
1756 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 25, NO. 4, AUGUST 2020

Adaptive Proxy-Based Robust Control Integrated
With Nonlinear Disturbance Observer for

Pneumatic Muscle Actuators
Yu Cao , Student Member, IEEE, Jian Huang , Senior Member, IEEE, Cai-Hua Xiong , Member, IEEE,

Dongrui Wu , Senior Member, IEEE, Mengshi Zhang , Student Member, IEEE,
Zhijun Li , Senior Member, IEEE, and Yasuhisa Hasegawa , Member, IEEE

Abstract—In pneumatic muscle actuators (PMAs)-driven
robotic applications, there might exist unpredictable
shocks which lead to the sudden change of desired tra-
jectories and large tracking errors. This is dangerous
for physical systems. In this article, we propose a novel
adaptive proxy-based robust controller (APRC) for PMAs,
which is effective in realizing a damped response and
regulating the behaviors of the PMA via a virtual proxy.
Moreover, the integration of the APRC and the nonlinear
disturbance observer further handles the system uncer-
tainties/disturbances and improves the system robustness.
According to the Lyapunov theorem, the tracking states
of the closed-loop PMA control system are proven to be
globally uniformly ultimately bounded through two motion
phases. Extensive experiments are conducted to verify the
superior performance of our approach, in multiple tracking
scenarios.
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pneumatic muscle actuator, two-phase stability analysis.
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I. INTRODUCTION

DUE TO THE attractive characteristics, i.e., high
power/weight ratio, no mechanical parts, low cost, etc. [1],

the pneumatic muscle actuator (PMA) has been widely used
in a variety of fields, especially exoskeletons that are effective
in power augmentation and rehabilitation training [2]–[4]. Its
driving force is converted from the air pressure of the inner
bladder, which has the features of nonlinearity, hysteresis, and
time-varying parameters [5], making its modeling and control
very challenging. Different control strategies have been pro-
posed for the PMA, including proportional-integral-derivative
(PID)-based control [6], nonlinear model predictive control [7],
[8], sliding-mode control (SMC) [9], fuzzy control [10], adaptive
control [11], dynamic surface control [12], etc. Unfortunately,
an accurate mathematic model of the PMA is very difficult to
obtain in practice, which causes difficulties in precise control.
Meanwhile, the traditional PID control, a typical model-free
strategy, works in the position control of the PMA. However,
some significant issues should be taken into account. First, the
high-gain PID controller may cause oscillation and can hardly
realize satisfactory performance in the physical PMA applica-
tions, due to the slow response of the PMA and limited sampling
rate. Second, the PMA is widely used in the field of robot
actuation and industry, in which the load, running amplitude, and
frequency may change within a certain task. The traditional PID
controller with a set of fixed control parameters may not meet
the requirements of these applications. Next, from a theoretical
viewpoint, it is difficult to theoretically prove the stability of
the closed-loop system when no theoretical model is involved.
Thus, there is still a strong demand for robust PMA control.

In robotic applications, the idea of using a proxy is common
because a proxy enables robots to track the reference with
a damped response to unexpected impacts, which results in
the improvement of the system security and performance [13].
However, the physical proxy requires a light-weight and compact
mechanism that leads to difficulties for designation. The virtual
proxy is a remedy to fulfill the requirement of robot control.
A typical strategy called proxy-based sliding-mode control
(PSMC) [14], which assumes that a zero-quality virtual proxy
exists between the controlled object and the desired trajectory, is
significantly a model-free strategy. Damme et al. [15] presented
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a PSMC for a two-degree-of-freedom planar manipulator actu-
ated by pleated pneumatic artificial muscles, and such a strategy
of position control was developed for piezoelectric-actuated
nanopositioning stages in [16]. Another approach supposed that
there was a free space around the proxy for the impedance con-
trol of a cable-driven system [17]. However, most proxy-based
strategies lack stability analysis or depend on a strong conjecture
(e.g., see Conjecture 1 in [14]). Therefore, this kind of strategies
demands further investigation to establish a sound theoretical
foundation.

