-scale features through fewer
layers. Fewer layers mean fewer parameters, which is
significant for biomedical image segmentation with very
limited dataset.

As shown in Fig. 5, Dilated Block U-Net (DB U-Net)
is designed as the segmentor of DBAN. As for the overall
architecture, the U-Net scheme is followed. We replace the
convolution layers with the seven DBs to extract and fuse
multi-scale featrues. In the DB, n is equal to the number
of output channels. For example, n in the first DB is
equal to 16. Besides, three down-sampling layers (max-
pooling) and three up-sampling layers (deconvolution)
are adopted, which is diffierent from U-Net. The main
reason is that U-Net is designed for microscopy images
with the size of 512×512, while the size of cardiac MRI is
only half of the microscopy images (256×256). To obtain
the segmentation results, we apply 1×1 convolution layer
and softmax function as the main classifier to refine the
aggregated features and produce segmentation probability
map. In the end, segmentation results can be viewed
through argmax function.

2) Discriminator: For the training of adversarial net-
works, the discriminator input is crucial. In this work, we
adopt element-wise multiplication (EM) to construct the
discriminator input. EM is the pixel-level multiplication
between the preprocessed image and the segmentation
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probability map or the ground truth [28]. To make the
number of ground truth channel consistent with that of
segmentation probability map channel, we implement the
one-hot encoding on the ground truth before performing
EM. The advantage of this method is that the segmen-
tation probability map and the preprocessed image can
be fused at the initial stage. Therefore, the information
from both the segmentation probability map and the
preprocessed image can be involved in the discriminator’s
decision making.

Fig. 6 displays the structure of the discriminator. In
the previous studies, discriminator is usually used to
distinguish whether the whole image is from the segmentor
or from the ground truth [18] [19] [20] [21] [22]. In this
work, we apply the fully convolutional scheme for the
discriminator to differentiate the segmentation probability
map from the ground truth at the pixel level. Compared
to the previous image-level classification scheme, the fully
convolutional scheme can make the discriminator imple-
ment identification in greater detail (at the pixel level),
which is beneficial to the segmentor parameter update.
Due to the limited dataset, only a few hidden layers are
applied in the discriminator where three convolution layers
with 3×3 kernels are employed. ReLU is used as activation
function. In addition, two max-polling layers and three
deconvolution layers are adopted as down-sampling lay-
ers and up-sampling layers, respectively. Concatenation
operation is implemented to combine feature maps. In
the output layer, 1×1 convolution operation as well as
softmax function is used as the main classifier to identify
the input pixels as two classes: segmentation results or
ground truth. The output of the main classifier is the
confidence probability map which can help the segmentor
modify the segmentation probability map through back
propagation. Confidence map can be viewed by the argmax
function as the visualization production of the confidence
probability map. Each pixel p of the confidence map
represents that the discriminator identifies whether the
corresponding pixel in the input is from the ground truth
(p = 1) or from the segmentor (p = 0).

B. Loss Function
During the training stage of DBAN, segmentor and the

discriminator are trained respectively. Therefore, different
loss functions are required.

1) Discriminator Loss: To train the discriminator, the
loss function LossD is defined as follow:

LossD =
M∑

m=1

[Lb(D(S(Xm)⊗Xm), Y0)

+ Lb(D(Ym ⊗Xm), Y1)]

(2)

where M denotes the number of preprocessed images,
Lb represents binary-class cross-entropy loss, Xm is the
preprocessed image and Ym denotes the one-hot encoded
ground truth. S(·) is the segmentation probability map
and D(·) represents the pixel-wise identification result. ⊗
denotes element-wise multiplication. Y0 is the pixel-wise

label of the discriminator input which is from segmenta-
tion probability map and Y1 is the pixel-wise label of the
input which is from the ground truth.

