40 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 18, NO. 1, JANUARY/FEBRUARY 2021

A Novel Negative-Transfer-Resistant Fuzzy
Clustering Model With a Shared Cross-Domain
Transfer Latent Space and its Application to
Brain CT Image Segmentation
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Abstract—Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance
under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or
outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical
images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning
improves learning in the target domain by leveraging knowledge from related domains. Given some target data, the performance of
transfer learning is determined by the degree of relevance between the source and target domains. To achieve positive transfer and
avoid negative transfer, a negative-transfer-resistant mechanism is proposed by computing the weight of transferred knowledge.
Extracting a negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space (called NTR-FC-SCT)
is proposed by integrating negative-transfer-resistant and maximum mean discrepancy (MMD) into the framework of fuzzy c-means
clustering. Experimental results show that the proposed NTR-FC-SCT model outperformed several traditional non-transfer and related

transfer clustering algorithms.

Index Terms—Medical image segmentation, fuzzy clustering, transfer learning, negative transfer

1 INTRODUCTION

ITH the development of electronic information and
Wcomputer technology, medical imaging and image
processing technology have developed rapidly. Medical
imaging equipments collect images for a short time, and are
less affected by external factors. Today, medical imaging
technology has become a powerful tool and core technology
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for modern clinical diagnosis and treatment. Commonly
used medical imaging techniques include Magnetic Reso-
nance Imaging (MRI), Computed Tomography (CT), Com-
puted Radiography (CR), Ultrasound, and so on. CT scans
produce clearer images than conventional x-ray for internal
organs, bone and soft tissues. MRI scans furnish greater
clearness and higher resolution than CT scans with lower
resolution [1]. Medical image segmentation is a basic and
important step in medical image processing and analysis. It
is also the basis of medical image registration, medical image
information fusion and 3D visualization. In the current clini-
cal practice, manual segmentation based on visual recogni-
tion and empirical judgment by doctors is still the most
typical and common segmentation method. However, man-
ual segmentation is tedious, time consuming and subjective.
For example, in the Isointense Infant Brain Segmentation
Challenge (ISEG2017), manual segmentation of each brain
MRI scan took an average of one week for neuroradiologists
[2]. Furthermore, the differences in physician experience and
uncertain factors such as visual fatigue will affect the correct
analysis of segmentation results.

With the rapid growth of the image processing technol-
ogy, many automatic image processing techniques have
appeared in recent years [3], [4], [5]. Image segmentation
methods can be broadly classified into four categories: graph
based methods, classification methods, deep learning meth-
ods and clustering methods [6]. A medical image in graph
based image segmentation is presented as a weighted undi-
rected graph [7]. Each pixel or region in the image is treated
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as a vertex of a graph, and the set of edges can be connected
by adjacent pixels or two adjacent regions. Then the image is
divided into several parts according to the relationship of the
adjacent pixels. The second category, also called supervised
methods, use labeled segmented images to extract features
and train a segmentation model, such as k-nearest neighbor
(KNN) [8], neural network [9], support vector machine
(SVM) [10], and so on. A major drawback of classification
methods is that they require sufficient labeled training
images. But in the areas of medical imaging, it is relatively
easy and inexpensive to obtain a large amount of unlabeled
data [11]. Deep learning learns the feature representation of
tissue contour based on deep convolutional neural networks
[12], [13]. Deep learning methods have successfully applied
for medical image segmentation in recent years. However,
deep learning methods usually need a large number of train-
ing dataset and special hardware devices. It is known that the
medical image segmentation problem can be considered as
classifying the pixels of images into homogeneous regions.
This process can be viewed as clustering problem. Clustering
method, as an unsupervised machine learning approach, is
the process of grouping a set of data points into subsets
so that data points in the same subset are similar (according
to some criteria). Widely used clustering methods include
expectation-maximization, spectral clustering and fuzzy
clustering, and so on. In the last decade, clustering-based
methods have attracted great interest in the segmentation of
medical images [14]. Portela et al. [15] proposed clustering
based semi-supervised classification for brain image segmen-
tation, which used K-means clustering as initial processing to
select brain slices. Ortiz ef al. [16] improved brain image seg-
mentation by using self-organizing maps (SOMs) based
voxel clustering to extract features, and then used entropy-
gradient clustering to segment brain images. Based on the
idea of multiobjective optimization, Saha ef al. [17] proposed
semi-supervised clustering in the intensity space for medical
image segmentation. Abdel-Maksouda et al. [18] combined
K means and FCM clustering to propose a hybrid clustering
method for tumour segmentation from brain image.

To make cluster-based segmentation methods perform
better, the training medical image data needs to be repre-
sentative of the target data. However, medical images are
often collected with different scanners and scanning param-
eters, and medical images may have large differences in
image quality due to machine performance or scanning
technology, such as varying degrees of rotation, noise, etc.
The requirement of training and target data under the same
distribution prevents the use of clustering methods in larger
research and clinical practice. Since the above scenarios
exist in a large number of real-world environments, this
leads to unsatisfactory segmentation results and the risk of
algorithm failure.

To solve this problem, researchers have introduced the
idea of transfer learning into clustering methods [19], [20].
With the help of some knowledge of auxiliary domain
(called source domain), transfer learning handles the cases
where the distribution, feature space or tasks are different
between source domain and testing domain (called target
domain). In transfer learning, the auxiliary knowledge from
the source domain involves the data sample, feature repre-
sentations, parameters and relationships [21], [22], [23]. The
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Fig. 1. The motivation of NTR-FC-SCT.
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knowledge is usually obtained from certain precise proce-
dures and reliable theory through some specific perspec-
tives. Jiang ef al. [24] proposed a transfer spectral clustering
method, which used both data manifold and feature mani-
fold between related clustering tasks. Deng et al. [25] pro-
posed a transfer prototype-based fuzzy clustering method,
which incorporated prototype knowledge induced from
source domain to implement the clustering in the target
domain. Qian et al. [20] proposed a cross-domain maximum
entropy clustering method, which utilized the auxiliary
knowledge from cluster centers and fuzzy memberships
belonging to source data. However, these methods have a
common assumption that source domain and target domain
must have the same number of clusters. Moreover, most
existing transfer clustering methods are not developed for
noisy scenarios. Thus, these methods may be not suitable
for noisy medical image segmentation.