The robustness of the control strategy is another significant
issue for robotic systems. Although the proxy-based strategies
have been used in various applications, most of them rarely
consider the improvement of system robustness. Nonlinear dis-
turbance observer (NDO)-based control is a common method
for improving control performance. The basic idea is to estimate
the disturbances/uncertainties from measurable variables before
a control action is taken. Consequently, the influence of the
disturbances/uncertainties can be suppressed, and the system
becomes more robust [18]–[20]. Multiple NDO-based control
strategies have been proposed to compensate for the influence
of disturbances/uncertainties [21]–[25]. However, to our best
knowledge, there are very few researches on the proxy-based
control strategy integrated with NDO. This may be due to
two challenges. First, most of the proxy-based strategies are
model-free control approaches, whereas a typical NDO-based
controller requires a mathematical model of the control system.
Therefore, the integration of proxy-based strategy and NDO is
not straightforward. Second, a more rigorous analysis is needed
to guarantee the stability of the system, which should not be
based on a strong conjecture.

This article proposes an adaptive proxy-based robust control
integrated with nonlinear disturbance observer for the position
control of PMAs. Our main contributions are as follows:

1) The proposed adaptive proxy-based robust control extends
PSMC from a model-free strategy to a model-based strategy by
defining the motion behaviors of the proxy. Accompanied by a
nonlinear disturbance observer, the proposed control method re-
tains the original characteristics of smooth and damped motions
and greatly improves the robustness of the algorithm.

2) The proposed controller ensures the global stability of the
closed-loop system through two stages, in which the controlled
object tracks the proxy, and the proxy tracks the reference
trajectory, simultaneously. Furthermore, this article elaborately
studies the case when the proxy is not zero and finds that the
nonzero proxy mass is capable of regulating the behaviors of
the controlled object.

3) Real-world experiments are conducted based on a physical
PMA platform for validating the effectiveness of the proposed
controller, and the results present better tracking accuracy and
robustness under various reference trajectories.

Note that a study presents an extended PSMC [26]. Compared
with [26], this article proposes a new theoretical proxy-based
method by constructing the motion behaviors of the proxy.
Integrating with an NDO, this method can strictly guarantee
the global stability of the system while improving the robust-
ness and retaining the original characteristics of smooth and

Fig. 1. PMA and its three-element model.

damped motions. Meanwhile, this article quantitatively analyzes
the effect of proxy on control performance. It turns out that
as the proxy mass increases, the system’s tracking errors will
gradually approach a bound associated with estimation errors
of the system’s uncertainties/disturbances. To the best of our
knowledge, this is the first study to investigate the effect of the
virtual proxy on the physical plant.

The rest of this article is organized as follows. Section II
introduces the three-element model of the PMA with the lumped
disturbances. Section III first proposes the adaptive proxy-based
robust controller (APRC) and then extends the APRC to APRC–
NDO to improve the system robustness. Section IV presents
real-world experiments to demonstrate the effectiveness and
robustness of the APRC–NDO. Finally, Section V concludes
this article.

II. THREE-ELEMENT MODEL OF THE PMA

The generalized three-element model of the PMA is shown
in Fig. 1 [27]. The contractile length varies with the air pressure
of inner bladder. The dynamics of the PMA is⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mẍ+ b(P )ẋ+ k(P )x = f(P )−mg
bi(P ) = bi0 + bi1P (inflation)
bd(P ) = bd0 + bd1P (deflation)
k(P ) = k0 + k1P
f(P ) = f0 + f1P

(1)

where m, x, and P are the mass of load, the contractile length of
PMA, and the air pressure, respectively. b(P ), f(P ), and k(P )
are the damping coefficient, the contractile force, and the spring
coefficient, respectively.