In the Equation (2):

Lb(D(S(Xm)⊗Xm), Y0) = −
∑
w,h

[y0log(D
(w,h)
seg )

+ (1− y0)log(1−D(w,h)
seg )]

(3)

where y0 = 0 is the pixel-wise label, indicating the pixel
of the input at location (w, h) is from the segmentation
probability map. D

(w,h)
seg denotes the identification result

(confidence probability from the confidence probability
map) of the segmentor output at location (w, h). There-
fore, Equation (3) can be written as:

Lb(D(S(Xm)⊗Xm), Y0) = −
∑
w,h

log(1−D(w,h)
seg ) (4)

Similarly, Lb(D(Ym ⊗Xm), Y1) can be written as:

Lb(D(Ym ⊗Xm), Y1) = −
∑
w,h

[y1log(D
(w,h)
gt )

+ (1− y1)log(1−D
(w,h)
gt )]

= −
∑
w,h

log(D
(w,h)
gt )

(5)

where y1 is the pixel-wise label and y1 = 1 denotes
the pixel of the input at location (w, h) is from the
ground truth. D

(w,h)
gt denotes the identification result of

the ground truth at location (w, h).
As a summary, discriminator loss function can be

written as:

LossD = −
M∑

m=1

∑
w,h

[log(D
(w,h)
gt )

+log(1−D(w,h)
seg )]

(6)

By training the discriminator, this discriminator loss
function will become smaller and smaller, indicating the
gradually improved discrimination ability.

2) Segmentor Loss: the segmentor is trained by mini-
mizing the segmentor loss LossS :

LossS =
M∑

m=1

[Lm(S(Xm), Ym)

+λLb(D(S(Xm)⊗Xm), Y1)]

(7)

where Lm is multi-class cross-entropy loss. λ is a hyper-
parameter.

In the Equation (7):
Lm(S(Xm)⊗ Ym)

= −
∑
w,h

∑
c∈C

Y (w,h,c)
m log(S(Xm)(w,h,c)) (8)

where C is the class number. Y (w,h,c)
m is the pixel-wise label

from the one-hot encoded ground truth at the location
(w, h, c) and S(Xm)(w,h,c) is the pixel of the segmentation
probability map at the location (w, h, c).

Lb(D(S(Xm)⊗Xm), Y1) = −
∑
w,h

log(D(w,h)
seg ) (9)
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In Lb(D(S(Xm)⊗Xm), Y1), the pixel-wise label is 1 so that
the segmentor can be guided to fool the discriminator.

Therefore, the LossS can be written as:

LossS =−
M∑

m=1

[
∑
w,h

∑
c∈C

Y (w,h,c)
m log(S(Xm)(w,h,c))

+ λ
∑
w,h

log(D(w,h)
seg )]

(10)

By minimizing this loss function, segmentor can produce
the segmentation results whose quality is good enough
to fool the discriminator. Hyperparameter λ is used for
balancing the adversarial training, which will be further
discussed in the next section.

IV. Experiment and Analysis
A. Datasets

In this work, ACDC dataset acquired from two MRI
scanners (1.5T and 3.0T, University Hospital of Dijon,
France) was used [4]. This dataset consists of 150 subjects’
short-axis cardiac MRIs (3D data) which are categorized
into 5 groups: normal case, heart failure with infarction, di-
lated cardiomyopathy, hypertrophic cardiomyopathy and
abnormal RV. In ACDC dataset, 100 subjects’ cardiac
MRIs (ACDC training dataset) are provided with the
corresponding ground truth which cover both the end-
diastolic (ED) phase and the end-systolic (ES) phase. The
remaining 50 subjects (ACDC testing dataset) without
the ground truth are for testing. Challenge participants
can upload the testing results to the ACDC evaluation
platform for assessment.

B. Preprocessing
1) Slicing: The slice-thickness (5 to 10 mm) in 3D

data is too large, which results in insufficient connectivity
information between adjacent slices [29]. Considering the
above, we converted the 3D MRI data into 2D images by
slicing them.

2) Resizing: In deep learning, batch training allows a
smaller memory footprint, which can also be employed to
improve machine throughput [30]. However, batch training
requires a uniform size of input data. In this work,
2D short-axis cardiac MRIs have a wide range of sizes
from 154×224 to 428×512. Considering that large size of
images might limit the batchsize, we resized all images to
256×256. For images whose width or height was smaller
than 256, we padded residual regions with minimum grey
value of each image. As for images whose width or height
was larger than 256, we cropped it to 256.

3) Data Augmentation: To avoid overfitting, rotation
transformation from 0° to 120° with unique interval of 15°
was implemented to augment these resized 2D images.

4) Data Normalization: Cardiac MR images in ACDC
dataset have a wide range of voxel intensity due to
different scanner types or acquisition protocols, which
might impede the segmentation performance. Hence, we
adoptted the Z-Score method to normalize the voxel
intensity of MRIs.