Since the medical images of different domains may have
variations due to changes caused by noise, field offset and
bias field, in this paper, we study the problem of medical
image segmentation in a noisy scenario by transferring
medical images collected from related scenarios. We con-
sider the new noisy scenario as the target domain and the
existing medical image dataset from related scenario else-
where as the source domain, and then use the learning on
clean images of source data to improve the clustering in tar-
get data. To improve the transfer learning performance, we
consider learning the negative-transfer-resistant mecha-
nism, so that the influence of positive transfer knowledge is
reinforced and the influence of negative transfer knowledge
is reduced or even eliminated. Meanwhile, we think medi-
cal images in different scenarios may share certain common
representations such as bone and soft tissue, and the shared
representations could be preserved in a shared space.
Inspired of maximum mean discrepancy (MMD) [26], we
learn the shared latent space for source and target domains
such that the distributions in different domains are close to
each other. We investigate transferring ability of each clus-
ter belonging to source domain in the shared latent space
for medical image segmentation modeling. We use the clus-
tering centers in the source domain as the transfer knowl-
edge, regardless of whether the number of clusters in the
source domain is the same as that in the target domain.
With the above ideas, we propose a negative-transfer-resis-
tant fuzzy clustering model with a shared cross-domain
transfer latent space (called NTR-FC-SCT). The motivation
of NTR-FC-SCT is shown in Fig. 1. Two cluster centers pre-
sented as black triangle and circle have positive transfer
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influence to the clustering in the target domain, while the
cluster center presented as Black Square has negative influ-
ence to the clustering in the target domain. NTR-FC-SCT will
automatically resist black square participating in the clus-
tering in the target domain by using the negative-transfer-
resistance mechanism. We evaluate the proposed model on
real world datasets, and compare with several non-transfer
and related transfer clustering methods. The results on real
world brain CT dataset demonstrate that NTR-FC-SCT is
more robust than the comparison methods.

The novelty of this study is as follows. 1) We formulate the
problem of insufficient and noisy medical image segmenta-
tion as a model of transfer clustering task. To the best of our
knowledge, our study is the first attempt to address this issue.
2) The negative-transfer-resistance mechanism is proposed to
identify and resist negative source transfer knowledge. 3) The
MMD is introduced into NTR-FC-SCT to unify the representa-
tion of image data of different domains in the shared transfer
latent space, which helps transferring knowledge across dif-
ferent domains. 4) Clustering centers based transfer matching
scheme is used to deal with the inconsistency problem of clus-
tering numbers between source and target domains, so that
more robust cluster performance can be promoted.

The rest of this paper is organized as follows. Concepts
related to FCM, transfer learning and MMD are reviewed
in Section 2. In Section 3, the negative-transfer-resistant
mechanism and new proposed algorithm is introduced. Its
parameter learning based on iteratively optimization strategy
is then presented accordingly. The experimental results in
real-world brain CT image datasets are reported in Section 4.
Conclusions are given in the last section.

2 RELATED WORK

2.1 Conventional FCM for Image Segmentation
Fuzzy C-means (FCM) clustering [27] is one of most com-
monly used fuzzy clustering methods. FCM allows data
points to belong to more than one cluster defined by a mem-
bership matrix. Let X = {x1,x2,...,xy} be a given dataset
where d and N are data dimension and capacity, respec-
tively. Suppose C clusters exist in X, FCM derives the fol-
lowing objection function:

1

where U = [u] v, denotes the fuzzy membership matrix,
and V =[vy,v,.. vC] denotes the clustering center
matrix. m (m > 1) denotes the fuzzy index.

FCM finds an optimal group of sets to explain the data
samples into C clusters via matrixes Y and U. FCM minimizes
the total membership weighted distance of each sample x; to
the clustering center v;. FCM can easily optimize the objective
functions by an iterative technique. Among center-based clus-
tering methods, FCM was simple, efficient and high popular-
ity. It is widely used in transfer clustering methods. For
example, a FCM-based transfer learning was proposed in
[28], which combined with Gini-Simpson diversity index and

quadratic weights on membership. A knowledge-leveraged
transfer FCM (KL-TFCM) was proposed in [29], which used
three-interlinked framework of knowledge extraction, knowl-
edge matching, and knowledge utilization to leverage source
information to help clustering in the target domain. However,
the above FCM-based transfer learning clustering methods
are completed in the original space, and while they do not
consider resisting negative transfer.

2.2 Transfer Learning and Maximum
Mean Discrepancy

Currently, when the training data is not enough to represent
the data in the current domain, transfer learning, multi-task
learning and co-clustering are three effective techniques that
can enhance the clustering performance in the current domain.
Multi-task learning performs multiple learning tasks together
through by sharing certain knowledge among all tasks [30],
[31]. Co-clustering performs clustering on both objects and fea-
tures to exploit the clear duality between rows and columns of
a contingency table [32]. Transfer learning clustering enhances
the clustering performance in the target domain by leveraging
useful knowledge from different but related domains. Many
researches show that the transfer clustering methods have bet-
ter learning ability to obtain an effective model with the idea of
transfer learning [28], [29], [33]. In real applications, due to the
existences of noise and field offset etc, the insufficient medical
images are inadequate to complete image segmentation.
Therefore, we think transfer learning clustering can be used as
an effect technology to promote the segmentation of insuffi-
cient and noisy medical images in the new domain.

In transfer learning, a fundamental problem is to evaluate
the distribution difference between source domain and target
domain. Many criteria, like Kullback-Leibler (KL) divergence
can be used for distribution estimation. But some criteria need
density estimation, some are parametric and not suitable for
high-dimensional data [34], [35]. In these cases, maximum
mean discrepancy (MMD) as a nonparametric estimate crite-
rion receives is widely used for comparing distributions. Let
XS = {XLS, X259 - 7X1VS,S} and Xt = {XLM X27t7 e X_Ntf/}
denote the samples from distributions Py (Xs) and
Parger (X)) belonging to source and target domains, respec-
tively. The MMD for comparing distributions between
Prource(Xs) and Pigrger (X;) is defined as

N 2

—Z f(xir)

DZSt(P‘;mn(’e (X ) Rurqﬂ‘ Xt H_Zf X, s -
ti=1

(2)