Let τ(t) denote the sum of unmodeled uncertainties, includ-
ing unmodeled dynamics, friction, inaccurate parameters, and
changing loads. The dynamics of the PMA can be rewritten as
a typical second-order nonlinear model⎧⎨

⎩
ẍ = f(x, ẋ) + b(x, ẋ)u+ τ(t)
f(x, ẋ) = 1

m (f0 −mg − b0ẋ− k0x)
b(x, ẋ) = 1

m (f1 − b1ẋ− k1x)
(2)

where u is the air pressure, and f(x, ẋ) and b(x, ẋ) are nonlinear
terms related to the system states.
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Fig. 2. Principle of proxy-based robust control.

Lemma 1 [28]: Given a differentiable continuous function
Ψ(t)∀t ∈ [t0, t1] satisfyingσ1 ≤ |Ψ(t)| ≤ σ2 with positive con-
stant σ1 and σ2. The derivative Ψ̇(t) is also bounded.

Assumption 1 [29]: For the system unknown lumped distur-
bance τ(t):R+ → R, there exists an unknown positive constant
ε such that ∀t ∈ R+ satisfy |τ(t)| < ε.

III. ADAPTIVE PROXY-BASED ROBUST CONTROL

INTEGRATED WITH NONLINEAR DISTURBANCE OBSERVER

A. Adaptive Proxy-Based Robust Control

The objective of this article is to drive the trajectory of the
PMA to track the desired trajectory. In our proxy-based robust
controller, an imaginary object called “proxy,” assumed to be
connected to the physical actuator, is presented. Before intro-
ducing the APRC, we define the following sliding manifolds:

Sq = ẋd − ẋ+ c1(xd − x) + c2

∫
(xd − x) dt (3)

Sp = ẋd − ẋp + c1(xd − xp) + c2

∫
(xd − xp) dt (4)

where c1 and c2 are positive constants, xd the desired trajectory,
and xp and x the proxy position and the PMA’s displacement,
respectively. First of all, we design a relationship between the
proxy and the controlled object to satisfy

Ṡq +Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ) + τ = 0

(5)

where Kp, Ki, and Kd are positive constants.
Remark 1: Traditionally, once the sliding manifold Sq is de-

fined, the controller can be designed using Ṡq = −k · sgn(Sq),
which is known as the SMC and may cause severe chatter-
ing. Hence, our idea of introducing the proxy is to replace
−k · sgn(Sq) by a PID controller to establish a connection
between the controlled object and the proxy, as shown in Fig. 2
. Note that (5) can also be rewritten as

Ẋ =

⎡
⎣ 0 1 0

0 0 1
0 −c2 −c1

⎤
⎦X+

⎡
⎣ 0

0
1

⎤
⎦ul +

⎡
⎣ 0

0
1

⎤
⎦ ρ (6)

where ρ = ẍd + c1ẋd + c2xd + τ , X = [
∫
xdt, x, ẋ]T , and

ul = Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ). (7)

It is clear that (6) can be regarded as a local relation between
the controlled object and the proxy. This is a linear system with
PID control, where X is the system’s states, xp regarded as the

desired trajectory, and ẍd, ẋd, and xd are varying parameters
unrelated to the system’s states. This PID controller drives the
PMA’s trajectory x to track the proxy’s trajectory xp, when the
controller parameters are properly tuned based on the following
stability condition.

Hence, bringing (2) and (3) into (5), the control signal fed into
the PMA can be computed as follows:

u =
1

b(x, ẋ)
[ẍd + c1(ẋd − ẋ) + c2(xd − x)− f(x, ẋ)

+Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ)]. (8)

However, xp is unknown, andxp should be driven to approach
the desired trajectory xd to fulfill the tracking tasks. A common
idea is to use a sign function to ensure the manifold Sp → 0.
Hence, we generate the control signal of proxy ur between the
desired trajectory and the proxy, i.e.

ur = Γ̂ · sgn(Sp) (9)

where sgn(Sp) is the signum function. Γ̂ is the adaptive gain of
the sliding surface Sp, and the corresponding optimal constant
of Γ̂ is Γ∗.