C. Implementation Details
We trained, validated and tested DBAN on the ACDC

dataset. Among 100 subjects (ACDC training dataset)
with the ground truth, 70 of them were used as training
set and the remaining 30 subjects were validation set. As
for the 50 subjects (ACDC testing dataset) without the
ground truth, we used them as the testing set. The results
based on testing set had been uploaded to the ACDC
evaluation platform to test our model. The proposed
approach was trained on a Nvidia GTX 1080Ti using
tensorflow framework. In order to train DBAN, Adam
optimizer was adopted where the learning rate was set to
10−4 and the drop-out rate was 0.1. During the training
stage, the segmentor and the discriminator were trained al-
ternately. When DBAN was trained 600 epochs, the pixel
classification accuracy of the discriminator on the training
set fluctuated at 0.5, indicating the segemntor could fool
the discriminator and the training was completed.

D. Exploration of λ

Fig. 7: The IoU for different λ in the proposed DBAN.

In the proposed DBAN, hyperparameter λ is used to
balance the adversarial training. λ was set to 0, 0.01,
0.1, 0.3, 0.5, 0.7, 0.9 and 1 respectively to compare
the performance of DBAN on the validation set. Inter-
section over union (IoU) was adopted to evaluate the
segmentation results. As shown in the Fig. 7, different
λ causes different results in terms of LV, RV and MYO
segmentation. Overall, the proposed DBAN achieves the
best performance when λ = 0.3.

E. Experiment Result and Analysis
1) Distance error metrics: Following the ACDC rules,

we adopted mean dice similarity coefficient (DSC) and
mean Hausdorff Distance (HD) to evaluate the segmenta-
tion performance. The formulas of these two metrics are
defined as follows:

DSC =
2 |SR ∩ SGT |
|SR|+ |SGT |

(11)

where SR represents the segmentation result and SGT

stands for the ground truth. This evaluation metrics
mainly assesses the ratio of pixel overlap.

HD = MAX(MAXX⊂CR
MINX⊂CGT

d(x, y),

MAXX⊂CGT
MINX⊂CR

d(x, y))
(12)
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TABLE II: Ablation experiments to explore the function of DBAN components.

Methods
LV RV MYO

DSC HD DSC HD DSC HD
ED ES ED ES ED ES ED ES ED ES ED ES

FCN [10] 0.88 0.85 9.7 13.4 0.84 0.82 14.4 15.1 0.81 0.80 14.4 13.9
FCN+CD 0.89 0.86 10.1 13.7 0.85 0.83 13.9 14.3 0.81 0.82 13.3 12.8

FCN+our discriminator 0.92 0.86 9.5 11.9 0.88 0.86 12.5 13.7 0.85 0.84 11.9 11.5
U-Net [11] 0.91 0.87 9.2 12.6 0.86 0.85 13.9 13.5 0.82 0.85 11.0 12.7
U-Net+CD 0.92 0.85 8.9 12.1 0.88 0.86 13.1 13.4 0.83 0.85 10.6 10.8

U-Net+our discriminator 0.94 0.88 8.6 11.0 0.89 0.88 12.2 13.3 0.85 0.89 9.8 9.3
DB U-Net (our segmentor) 0.93 0.86 8.5 13.2 0.88 0.85 11.3 14.2 0.83 0.84 10.4 10.2

DB U-Net+CD 0.94 0.86 8.9 11.1 0.87 0.86 11.9 13.3 0.85 0.88 10.6 9.4
DBAN 0.96 0.88 7.6 10.8 0.92 0.90 10.3 12.7 0.87 0.89 8.2 8.8

Fig. 8: Visual comparison between DBAN and DB U-Net (our segmentor), which illustrates the effectiveness of the
proposed discriminator.

where CR means the contour of segmentation result,
CGT is the contour of ground truth, and d(·, ·) denotes
the Euclidean Distance between two points. Hausdorff
Distance is a measure to evaluate difference between two
sets of points. The smaller value of HD demonstrates
higher similarity between the segmentation results and
the ground truth.

The first step is to investigate the function of DBAN
components. Therefore, we conducted ablation studies.
FCN, U-Net and our segmentor (DB U-Net) were trained
based on the training set and their models were run on
the validation set. As indicated in TABLE II, DB U-Net
is superior to FCN and U-Net in terms of 7 metrics out
of 12 metrics in total, demonstrating the effectiveness of
our segmentor for short-axis cardiac MRI segmentation.