MMD is based on reproducing kernel Hilbert space

(RKHS). Suppose f:X — H, H is a universal RKHS. By

inducing nonlinear mapping ¢, function evaluation can be

represented f(x) =< ¢(x),f >, then equation (2) can be
rewritten as

N, 2
Di 9t(PsouT(’e(}( ) IDtmget Xt H_Z ¢ th N.s l:Z] ¢(Xi,s)

(3)

When the difference between source and target domains is
small, the relationship between two domains is strong and the
transfer knowledge can be fully utilized. However, when the
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data in the source domain is not sufficiently related, the clus-
tering performance in the target domain may not only fail to
promote, it may even actually decrease. Thus, transfer learn-
ing would resist negative transfer when source and target
domains are not a good match. One strategy of resisting nega-
tive transfer is to identify and reject unhelpful knowledge
from source domain. Some data selection and source selection
methods have been proposed. The former implements some
rules to select data samples to reconstruct the training set of
source domain. For example, Rosenstein ef al. [36] proposed a
detecting negative transfer algorithm based on naive Bayes
classification model. Croonenborghs et al. [37] proposed an
option-based transfer in reinforcement learning algorithm to
achieve a balance between positive and negative transfer. The
source selection methods are applicable for multiple source
scenarios, which select the best source domain (task) for trans-
fer learning. An example of this strategy is Talvitie and Singh
[38] proposed a Markov decision process to select the proper
source task.

Fig. 2. The schematic diagram of NTR-FC-SCT.

3 NEGATIVE-TRANSFER-RESISTANT Fuzzy
CLUSTERING MODEL WITH A SHARED
CROSS-DOMAIN TRANSFER LATENT SPACE

The schematic diagram of NTR-FC-SCT is shown in Fig. 2.
In the noisy transfer learning scenario, compared with data
sample, feature representations, parameters and relation-
ships are usually considered as being more insightful and
more resistant to noise. In this study, we use the cluster cen-
ters in the source domain as auxiliary knowledge. The rea-
son is that cluster centers are computed by certain reliable
theories and rigorous procedures; such that the obtained
cluster centers can well represent a cluster and all affiliated
samples in a cluster.

3.1 Negative-Transfer-Resistant Mechanism

To resist the negative transfer, our objective is to discard bad
cluster centers in the source domain and select helpful cluster
centers that can help the clustering task satisfactorily. Let we
have a total of N°” training images in the source domain
X;is(x;s € R i =1,2,..., N%) and NP training images in
the target domain x;;(x;; € R*'i =1,2,..., NP), where

NTP <« NSP. We consider there exists a shared latent space,
spanned by a projection matrix ® € R™“, where r is the
dimensions of the shared latent space. In this way, the known
cluster centers fr;?D (h=1,2,...,C%P) in the source domain
obtained by a certain clustering method could be represented
as ®%7”. The projection of a target domain sample x;, could
be represented as Ox; . Suppose v, (j = 1, 2,...,C"P) is the
unsolved cluster centers in the target domain in the shared
latent space. We consider the following optimization term for
resisting negative transfer:

(wTD CSD

mm J(V) = ZZH

j=1 h=1

(4)

~SD
]h® ’

where the parameter Sy, is called the weight of transfer
knowledge, and its value is in the range [0,1]. Sj, denotes
the matching degree between the jth cluster center of the
target domain and the hth cluster center of the source
domain. To find useful transfer knowledge from the cluster
centers in the source domain, it is needed to devise a strat-
egy to set the values of S}, to high values for positive trans-
fer and low values for negative transfer. In Eq. (4), we set
Sjp, as follows:

(5)

When Sy, tends to 1, GJTD exactly matches @\75’3 . In this case,
the clustering results will be coherent and these two centers
clusters of different domains are much closer to each other.
When S, tends to 0, VJTD does not match OV, D In this case,
we make @%;” participate in transfer learmng as little as pos-
sible. That is to say, the transfer performance will be at least
no worse than performing the target clustering without trans-
fer. In other words, if the source clustering transfer ability of
@vh decreases cluster performance of target domain data, it
means the partial source clustering may be not related or the
relationship is not sufficiently leveraged, then the negatlve
transfer has occurred. By adjusting the value of @vh ,Eq. @)
can help the transfer model make positive transfer when two
domains are appropriately matched and resist negative trans-
fer when two domains are not matched. At one extreme, Sy, is
set to be 1, the transferred knowledge from the source domain
are completely helpful, such that the cluster centers in the
source and target domains are coincided with each other, and
all transferred knowledge are completely adopted. At the
other extreme, when Sy, tends to 0, it means the transferred
knowledge from the source domain are unhelpful. The clus-
tering on the target domain will disregard the transferred
knowledge. But in most cases part transferred knowledge are
selectively keep and the other parts are disregard.

3.2 The Proposed NTR-FC-SCT

To find a proper projection matrix O, we think the difference
between source and target domains in the shared latent space
should be as small as possible, such that the relationship
between domains is strengthened, and the transfer knowl-
edge of data in the source domain will be more helpful to com-
plete medical segmentation in the target domain. Based on the
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definition of MMD, the difference between two domains in
the shared latent space can be computed as follows

1 NTD NSD
d(Ps(mrcm Pmrgef,) = |\a7mD Z ®X1',,t ~ N'SD Z ®x7ﬁ,s
NP & NP =
ATD VTD AéD 'V.SD
0x;,x re’r + g Z 0x;,x! O
TD (NTD\2 Z Z bRyt I ATSDN\Z 1,585 s
N i=1 j= NS ) i=1 j=

NTD pSD

2 T @f
~ NIDNSD 21: 21: Oxisx;,0°.
p

(6)

The distribution difference between source and target
domains is simply the distance between the two mean in
the shared latent space. Let

NTD NTD NSUI\SD
Q= NTDQZZ it Jt+ NSD QZZXHXJS
NTDA‘SD
NTDNsD;Jz:X”Xw

(7)

The optimization of d(Psource, Piarget) can be simplified as

IIl@lIl d( 5our(67—PLa7get)

st. @07 =1,,,.

min 0007,
© ®

where I, is a 7 x r identity matrix, such that the projection
matrix H is orthogonal.