The adaptive law is described as

˙̂
Γ =

{
γ|Sp|, |Sp| ≥ δ

0, |Sp| < δ
, Γ̂(0) = 0 (10)

where γ is a positive constant that regulates the adaptive rate.
δ is a boundary layer. When the system achieves a steady state,
|Sp| is small enough, so that Γ̂will reach an upper bound instead
of monotonically increasing.

Remarkably, the proxy is affected by ur and ul, simultane-
ously, as shown in Fig. 2, and they are not force signals in the
traditional sense. Hence, we cannot directly use Newton’s law
to establish the relationship between the motion behaviors of the
proxy and ur, ul. Besides, it is necessary to define such property
to ensure the realization of tracking and the system’s stability.
Similar to Newton’s law, we define the behavior of the proxy
under the effects of ur and ul. Let mp > 0 be the so-called
proxy mass. Then

mpṠp = −ur + ul. (11)

The effect of −ur + ul is similar to the resultant force on
the proxy while mpṠp can be seen as the motion principle
of the proxy. Note that this property can be arbitrarily defined
according to the specific situation, as long as the stability of the
closed-loop system can be ensured.

Combining (4), (7), (9), and (11), the trajectory of the proxy
is presented as

ẍp=
1
mp

[Γ̂sgn(Sp)−Kp(xp − x)−Ki

∫
(xp − x) dt

−Kd(ẋp − ẋ)] + ẍd + c1(ẋd − ẋp) + c2(xd − xp). (12)

Once xp is determined, the control signal of the PMA can then
be computed from (4), (8), and (12).

For the convenience of presentation, we first define Km =
diag{Kic2, �,Kd} with � = Kpc1 −Ki −Kdc2.
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Theorem 1: The norm of tracking error between the proxy
states Xp = [

∫
xpdt, xp, ẋp]

T and the system states X =
[
∫
xdt, x, ẋ]T is uniformly ultimately bounded, and a sliding

motion on the surface (4) can be guaranteed when the APRC
satisfies

mp > 0, λ(Kc) > 0,Γ∗ ≥ λ2(Kp +Ki +Kd), � > 0

where λ(·) and λmin(·) denote the eigenvalues and the minimum
eigenvalue of the matrix, respectively.

λ2 =
(c1 + c2 + 1)ε

λmin(Km)
,Kc =

[
Kpc2 +Kic1 Ki +Kdc2

Ki +Kdc2 Kp +Kdc1

]
.

Proof: Due to λ(Kc) > 0, a Lyapunov candidate is defined
as V = V1+V2+V3 > 0 with

V1 =
1
2
mpS

2
p +

1
2
S2
q (13)

V2 =
1
2

[
ep ėp

]
Kc

[
ep
ėp

]
(14)

=
1
2
(Kp +Kdc1 −Ki −Kdc2)ė

2
p

+
1
2
(Kpc2 +Kic1 −Ki −Kdc2)e

2
p

+
1
2
(Ki +Kdc2)(ep + ėp)

2

V3 =
1

2γ
Γ̃2 (15)

where ep =

∫
(xp − x)dt and Γ̃=Γ̂− Γ∗.

From (7)–(11), it follows that

mpṠp = −Γ̂sgn(Sp) +Kpėp +Kiep +Kdëp. (16)

According to (3)–(5), we have

Ṡq = −Kpėp −Kiep −Kdëp − τ (17)

Sp = Sq − (ëp + c1ėp + c2ep). (18)

Integrating (10)–(18), the derivatives of V1, V2, and V3 are

V̇1 = Sp(−Γ̂sgn(Sp) +Kpėp +Kiep +Kdëp)

+ Sq(−Kpėp −Kiep −Kdëp − τ) (19)

= −Γ̂|Sp| − τSq + (Kpėp +Kiep +Kdëp)(Sp − Sq)

= −Γ̂|Sp| − τSq −Kdë
2
p −Kpc1ė

2
p −Kic2e

2
p

− (Kp +Kdc1)ėpëp − (Ki +Kdc2)epëp

− (Kpc2 +Kic1)epėp

V̇2 = (Kp +Kdc1)ėpëp + (Kpc2 +Kic1)epėp (20)

+ (Ki +Kdc2)ė
2
p + (Ki +Kdc2)epëp.