Then the proposed discriminator was combined with
FCN, U-Net and our segmentor (DB U-Net) respectively
so that FCN+our discriminator, U-NET+our discrimi-
nator and DBAN were built. Compared with FCN, U-
Net and DB U-Net, results of FCN+our discriminator,
U-Net+our discriminator and DBAN are improved, re-
spectively. This process means that our discriminator can

improve the segmentation performance in terms of LV,
RV and MYO. Additationly, Fig. 8 illustrates the visual
comparison between DBAN and DB U-Net with respect
to apex, middle and base of the heart. Visual comparison
reveals that DBAN produces less false positives and false
negatives at the edge of target regions. Thanks to the
confidence probability map from the discriminator, the
segmentor can be guided to produce better segmentation
results.

Finally, we conducted experiments to compare the
effect between the proposed discriminator and the other
common discriminator. In adversarial networks, CNN-
based discriminator is the most common architecture to
distinguish whether the whole input is from the segmentor
or from the ground truth (at the image leavel) [18] [19]
[20] [21] [22]. We call it convolution discriminator (CD).
For comparison, we replaced our discriminator with CD
to construct FCN+CD, U-Net+CD and DB U-Net+CD
architectures, respectively. In this work, three convolution
layers with the 3×3 kernels, two max-pooling layers, three
fully connected layers and a softmax layer were adopted
in the CD. Note that the hidden layer number of the
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TABLE III: Comparison (based on ACDC testing dataset) between DBAN and the top 10 ACDC methods in terms
of distance error metrics.

Methods
LV RV MYO

DSC HD DSC HD DSC HD
ED ES ED ES ED ES ED ES ED ES ED ES

DBAN 0.96 0.90 6.7 8.1 0.94 0.89 10.6 12.6 0.85 0.88 8.8 8.7
Isensee [31] 0.97 0.93 5.6 6.3 0.95 0.90 8.8 11.4 0.90 0.92 7.6 7.1
Zotti [32] 0.96 0.91 6.2 8.4 0.93 0.89 11.0 12.6 0.89 0.90 9.6 9.3

Painchaud [33] 0.96 0.91 6.1 8.3 0.93 0.88 13.7 13.3 0.88 0.90 8.6 9.6
Khened [34] 0.96 0.91 8.1 9.0 0.93 0.88 14.0 13.9 0.89 0.90 9.8 12.6

Baumgartner [35] 0.96 0.91 6.5 9.2 0.93 0.88 12.7 14.7 0.89 0.90 8.7 10.6
Wolterink [36] 0.96 0.92 7.5 9.6 0.93 0.87 11.9 13.4 0.87 0.89 11.1 10.7

Rohé [37] 0.96 0.90 7.5 10.7 0.92 0.84 14.0 15.9 0.87 0.87 11.5 13.0
Zotti [38] 0.96 0.90 6.6 8.7 0.94 0.88 10.3 14.0 0.88 0.90 8.7 9.3
Jain [39] 0.95 0.89 8.2 10.9 0.91 0.82 13.5 18.7 0.88 0.90 9.8 11.3

Grinias [40] 0.95 0.85 8.9 12.9 0.89 0.77 19.0 24.2 0.80 0.78 12.3 14.6

TABLE IV: The contents in this table present the ranking
of segmentation results produced by DBAN in the ACDC
leaderboard. For example, the corresponding value of
LV and DSC_ED in the table is 2, indicating that LV
segmentation in the ED phase rank the second in terms
of DSC.

DSC_ED DSC_ES HD_ED HD_ES
LV 2 7 6 2
RV 2 2 3 2

MYO 10 9 5 2

TABLE V: Generalization performance of our model on
the ACDC dataset and the RVSC dataset.

Datasets DSC HD
ED ES ED ES

ACDC Dataset 0.94 0.89 10.6 12.6
RVSC Dataset 0.89 0.85 12.2 13.9

TABLE VI: Generalization performance of our model on
the ACDC dataset and the Sunnybrooke dataset.

Datasets DSC HD
ED ES ED ES

ACDC Dataset 0.96 0.90 6.7 8.1
Sunnybrooke Dataset 0.93 0.89 9.1 10.9

CD is the same as that of the proposed discriminator.
As shown in TABLE II, our discriminator brings forth
more improvements than CD because of the powerful
discrimination ability of the fully convolutional scheme
adopted in our discriminator. The minor differences be-
tween the segmentation probability map and the ground
truth can be identified in greater detail (at the pixel level),
beneficial to the segmentor parameter update. Therefore,
the results appear more close to the ground truth. To sum
up, the above ablation experiments demonstrate that the

proposed segmentor and discriminator are effective and
DBAN outperforms other methods in TABLE II.