Coming to the transfer learning tasks, we incorporate
Egs. (4) and (8) into the FCM framework. We obtain the
objective function of NTR-FC-SCT as follows:

1= 5 ()" (o527

Ay Z H~T — $;,0%P

J=1 h=1

) + 00007, (9

oTD

st. 00T =1, Zugp =
=1

where parameters A\; > 0 and Ay > 0 are the coefficients of
transfer optimization term and MMD term, respectively. In
NTR-FC-5CT, the parameter A, is used to control the inﬂuence

oD CSL) - ~SD
L7 - 5,095

of transfer optimization term > .,
to the entire objective function. The larger the Al Value, the
greater the contribution of the transfer term will be. In this case,
the unsolved cluster centers v ? in the target domain should be
close to 5,03 in the shared latent space. Conversely, when
A1 tends to 0, the contribution of the transfer term is weakened,
the difference between the unsolved cluster centers and known

cluster centers in two different domains can be relaxed.

3.3 Optimization of NTR-FC-SCT
The solution of objective function in Eq. (9) relates to the
matrixes ©, U and V. In the following, we optimize them

one by one using the iteratively optimization strategy. In
terms of the Lagrange optimization, the minimization of J
in Eq. (9) by introducing the Lagrangian multiplier « in Eq.
(9) can be converted to the following unconstrained minimi-
zation problem:

r=3 % (u7)" (Jlox - 27[)
i=1 j=1
CTD CS'D
Y H 10— 5,097 ] (10)
j=1 h=1
NTD CTD
+2,000" + > "o (1 -3 Mgf) .
i=1 =1

In the first step, we fix parameters ® and U, and only
consider V. To minimize this objective on parameter V, we
set the derivative with regard to V to zero:

oL = ™\ ~TD
W:_Z(Mﬁ) (Ox;,—v™)

+Alz(j ~ 5,09;7) =0

o an
D (Z Ml/ +)\ CSD)
i=1
NTD cSD
Z (/’LED) ®X1t+)\125/h®’\SD-
J=1 h=1
We can get V in a closed form as follows
NID oSD
VI — (Z (11P) " Oxi0+ X Zsjh@)ASD)/
=1 h=1 (12)

NID
(2 ()" o).

i=1

Likewise, in the next step, we fix parameters ® and V, and
only consider U. The minimization problem of Eq. (10) with
respect to U can be equivalent to the following problem,

L TDym-1 D —
D 5 =m(u;;’) H@x”—v H —a; =0

m 1
@M,_(/Mp&ﬁvjm

In light of Z i1 M7 ;= 1, we can obtain

(13)

1
m—1 1

CTD m—1
TD
Wi = / - - .
” We—wﬂ 2 (o)

(14)

_ In the next step, we update matrix © and fix parameters
Vand U. Let

- ~ ~ ~ TD
U, = [:u'lh EERY L7 PR 7H’NTD1] € RIXN iR (15)
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where U=[0,...Uumn] € RIXCTNTY U= diag(U) €
RCTDIVTD XCTD ;VTD ) Let
w=[E,...,E] e RV xCTNT (16)
cTh
where E € RY' V'™ Let Q=q,-..,90.m] € R”CTDNTD,
where q; = [vI?,...,vI?] ¢ R”V'"". Substituting Egs. (16),
N—— ———
NTD

(17) and (18) back to Eq. (9), the minimization problem of
Eq. (10) with respect to ® can be equivalent to the following
problem,

©O) = tr((@xtw — QU (Oxw — Q)T)

~Q ~Q . T
+/\1tr<(®VbDST Pyevst - v ) 0t (0007),

17

where

NTD 5 NTD

2 Xt[lr

_ 1 NSD s NSD
(NTD)

(x0)" +

A’TDXNSD( 9)T

(XS)T
(Xt)T-

Likewise, the minimization problem of Eq. (10) with
respect to O can be equivalent to the following problem,

oo oll]
NSDx NTD

— ymoyso Xe[1] — o35 Xs[1]

ol L \T T SIPRLIARYA
%:(Qﬂxtw Uw) ()" —QU(w) (x,)")

A <®VSDSTS(VSD)T — \'/TDS(\‘/SD)T) + 0,00,
(18)

In this study, the widely gradient descent method is
adopted to compute the optimal ©. By setting the initial value
0 as 0', the gradient descent method successively optimal @
as follows

el =0""- T}%‘@:@l—l,
where 7 is the learning rate and [ is the iteration number. Con-
sidering the constraint of ®®” = 1. After each updatlng ste%)
of O, let O = 0" R be the QR decomposition of ', where ©
has orthoigonal columns and R is an upper triangle. Then we
replace ©®" with @' for the next iteration. Eq. (19) will be itera-
tively solved until the convergence condition is satisfied.

Based on the above analysis, the proposed NTR-FC-SCT
model is presented in Algorithm 1.

(19)

4 EXPERIMENTS

4.1 Data Sets and Settings

We use ultrashort echo time (UTE) and modified Dixon brain
image datasets [39], [40]. It consists of 256 brain CT image sli-
ces of 10 patients, with each image of a resolution of 256 x 256
pixels. All CT images with corresponding manual segmenta-
tion are segmented into three classes: bone, water and soft
issues. These class labels are assigned by physicians or techni-
cians. We randomly select 20 brain CT images as the original
target domain data, and the rest 236 brain CT images as source
domain data. We consider the application of NTR-FC-SCT in
the scenario of target images polluted by noise. To this aim, all

(d) © ()

Fig. 3. The example brain CT images in source and target domains,
(a) images in source domain, (b) Subject1 in the target domain with 5 per-
cent noise, (c) Subject1 in the target domain with 10 percent noise, (d) Sub-
ject1 in the target domain with 15 percent noise, (e) Subject1 in the target
domain with 20 percent noise, (f) Subject1 in the target domain with 25 per-
cent noise, (g) Subject1 in the target domain with 30 percent noise.

target images were corrupted by 5, 10, 15, 20, 25 and 30 per-
cent Gaussian noise. The example images in the source and
target domains are shown in Fig. 3. Following the training
protocol established in [41], we construct a total training data
set combining 236 source brain images and random 8 target
brain images, while the remaining 12 target brain images are
used as testing brain images. We repeat the experiment for 10
runs and record the experimental results.

Algorithm 1. NTR-FC-SCT Model

Initialize Set the maximum number of iterations ¢,,,,, the fuzzy
index m, the regularization parameters A\; and Ay, and
the learning rate .