V̇3 =
1
γ
Γ̃
˙̂
Γ = Γ̃ |Sp| = Γ̂ |Sp| − Γ∗ |Sp| . (21)

Then, it follows that

V̇1 + V̇2 = −Γ̂|Sp| − τSq −Kdë
2
p −�ė2

p −Kic2e
2
p. (22)

Note that

Γ∗ ≥ (Kp +Ki +Kd)(1 + c1 + c2)

min(Kic2, �,Kd)
ε ≥ ε. (23)

From (17)–(23), we have

V̇ = V̇1 + V̇2 + V̇3

= −Γ∗ |Sp| − τSq −Kdë
2
p −�ė2

p −Kic2e
2
p

≤ −ε |Sq|+ ε |ëp + c1ėp + c2ep|
− τSq −Kdë

2
p −�ė2

p −Kic2e
2
p

≤ ε(1 + c1 + c2) ‖ep‖ − λmin(Km)‖ep‖2

= −‖ep‖ [λmin(Km) ‖ep‖ − ε(1 + c1 + c2)] (24)

where ep = Xp −X = [ep, ėp, ëp]
T . It is easy to see that after

a sufficiently long time

‖ep‖ ≤ λ2. (25)

As a result, ‖ep‖ is uniformly ultimately bounded.
Define a new Lyapunov candidate as

Vp =
1
2
mpS

2
p +

1
2γ

Γ̃2. (26)

It follows from (16) that

V̇p = mpSpṠp +
1
γ
Γ̃
˙̂
Γ

= −Γ∗ |Sp|+ (Kpėp +Kiep +Kdëp)Sp

≤ −Γ∗ |Sp|+ λ2(Kp +Ki +Kd)Sp

≤ 0. (27)

When ||ep|| is uniformly ultimately bounded, the achievement
of a sliding motion on the surface (4) is guaranteed.

This completes the proof. �
Remark 2: The stability analysis of the system has two mo-

tion phases. First, the norm of the tracking error between the
proxy states Xp and the system states X is uniformly ultimately
bounded. This indicates that the system states converge to the
proxy states. Then, the achievement of sliding motion on the
surface (4) means that the proxy tracks the reference trajectory,
theoretically. In summary, the system states are capable of indi-
rectly tracking the reference, and the stability of the closed-loop
system is guaranteed.

Corollary 1: If inequality (25) holds, and initially xp = xd,
then, as the proxy mass mp increases, Sq will gradually ap-
proach a bound associated with the upper bound of the lumped
disturbances.

lim
mp→∞ |Sq| ≤ λ2(c1 + c2 + 1). (28)

Proof: From (16), it follows that

|Ṡp| = 1
mp

| − Γ∗sgn(Sp) +Kpėp +Kiep +Kdëp|. (29)
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Since the system is globally uniformly ultimately bounded and
a limited Γ∗, we have

lim
mp→∞ |Ṡp| = 0. (30)

The proxy mass mp is a fixed value in each experiment. Let tf
be the finite duration of the experiment. Then,

Sp =

∫ tf

0
Ṡpdt+ υ (31)

whereυ is the initial value ofxd − xp, which equals zero. Hence,
it follows that

|Sp| = |
∫ tf

0
Ṡpdt| ≤

∫ tf

0
|Ṡp|dt. (32)

Combining (30) and (32), we can obtain

lim
mp→∞ |Sp| = 0. (33)

Considering (18) and (25), after a sufficiently long time

|Sq| ≤ |Sp|+ |ëp + c1ėp + c2ëp|
≤ |Sp|+ λ2(c1 + c2 + 1). (34)

Finally,

lim
mp→∞ |Sq| ≤ λ2(c1 + c2 + 1). (35)

According to the above results, when the proxy mass mp ap-
proaches positive infinity, Sq will approach a bound associated
with the the upper bound of the lumped disturbances. This
means that mp can be used to regulate the behaviors of the
PMA. Normally, it should be sufficiently large, so that the
proxy trajectory will track the reference accurately and realize
a damped response.