The second step is to test the performance of the pro-
posed model. We submitted the segmentation results on
the ACDC testing set to the ACDC evaluation platform,
as shown in TABLE III. In addition, the performance of
top ten solutions in ACDC is presented in the table for
comparison. Note that there are 7 U-Net based methods in
the top ten of ACDC leaderboard. For each metric, DBAN
can be among the top 10 of the ACDC leaderboard. As
shown in TABLE IV, segmentation results of DBAN are
among top 3 in terms of 7 metrics out of 12 metrics in
total. Also, the difference between DBAN and the first
position (Isensee’s methods [31]) is no more than 0.05 and
1.8mm in terms of DSC and HD, respectively. Therefore,
we believe that DBAN has reached the state-of-the-art
level for LV, RV and MYO segmentation.

The final step is to test the generalization ability of
the proposed model. We ran it (without finetuning) on
the training dataset of the Right Ventricle Segmentation
Challenge (RVSC) dataset [42] and the Sunnybrooke
dataset [43]. Note that Sunnybrooke dataset is a short-
axis cardiac MRI dataset for LV segmentation and RVSC
dataset is a short-axis cardiac MRI dataset for RV seg-
mentation. TABLE V and TABLE VI indicate that the
results based on these two datasets are close to those on
the ACDC testing dataset, thus demonstrating the good
generalization ability of DBAN.

2) Clinical indice metrics: It is important to test
whether DBAN can be employed in the clinical applica-
tions or not. In the clinical practice, end diastolic volume
(EDV), end systolic volume (ESV), myocardium mass
(MM) in ED phase and ejection fraction (EF) are wildly
used to analyize the cardiac function. In the ACDC leader-
board, correlation coefficient (CC), bias and standard
deviation (SD) are calculated as the clinical indice metrics
to analyse left ventricle EF, left ventricle EDV, right
ventricle EF, right ventricle EDV, MM in ED phase and
myocardium ESV. TABLE VII presents the comparison
between our method and the top eleven methods from
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TABLE VII: Comparison (based on ACDC testing dataset) between DBAN and the top 11 ACDC methods in terms
of clinical indice metrics.

Methods
LV RV MYO

EF EDV EF EDV ESV MM_ED
CC bias SD CC bias SD CC bias SD CC bias SD CC bias SD CC bias SD

DBAN 0.991 −0.9 3.0 0.994 −6.0 8.6 0.890 0.1 6.6 0.988 −14.1 11.2 0.973 0.6 13.3 0.980 6.8 10.8
Isensee [31] 0.992 0.3 2.8 0.997 1.6 5.8 0.925 -3.0 5.1 0.991 2.1 9.0 0.989 -3.4 7.9 0.986 -4.0 8.6
Zotti [32] 0.990 -0.5 3.1 0.997 3.7 5.1 0.869 -0.9 6.8 0.986 2.4 11.5 0.980 1.2 10.9 0.986 -1.8 8.6

Painchaud [33] 0.990 -0.5 3.2 0.997 3.8 5.2 0.865 -0.9 6.9 0.986 2.1 11.4 0.979 0.3 11.1 0.987 -2.9 8.4
Khened [34] 0.989 -0.5 3.4 0.997 0.6 5.5 0.858 -2.2 6.9 0.982 -2.9 12.6 0.979 -2.6 11.0 0.990 -2.9 7.5

Baumgartner [35] 0.988 0.6 3.4 0.995 1.4 7.6 0.851 1.2 7.3 0.977 -2.3 15.1 0.983 -9.6 9.9 0.982 -6.9 9.8
Wolterink [36] 0.988 -0.5 3.4 0.993 3.0 8.7 0.852 -4.6 6.9 0.980 3.6 15.2 0.971 0.9 13.4 0.963 −1.0 14.6

Rohé [37] 0.989 −0.1 3.2 0.993 4.2 8.6 0.781 -0.7 9.9 0.983 7.3 13.4 0.955 5.1 16.8 0.967 -3.4 13.3
Zotti [38] 0.987 -1.2 3.6 0.997 9.6 6.4 0.872 -2.2 6.8 0.991 -3.7 9.2 0.960 -7.8 15.2 0.984 -12.4 9.0
Jain [39] 0.971 1.7 5.5 0.997 9.9 6.7 0.791 6.8 8.1 0.945 5.6 22.2 0.986 -4.5 9.1 0.989 -11.6 8.1