Repeat:
Exacting transfer knowledge form the source domain;
Perform soft-partition clustering methods in the source
domain, such as FCM, and obtain the cluster centers of data in
the source domain;
=t+1;
Initialize the clustering centers of data in the target domain;
Compute the weight of transfer knowledge Sj;, using Eq. (10);
Fix U( ) and O(f), obtain V (t) using Eq. (12);
Fix V' (t) and O(t) obtain U(t) using Eq. (14);
Fix U(H) and V' (t) obtain O(t) using Eqgs. (18) and (19);
Compute J(t) using Eq. (9);
Until ||J(t) — J(t —1)|| < S0ort > tmass

To compare the segmentation performance of NTR-FC-
SCT with that of existing methods, complete image segmenta-
tion is obtained and compared with segmentations obtained
by FCM [27], transfer spectral clustering (TSC) [24], and type-I
knowledge-transfer-oriented c-means (T1-KT-FCM) [28]. As
introduced in Section 2, FCM is the baseline algorithm of
NTR-FC-SCT. TSC performs transfer learning based on bipar-
tite graph co-clustering, which adopts both the data manifold
and sample manifold shared among different domains. T1-
KT-FCM makes the cluster centers in the source domain as the
transfer information to control the knowledge transfer in the
test images. T1-KT-FCM incorporates this idea into FCM to
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TABLE 1
NMI Performance of all Comparison Methods on
5 percent Noisy CT Image Datasets

TABLE 3
NMI Performance of all Comparison Methods on
15 percent Noisy CT Image Datasets

Dataset FCM TSC T1-KT-FCM  NTR-FC-SCT Dataset FCM TSC T1-KT-FCM  NTR-FC-SCT

Means Std Means Std Means Std Means  Std Means Std Means Std Means Std Means  Std
Subjectl 0.0112 0.0041 0.5085 0.2249 0.5802 0.0254 0.7146 0.0056 Subjectl 0.0130 0.0106 0.5053 0.2261 0.4470 0.0181 0.5684 0.0082
Subject2  0.1515 0.1468 0.5801 0.1632 0.6359 0.0148 0.7526 0.0142 Subject2 0.2346 0.1282 0.5815 0.1536 0.5631 0.0172 0.6452 0.0118
Subject3 0.1583 0.1040 0.5573 0.1591 0.6438 0.0290 0.7253 0.0059 Subject3 0.2155 0.0679 0.5541 0.2003 0.4881 0.0175 0.5978 0.0024
Subject4 0.0137 0.0062 0.5149 0.1868 0.6091 0.0590 0.7256 0.0138 Subject4 0.1789 0.2392 0.5076 0.2182 0.4509 0.0171 0.5849 0.0157
Subject5 0.2333 0.1355 0.5649 0.1840 0.6329 0.0254 0.7432 0.0094 Subject5 0.2061 0.0862 0.5621 0.1394 0.5341 0.0121 0.6220 0.0030
Subject6  0.1823 0.1094 0.5659 0.1446 0.6505 0.0234 0.7441 0.0116 Subject6  0.2592 0.1368 0.5691 0.1526 0.5079 0.0163 0.6261 0.0096
Subject7 0.0086 0.0046 0.5283 0.2242 0.6096 0.0212 0.7352 0.0110 Subject7 0.0963 0.1848 0.5274 0.1991 0.4664 0.0168 0.5939 0.0130
Subject8 0.1324 0.1157 0.5664 0.1917 0.6603 0.0245 0.7586 0.0108 Subject8 0.1826 0.1223 0.5674 0.1458 0.5087 0.0223 0.6198 0.0101
Subject9  0.1188 0.1240 0.5845 0.1638 0.6700 0.0399 0.7693 0.0111 Subject9  0.2245 0.1570 0.5869 0.1486 0.5118 0.0120 0.6419 0.0157

Subject10 0.0185 0.0083 0.5765 0.2749 0.6512 0.0258 0.7781 0.0127
Subject11 0.1178 0.2362 0.5882 0.2124 0.6580 0.0179 0.7862 0.0068
Subject12 0.0642 0.0376 0.5719 0.1542 0.6631 0.0358 0.7759 0.0079

Subject10 0.0735 0.1450 0.5697 0.2271 0.4975 0.0197 0.6098 0.0169
Subject11 0.0937 0.1846 0.5826 0.2770 0.5267 0.0242 0.6107 0.0075
Subject12 0.2454 0.1816 0.5720 0.2135 0.5328 0.0129 0.6537 0.0117

achieve automatic image segmentation. To obtain the optimal
parameters in all four methods, the common used grid search
is conducted. Fuzzy index m in all fuzzy clusters is set within
the grid {1.1,1.5,2,2.5}. The K-nearest parameters in TSC are
set within the grid {0,0.005,0.1,0.5,0.7,1,1.5,10, 50, 100}.
The A,y parameters in T1-KT-FCM are set within the grid
{10e — 4,10e — 3,...,10e4}. The parameters A;, Ay in NTR-
FC-SCT are set within the grid {0, 10e — 4, 10e — 3,...,10e6},
learning rate 1 in NTR-FC-SCT are set within the grid
{le —4,1e — 3,1e — 2}, and the maximum number of itera-
tions is 10e5.

In this study, the performance of image segmentation by
clustering methods is evaluated in terms of two validity indi-
cators: normalized mutual information (NMI) [42] and
adjusted rand index (ARI) [43]. NMI and ARI can efficiently
evaluate the agreement degree between the known clusters
and the estimated data structure. Both NMI and ARI take
values from 0 to 1, and larger value means better cluster per-
formance. Experimental environment is Intel Core i3-4170
3.7 GHz CPU and 12 GM RAM, Windows 10, and MATLAB
R2016a in this study.