This completes the proof. �

B. Adaptive Proxy-Based Robust Control Integrated
With Nonlinear Disturbance Observer

The previous analysis indicates that the APRC can suppress
system uncertainties and ensure the uniformly ultimate bounded-
ness of the system states. However, unlike fast-response motors,
the response of the PMA system tends to be relatively slow.
The excessive gain Γ∗ leads to control accuracy degradation and
system instability. Therefore, a nonlinear disturbance observer
is considered to handle the system uncertainties and increase the
system robustness. According to Lemma 1 and Assumption 1,
we have

|τ̇ | ≤ μ (36)

where μ is an unknown constant.
We define an auxiliary variable z to design the nonlinear

disturbance observer, as shown{
τ̂ = z + κẋ
ż = −κ(f(x, ẋ) + b(x, ẋ)u+ τ̂)

(37)

where τ̂ is the estimation of disturbances and κ is a constant
gain. Therefore, the derivative of τ̂ is

˙̂τ = ż + κẍ = κτ̃ (38)

where τ̃ = τ − τ̂ . Subtracting both sides of (38) from τ̇ , we have
˙̃τ = τ̇ − κτ̃ with ˙̃τ = τ̇ − ˙̂τ .

Defining a Lyapunov function

Vτ (τ̃) =
1
2
τ̃ 2 (39)

and evaluating V̇τ (τ̃) along (39)

V̇τ (τ̃) = τ̃ ˙̃τ = τ̃(τ̇ − κτ̃)

≤ μ |τ̃ | − κτ̃ 2

= − |τ̃ | (κ |τ̃ | − μ). (40)

Therefore, the estimation error is bounded by

|τ̃ | ≤ ε̃ (41)

where ε̃ = μ/κ.
To integrate the nonlinear disturbance observer into the

APRC, we only need to redefine (5) as

Ṡq +Kp(xp − x) +Ki

∫
(xp − x) dt

+Kd(ẋp − ẋ) + τ̃ = 0. (42)

Similarly, bringing (2) and (3) into (42), the control signal of the
PMA system is

u =
1

b(x, ẋ)
[ẍd + c1(ẋd − ẋ) + c2(xd − x)− f(x, ẋ)

+Kp(xp − x) +Ki

∫
(xp − x) dt+Kd(ẋp − ẋ)− τ̂ ].

(43)

Theorem 2: The norm of ẽp = [ep, ėp, ëp, τ̃ ]
T is uniformly

ultimately bounded, and a sliding motion on the surface (4) can
be guaranteed when the APRC–NDO satisfies

mp > 0, λ(Kc) > 0,Γ∗ ≥ λ′
2(Kp +Ki +Kd), � > 0

where K′
m = diag{Kic2, �,Kd, κ}, and

λ′
2 =

ε̃(1 + c1 + c2) + μ

λmin(K′
m)

Proof: We define a new Lyapunov candidate

V ′ = V1 + V2 + V3 +
1
2
τ̃ 2 (44)

and note that Γ∗ ≥ λ′
2(Kp +Ki +Kd) ≥ ε̃.

From (16), (21), (36)–(39), and (42), the derivative of V ′ is

V̇ ′ = −Γ∗ |Sp| − τ̃Sq −Kdë
2
p −�ė2

p −Kic2e
2
p + τ̃ ˙̃τ

≤ −ε̃ |Sq|+ ε̃ |ëp + c1ėp + c2ep| − τ̃Sq

−Kdë
2
p −�ė2

p −Kic2e
2
p + μ |τ̃ | − κτ̃ 2

≤ [ε̃(1 + c1 + c2) + μ] ‖ẽp‖ − λmin(K
′
m)‖ẽp‖2

= −‖ẽp‖ (λmin(K
′
m) ‖ẽp‖ − [ε̃(1 + c1 + c2) + μ]). (45)

Thus, ẽp is uniformly ultimately bounded by

‖ẽp‖ ≤ λ′
2. (46)
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Fig. 3. PMA system.