Grinias [40] 0.970 -1.7 5.5 0.992 2.4 11.1 0.756 −0.2 9.7 0.916 11.9 27.8 0.890 -1.7 27.6 0.950 -19.6 21.3
Yang [41] 0.926 1.5 8.7 0.894 12.2 32.0 0.576 8.8 23.2 0.789 47.3 41.9 N/A N/A N/A N/A N/A N/A

Fig. 9: Bland-Altman plots for identifying the difference between DBAN and clinical experts (mannual methods)
in terms of cardiac function indices. Note that EF_LV represents the left ventricular ejection fraction, EDV_LV
represents left ventricular volume in the ED phase and MM_ED indicates the myocardium mass in the ED phase.
Other metrics are named similarly.

ACDC in terms of the clinical indice metrics. As can
be seen from TABLE VII, all DBAN results are among
the top eleven. In particular, bias of right ventricle EF
and myocardium ESV rank the first, respectively. Both
correlation coefficient and standard deviation computed
from left/right ventricle EF get the second position.
Correlation coefficient and standard deviation of right
ventricle EDV rank the third. Therefore, we believe that
DBAN has potential practical value.

Then in order to assess the difference and similarity
between DBAN and manual delineation method of clinical
experts, we performed Bland-Altman plots [44], linear
regression and correlation analysis based on the results
from ACDC evaluation platform (totally 50 subjects).

As shown in Fig. 9, the differences between DBAN and

clinical experts are presented in Bland-Altman plots. The
differences within 95% limits of agreement (mean ± 1.96
standard deviation) are not clinically important and the
two methods could replace each other [44]. Among 50 pa-
tients, a maximum of 48 patients’ cardiac function indices
(EF_LV, MM_ED and ESV_MYO) and a minimum of 46
patients’ cardiac function indices (EF_RV) from DBAN
segmentation results are within 95% limits of agreement
(i.e. they are acceptable for clinical application).

Fig. 10 shows the P-value, correlation coefficient r and
linear regression. In the Fig. 10, all P-value are less
than 0.001, which demonstrates that DBAN has a very
significant correlation with manual method. The closer
the correlation coefficient is to 1, the higher the correla-
tion between two methods is. Almost all the correlation
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Fig. 10: P-value, correlation coefficient and linear regression for analyzing the correlation between DBAN and clinical
experts (mannual methods) in terms of cardiac function indices.

coefficients in the Fig. 10 are very closed to 1 except
for that of the right ventricular EF (0.890). However, as
shown in the TABLE VII, CC of the right ventricular
EF from DBAN ranks the second in ACDC leaderboard.
It is due to that the calculation of right ventricle EF is
based on RV segmentation in ED phase and ES phase,
while the change of RV shape and surrounding unrelated
tissues may render a poor segmentation performance. We
believe that these errors can be alleviated by adding prior
knowledge and increasing the diversity of data. In linear
regression plots, the red lines are regression lines which are
close to the blue lines (identity function: y = x). Overall,
the above correlation analysis demonstrate that DBAN
behaves similarly to clinical experts in terms of cardiac
function indices.

V. Conclusion

In this paper, we propose DBAN, an automatic seg-
mentation approach, for short-axis cardiac MRI segmmen-
tation. DBAN contains two main sections: a segmentor
and a discriminator. In the segmentor, DB is proposed to
capture and aggregate multi-scale features. The segmentor
can produce segmentation probability maps, while the
discriminator adopting fully convolutional scheme can dis-
tinguish whether the input is from the segmentation prob-
ability map or from the ground truth at the pixel level.
Moreover, confidence probability map produced by our
discriminator can guide the segmentor to produce more
accurate segmentation results. On the ACDC dataset, the
proposed DBAN outperforms majority of approaches and
reaches the state-of-the-art level in terms of DSC and

HD. In additation, DBAN behaves similarly to clinical
experts in terms of cardiac function indices. Therefore,
DBAN is a promising method for LV, RV and MYO
segmentation in the clinical application. In future work,
we plan to cooperate with a local hospital to obtain more
short-axis cardiac MRIs with different modalities so that
DBAN can gain more comprehensive training to handle
various situations in clinic. Then, the interpretability issue
of the neural network will be explored for quantitative
explanation of the DBAN prediction structure. In this
way, DBAN segmentation results can be interpreted
quantitatively to be more aligned with clinical demand.
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