4.2 Performance Comparison
The clustering performance of four methods is reported in the
following. The mean and standard deviation of NMI and ARI

TABLE 2
NMI Performance of all Comparison Methods on
10 percent Noisy CT Image Datasets

for all compared clustering methods are displayed in Tables
1,2,3,4,5, 6, respectively. The experimental results show that
three transfer learning methods are superior to FCM. The
introduction of transfer knowledge from source domain has
indeed promoted the cluster performance of data in the target
domain. FCM is not a transfer learning cluster method which
simply combines the source domain and target domain data
as the training data. Due to underlying noise or outliers in the
target domain, the distribution difference between source and
target domains are significant different. Thus, FCM can not
obtain good clustering performance in terms of NMI and ARIL
Our model achieves the best performance in all datasets. TSC
may be not suitable for the transfer scenario in noisy medical
image segmentation, since the character of medical image are
usually different in noisy scenario, while the manifold and
sample manifold shared among different domains can not
resist negative transfer for TSC. T1-KT-FCM exploits the
transfer knowledge across domains in the original data space;
however, the limited transfer knowledge can not be fully
exploited in such original space. NTR-FC-SCT has shown bet-
ter performance than the other comparison methods in terms
of NMI and ARI. Both the reliable knowledge obtained in the
source domain and the ability of resisting negative transfer
has the important influence on the segmentation performance
of NTR-FC-SCT. To better observe the behavior of all

TABLE 4
NMI Performance of all Comparison Methods on
20 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT FCM TSC T1-KT-FCM  NTR-FC-SCT

Dataset Dataset
Means Std Means Std Means Std Means  Std Means Std Means Std Means Std Means  Std
Subjectl 0.0155 0.0098 0.5063 0.2137 0.4748 0.0095 0.6337 0.0091 Subjectl 0.0246 0.0289 0.5095 0.1908 0.4782 0.0069 0.6000 0.0055
Subject2  0.2943 0.1666 0.5797 0.1689 0.5792 0.0194 0.7230 0.0045 Subject2  0.3092 0.1299 0.5796 0.1631 0.5596 0.0082 0.6348 0.0128
Subject3 0.2182 0.0813 0.5502 0.1716 0.5224 0.0366 0.6908 0.0117 Subject3  0.2597 0.0992 0.5556 0.1588 0.5029 0.0108 0.5926 0.0051
Subject4 0.0196 0.0163 0.5061 0.1966 0.4706 0.0110 0.6475 0.0127 Subject4 0.0102 0.0061 0.5136 0.2026 0.4778 0.0066 0.5254 0.0133
Subject5 0.1959 0.1420 0.5635 0.1591 0.5273 0.0205 0.7056 0.0122 Subject5 0.3071 0.0852 0.5654 0.1471 0.5333 0.0119 0.6237 0.0084
Subject6  0.2868 0.0777 0.5683 0.1421 0.5310 0.0162 0.6894 0.0177 Subject6  0.2998 0.0697 0.5662 0.1376 0.5247 0.0176 0.5875 0.0099
Subject7 0.0076 0.0038 0.5336 0.2612 0.4696 0.0106 0.6710 0.0162 Subject7 0.0994 0.1742 0.5298 0.2377 0.4804 0.0088 0.5719 0.0063
Subject8 0.2006 0.1377 0.5680 0.1448 0.5357 0.0217 0.7077 0.0158 Subject§ 0.2557 0.1427 0.5683 0.1438 0.5426 0.0160 0.6023 0.0114
Subject9  0.2052 0.1502 0.5923 0.1901 0.5409 0.0165 0.7274 0.0104 Subject9  0.3098 0.0342 0.5852 0.1508 0.5366 0.0089 0.6433 0.0062

Subject10 0.0153 0.0136 0.5755 0.2609 0.5103 0.0186 0.7244 0.0046
Subjectll 0.0814 0.1664 0.5846 0.2263 0.5231 0.0215 0.7203 0.0122
Subject12 0.1534 0.1036 0.5694 0.1864 0.5409 0.0062 0.7144 0.0149

Subject10 0.0966 0.2007 0.5788 0.2565 0.5309 0.0066 0.5991 0.0080
Subjectl1 0.1196 0.2075 0.5818 0.2101 0.5525 0.0080 0.6516 0.0129
Subject12 0.1530 0.1197 0.5707 0.1767 0.5466 0.0167 0.5869 0.0122
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TABLE 5
NMI Performance of all Comparison Methods on
25 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Means Std Means  Std

0.0107 0.0058 0.5078 0.2154 0.4969 0.0043 0.5469 0.0104
0.1708 0.1001 0.5792 0.1741 0.5842 0.0076 0.6572 0.0182
0.2460 0.0981 0.5503 0.1685 0.5232 0.0145 0.5940 0.0093
0.0121 0.0081 0.5177 0.2390 0.5045 0.0112 0.5717 0.0197
0.1503 0.1169 0.5621 0.1599 0.5580 0.0122 0.6090 0.0083
0.2199 0.0660 0.5662 0.1533 0.5434 0.0311 0.5935 0.0142
0.0284 0.0285 0.5331 0.2528 0.5156 0.0137 0.5677 0.0095
Subject8 0.1320 0.1375 0.5705 0.1577 0.5547 0.0156 0.6272 0.0136
Subject9  0.2594 0.1054 0.5859 0.1542 0.5682 0.0124 0.6437 0.0127
Subject10 0.1980 0.0293 0.5763 0.2203 0.5488 0.0073 0.6416 0.0157
Subjectll 0.2156 0.2697 0.5830 0.2349 0.5745 0.0184 0.6732 0.0117
Subject12 0.3935 0.0908 0.5724 0.1827 0.5617 0.0122 0.6386 0.0078

Dataset

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

TABLE 6
NMI Performance of all Comparison Methods on
30 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Means Std Means Std

0.0120 0.0093 0.5086 0.2028 0.5569 0.0124 0.6567 0.0084
0.2553 0.1770 0.5833 0.1497 0.6333 0.0113 0.7439 0.0109
0.2010 0.0804 0.5526 0.1537 0.5872 0.0206 0.6602 0.0110
0.0891 0.1752 0.5143 0.2144 0.5664 0.0050 0.6720 0.0114
0.1820 0.1376 0.5663 0.1463 0.6172 0.0193 0.7080 0.0028
0.2316 0.1094 0.5695 0.1928 0.6062 0.0120 0.6872 0.0086
0.1080 0.1686 0.5316 0.2091 0.5769 0.0172 0.6966 0.0054
Subject§ 0.1755 0.1045 0.5696 0.1777 0.6231 0.0097 0.7037 0.0103
Subject9  0.2584 0.0893 0.5913 0.1901 0.6295 0.0216 0.7356 0.0200
Subject10 0.0113 0.0135 0.5751 0.2901 0.6247 0.0198 0.7441 0.0115
Subject11 0.2121 0.2838 0.5827 0.2652 0.6343 0.0212 0.7491 0.0042
Subject12 0.1547 0.1170 0.5702 0.1941 0.6226 0.0045 0.7256 0.0095

NadR #
@ b

(b)
= <1
(0 (d)
Fig. 4. Clustering segmentations on subject1+5 percent noise, (a)FCM,
(b)TSC, (c)T1-KT-FCM, (d)NTR-FC-SCT.