In this situation, by applying the similar technique in (27), the
achievement of a sliding motion on (4) is guaranteed.

V ′
p =

1
2
mpS

2
p +

1

2γ
Γ̃2. (47)

Thus, the derivative of V ′
p is expressed as

V̇ ′
p = mpSpṠp + Γ̃ ˙̃Γ

≤ −Γ∗ |Sp|+ λ′
2(Kp +Ki +Kd)Sp

≤ 0. (48)

This completes the proof. �
Corollary 2: If inequality (46) holds, and initially xp = xd,

then, as the proxy mass mp increases, Sq will gradually ap-
proach a bound associated with estimation errors of the lumped
disturbances.

lim
mp→∞ |Sq| ≤ λ′

2(c1 + c2 + 1). (49)

Proof: This corollary can be easily proven by using the
similar method given in the Proof of Corollary 1. �

IV. EXPERIMENTS

A. Experiment Setup

In the physical system, the board (NI-PCI 6052E) enabled
A/D and D/A to collect the sensory data and transmitted the con-
trol signal to an electromagnetic proportional valve for regulat-
ing the inner pressure of the PMA. The air compressor provided
compressed air and was connected to the PMA through the elec-
tromagnetic proportional valve. Consequently, the displacement
of the PMA can be controlled by feedbacking the displacement,
as shown in Fig. 3. The PMA was Festo DMSP-20-200N-RM-
RM fluidic muscle with an internal diameter of 20 mm, nominal
length of 200 mm, and an operating pressure range from 0 to
6 bar. The Festo VPPM-6L-L-1-G18-0L10H-V1P proportional
valve was used to regulate the pressure inside the PMA. The
displacement sensor was GA-75 whose measurement range was
0–150 mm.

The proposed method does not require an accurate three-
element model of the PMA. So, we used the identified parame-
ters of a similar PMA in [11] (see Table I).

We designed two reference trajectories. The first was a fixed
frequency sinusoid

xd = Ax sin(2πfxt) +Bx (50)

TABLE I
MODEL PARAMETERS

where Ax = 0.015 m, fx = 0.25 Hz, and Bx = 0.015 m. The
second was a sine wave whose frequency changed linearly from
0.1 to 0.5 Hz within 20 s. The sampling time was set to 0.001 s.

The maximum absolute error (MAE), the integral of absolute
error (IAE), and the relative tracking accuracy (RTE) were used
as our performance measurements

MAERa = Max(|xd(t)− x(t)|Nt=1) (51)

IAERb =
1
N

N∑
t=1

|xd(t)− x(t)| (52)

RTERc =

(∑N
t=1 |xd(t)− x(t)|

)
/N

xa
× 100% (53)

where N is the total sampling time. xa is the maximum running
displacement of the PMA.

The following set of control parameters of the APRC–NDO
was used in all experiments: c1 = 177.4, c2 = 174.4, Kp =
2473.5, Ki = 1916, Kd = 194.2, κ = 15952, γ = 10. Note
that the parameter selections of all the control strategies were
based on an optimization algorithm, called switch-mode firefly
algorithm (SMFA). More related details can be found in [30].

B. Experimental Results

Fig. 4 shows the experimental results that verified Corollary 1.
In this experiment, we selected a fixed Γ∗ to demonstrate the
influence of mp = {0.5, 1.0, 5.0, 10.0, 15.0}. As mp increased,
the tracking accuracy improved, and the variation of Sq signifi-
cantly decreased. Meanwhile,xp tracked the reference trajectory
more accurately and |Sp| → 0.

Then, we intended to verify the experimental results of the
proposed control strategy with different amplitudes of the de-
sired trajectories, as shown in Fig. 5. The corresponding control
performances were similar, and the control parameters did not
change for this experiment, which indicated that the proposed
method is applicable to various applications.