Dataset

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

w5

algorithms, Figs. 4, 5, 6, 7, 8, 9 graphically shows the segmen-
tation results of all comparison methods obtained on subjectl
with different noise. Similar to the results in the Tables 1, 2, 3,
4,5,6,7,8,9,10, 11,12, NTR-FC-SCT obtains the best segmen-
tation results for distinguishing the bone, water and soft
issues. The boundaries between different organizations are
smooth, and obvious are relatively clearer than the other three
methods.

4.3 Flexibility Evaluation of NTR-FC-SCT
To validate the effect of two regularization terms on the

performance of NTR-FC-SCT, we present two comparison
methods NTR-FC-SCT (A\;=0) and NTR-FC-SCT (A= 0),

Fig. 5. Clustering segmentations on subject1+10 percent noise,
(a)FCM, (b)TSC, (c)T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 6. Clustering segmentations on subject1+15 percent noise, (a)FCM,
(b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 7. Clustering segmentations on subject1+20 percent noise,
(a)FCM, (b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 8. Clustering segmentations on subject1+25 percent noise,
(a)FCM, (b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

obtained with the parameter A\;=0 and M= 0 in NTR-FC-
SCT, respectively. We compare them with FCM and NTR-FC-
SCT on Subjects 1-8 and show their mean and standard devia-
tion of NMIand ARI in Tables 13, 14, respectively. The experi-
mental results show that the performances of both NTR-FC-
SCT (A= 0) and NTR-FC-SCT (Ay= 0) are better than base-
line method FCM. The regularization term in NTR-FC-SCT

. \TD SD | R 2 .
(A=10) is Z](le 2‘:1 ||V?D — SﬂL®va|| , which can effec-

tively resist negative transform by using the transfer optimi-
zation strategy and improve the segmentation performance in
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Fig. 9. Clustering segmentations on subject1+30 percent noise, (a)
FCM, (b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

TABLE 7
ARI Performance of all Comparison Methods on
5 percent Noisy CT Image Datasets

TABLE 9
ARI Performance of all Comparison Methods on
15 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Means Std Means  Std

0.0009 0.0031 0.3389 0.1753 0.3607 0.0262 0.6833 0.0089
0.1206 0.1058 0.3935 0.1414 0.4404 0.0126 0.6679 0.0107
0.1083 0.0540 0.4127 0.1807 0.4323 0.0238 0.5997 0.0032
0.1239 0.1680 0.3439 0.1746 0.3620 0.0344 0.7034 0.0137
0.0847 0.0405 0.3859 0.1306 0.4408 0.0298 0.7278 0.0046
0.1421 0.1255 0.4182 0.1430 0.4259 0.0204 0.6636 0.0077
0.0639 0.1304 0.3588 0.1519 0.3662 0.0287 0.5863 0.0161
Subject8 0.0729 0.0824 0.3902 0.1349 0.4120 0.0355 0.5671 0.0136
Subject9  0.1302 0.0900 0.4174 0.1444 0.4186 0.0102 0.6287 0.0148
Subject10 0.0398 0.0848 0.3778 0.2008 0.4098 0.0241 0.5256 0.0122
Subject11 0.0593 0.1239 0.3843 0.2049 0.4230 0.0250 0.6560 0.0087
Subject12 0.1478 0.1185 0.3750 0.1692 0.4119 0.0303 0.6518 0.0128

Dataset

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Std Means  Std

0.0021 0.0043 0.3399 0.1756 0.7579 0.0301 0.8880 0.0028
0.0854 0.0814 0.3931 0.1561 0.8032 0.0160 0.9111 0.0109
0.0861 0.0521 0.4144 0.1478 0.8072 0.0318 0.8839 (.0031
0.0013 0.0041 0.3466 0.1701 0.7730 0.0629 0.8913 0.0107
0.1186 0.0877 0.3884 0.1761 0.8085 0.0316 0.9080 0.0078
0.0839 0.0560 0.4153 0.1393 0.8069 0.0264 0.8950 0.0108
0.0012 0.0026 0.3593 0.1594 0.7728 0.0243 0.8922 0.0119
Subject8 0.0651 0.0732 0.3902 0.1753 0.8293 0.0276 0.9169 0.0095
Subject9  0.0658 0.0682 0.4153 0.1524 0.8305 0.0378 0.9187 0.0102
Subject10 0.0071 0.0055 0.3806 0.2090 0.8036 0.0304 0.9242 0.0106
Subject1l 0.0771 0.1614 0.3858 0.1903 0.8089 0.0215 0.9299 0.0053
Subject12 0.0094 0.0109 0.3744 0.1365 0.8131 0.0424 0.9269 0.0081

Dataset

Means

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

TABLE 8
ARI Performance of all Comparison Methods on
10 percent Noisy CT Image Datasets

TABLE 10
ARI Performance of all Comparison Methods on
20 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Means Std Means Std

0.0019 0.0080 0.3440 0.1486 0.3241 0.0059 0.6624 0.0098
0.1754 0.1208 0.3933 0.1522 0.3859 0.0059 0.6005 0.0116
0.1443 0.0831 0.4147 0.1533 0.3742 0.0102 0.5570 0.0066
0.0015 0.0060 0.3464 0.1713 0.3270 0.0090 0.5008 0.0139
0.1679 0.0931 0.3883 0.1370 0.3730 0.0056 0.6152 0.0068
0.1701 0.0682 0.4176 0.1304 0.3838 0.0091 0.5775 0.0079
0.0625 0.1226 0.3602 0.1912 0.3309 0.0064 0.4983 0.0083
Subject§ 0.1520 0.1066 0.3913 0.1339 0.3809 0.0088 0.5055 0.0102
Subject9  0.1619 0.0404 0.4164 0.1424 0.3871 0.0056 0.5725 0.0053
Subject10 0.0620 0.1394 0.3812 0.1927 0.3571 0.0027 0.5494 0.0065
Subject11 0.0713 0.1457 0.3838 0.1649 0.3695 0.0065 0.5819 0.0122
Subject12 0.0657 0.0780 0.3746 0.1617 0.3641 0.0048 0.4376 0.0106