Next, for a fair comparison, the control parameters for all the
strategies [APRC–NDO, NDO–SMC, supertwisting algorithm
(STA), PSMC] were adjusted with the fixed-frequency sinu-
soidal reference (fx = 0.25 Hz, Ax = 0.015 m, Bx = 0.015 m)
by the SMFA. Fig. 6 shows the corresponding performance of
different control strategies, and the corresponding MAEs, IAEs,
and RTEs of all five control strategies are shown in Table II.
We replaced the sign function of the NDO–SMC with a sat
function to eliminate chattering. In spite of the inaccurate model
parameters in Table I, the NDO–SMC and STA were capable of
handling the uncertainties and achieving favorable performance.
Meanwhile, the basic PSMC enabled the PMA to track the
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Fig. 4. Tracking performance of the APRC–NDO with different mp

values.

Fig. 5. Tracking performance of the APRC–NDO with different ampli-
tudes of the desired trajectories.

reference with acceptable precision, since it is a model-free
strategy, not affected by inaccurate model parameters. However,
its performance was still unsatisfied than APRC–NDO. Besides,
according to our previous study [8], although the traditional PID
controller tracked the reference trajectory, the performance was
worse than the proposed strategy. On the other hand, because
we had |Sp| → 0, the adaptive coefficient Γ̂ gradually tended to
be a fixed value, instead of monotonically increasing.

Based on the previous tuned control parameters, Fig. 7 showed
the tracking performance of different control strategies with the
varying-frequency (0.1–0.5 Hz) sinusoidal reference. Although
the NDO–SMC behaved well in the steady state, it had a large
oscillation at the beginning. On the contrary, the STA performed
well at the beginning, but it could not effectively track the

Fig. 6. Tracking performance of different control strategies with the
fixed-frequency sinusoidal reference (0.25 Hz).

TABLE II
TRACKING PERFORMANCE OF DIFFERENT CONTROL STRATEGIES WITH

THE FIXED-FREQUENCY SINUSOIDAL REFERENCE (0.25 HZ)

Fig. 7. Tracking performance of different control strategies with the
varying-frequency sinusoidal reference (0.1–0.5 Hz).

reference as the frequency increased. Still, the PSMC tracked the
reference with acceptable precision. The proposed APRC–NDO
performed the best among all four control strategies, although
it had a relatively little oscillation at the beginning. This was
because the APRC–NDO needed some time to drive the states
of the PMA into the boundary [see (25) and (46)]. After that,
the proposed APRC–NDO could handle the system distur-
bances/uncertainties and achieve accurate tracking. Actually, the
NDO is very important, because the uncertainties/disturbances
of the system relate to the frequency of PMA’s trajectory, and
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Fig. 8. Tracking performance of the APRC–NDO with a sudden
change of load.

Fig. 9. Tracking performance of the APRC–NDO with the PMA attach-
ing different loads.

the varying frequency causes the growth of the system’s uncer-
tainties/disturbances. The SMC and APRC integrated with NDO
can better handle the uncertainties/disturbances of the system.

To further investigate the robustness of the proposed control
strategy, we first designed an experiment, in which a sudden
change of the load (2.5-kg load or 5.0-kg load) was added
to the PMA during operation, as shown in Fig. 8. It is seen
that the trajectory of the PMA deviated significantly from the
reference, and the greater the sudden disturbance, the further
it deviated. Moreover, additional experiments were conducted
for tracking the varying-frequency (0.1–0.5 Hz) reference with
different loads, as shown in Fig. 9. Generally, they were very
robust to the changing loads. However, the fixed parameters
of the NDO can only handle a certain amount of disturbances.
When the disturbance is beyond a certain degree, the parameters
of NDO have to be retuned.

V. CONCLUSION

This article presented a robust control strategy, APRC–NDO,
for the PMA. The APRC–NDO can realize a damped response
and regulate the behaviors of the PMA via a virtual proxy, as
well as handle the system uncertainties/disturbances to improve
the robustness. The tracking states of the PMA were proven to
be uniformly ultimately bounded through two motion phases.
Finally, extensive experiments demonstrated the superior per-
formance of the APRC–NDO.
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