Dataset

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Std Means  Std

0.0028 0.0113 0.3403 0.1791 0.5742 0.0284 0.8155 0.0056
0.1798 0.1182 0.3955 0.1613 0.5515 0.0292 0.8812 0.0056
0.1158 0.0542 0.4121 0.1696 0.6163 0.0635 0.8515 0.0148
0.0046 0.0063 0.3433 0.1729 0.5650 0.0237 0.8281 0.0134
0.1051 0.0953 0.3848 0.1535 0.6339 0.0317 0.8777 0.0093
0.1523 0.0812 0.4168 0.1373 0.6359 0.0297 0.8467 0.0136
0.0008 0.0012 0.3607 0.1920 0.5573 0.0211 0.8482 0.0125
Subject8 0.1140 0.0988 0.3915 0.1311 0.6423 0.0301 0.8522 0.0149
Subject9  0.1202 0.1143 0.4210 0.1781 0.6382 0.0300 0.8839 0.0101
Subject10 0.0011 0.0089 0.3800 0.1963 0.5939 0.0328 0.8849 0.0037
Subject11 0.0493 0.1062 0.3848 0.1608 0.6045 0.0401 0.8742 0.0118
Subject12 0.0484 0.0401 0.3737 0.1681 0.6302 0.0112 0.8738 0.0125

Dataset

Means

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

noisy scenario. The regularization term in NTR-FC-SCT
(M=0)is ®700, which finds a shared latent space for data
cross domains, so that the projection data distributions of the
source and target domains are close to each other. NTR-FC-
SCT has the advantages of both NTR-FC-SCT (A= 0) and
NTR-FC-SCT (Ay= 0). It can exploit more transfer knowledge;
meanwhile, and achieve a good balance between making use
of positive transfer and resisting negative transfer.

Next, we discuss the influence of the number of samples
in the source domain on the performance of NTR-FC-SCT.
We randomly select 10, 30, 50, 70, 90 and 100 percent pro-
portion of training samples in the source domain as the

TABLE 11
ARI Performance of all Comparison Methods on
25 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Means Std Means  Std

0.0023 0.0020 0.3409 0.1786 0.3419 0.0056 0.5128 0.0139
0.0687 0.0687 0.3948 0.1626 0.4354 0.0132 0.6609 0.0156
0.1447 0.0664 0.4126 0.1659 0.4043 0.0113 0.5219 0.0102
0.0125 0.0047 0.3484 0.1856 0.3738 0.0138 0.5349 0.0204
0.0701 0.0553 0.3862 0.1545 0.4182 0.0235 0.6445 0.0077
0.1147 0.0392 0.4186 0.1502 0.4153 0.0305 0.5271 0.0151
0.0076 0.0109 0.3611 0.1885 0.3654 0.0088 0.5132 0.0116
Subject8 0.0656 0.0666 0.3914 0.1499 0.4143 0.0176 0.5902 0.0148
Subject9  0.1248 0.0841 0.4173 0.1462 0.4233 0.0152 0.6459 0.0121
Subject10 0.1157 0.0035 0.3804 0.1958 0.3796 0.0046 0.5953 0.0165
Subject11 0.1382 0.1889 0.3842 0.1686 0.4277 0.0200 0.6537 0.0123
Subject12 0.2421 0.0869 0.3739 0.1749 0.4058 0.0177 0.6031 0.0091

Dataset

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

source training dataset. To make the results fair, we repeat
the above sampling 10 times for each sample size. NMI and
ARI performances of NTR-FC-SCT on Subjectl and Subject2
with 5 percent noisy are shown in Figs. 10 and 11, respec-
tively. The experimental results show that the values of NMI
and ARIincrease with the increase of the number of samples
in the source domain. The reason is that NTR-FC-SCT can
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TABLE 12
ARI Performance of all Comparison Methods on
30 percent Noisy CT Image Datasets

FCM TSC T1-KT-FCM  NTR-FC-SCT
Means Std Means Std Means Std Means  Std

0.0008 0.0052 0.3401 0.1505 0.5432 0.0294 0.7743 0.0062
0.1663 0.1180 0.3941 0.1505 0.5887 0.0309 0.8122 0.0136
0.0947 0.0389 0.4132 0.1584 0.5700 0.0397 0.7414 0.0125
0.0601 0.1242 0.3471 0.1760 0.5526 0.0094 0.7876 0.0146
0.0867 0.0967 0.3886 0.1351 0.5858 0.0488 0.7966 0.0044
0.1193 0.0774 0.4173 0.1744 0.5833 0.0131 0.7834 0.0053
0.0675 0.1173 0.3611 0.1547 0.5637 0.0408 0.7874 0.0079
Subject8 0.0684 0.0490 0.3911 0.1728 0.6018 0.0277 0.7363 0.0144
Subject9  0.1227 0.0787 0.4184 0.1823 0.6060 0.0214 0.8233 0.0176
Subject10 0.0047 0.0076 0.3800 0.2041 0.5840 0.0421 0.8140 0.0134
Subject11 0.1420 0.1947 0.3839 0.2030 0.6010 0.0318 0.8226 0.0052
Subject12 0.0588 0.0640 0.3745 0.1792 0.5793 0.0106 0.7996 0.0093

Dataset

Subjectl
Subject2
Subject3
Subject4
Subject5
Subject6
Subject?

TABLE 13
NMI Performance of all Comparison Methods on
5 percent Noisy CT Image Datasets

FCM NTR-FC-SCT NTR-FC-SCT NTR-FC-SCT
Dataset Mi=0) Qo= 0)
Means Std Means Std Means Std Means  Std

Subjectl 0.0112 0.0041 0.1312 0.0087 0.7009 0.0101 0.7146 0.0056
Subject2 0.1515 0.1468 0.4187 0.0121 0.7483 0.0135 0.7526 0.0142
Subject3 0.1583 0.1040 0.3852 0.0099 0.7011 0.0074 0.7253 0.0059
Subject4 0.0137 0.0062 0.1474 0.0137 0.7088 0.0062 0.7256 0.0138
Subject5 0.2333 0.1355 0.3566 0.0173 0.7304 0.0121 0.7432 0.0094
Subject6 0.1823 0.1094 0.4366 0.0075 0.7231 0.0071 0.7441 0.0116
Subject7 0.0086 0.0046 0.2283 0.0108 0.7184 0.0069 0.7352 0.0110
Subject§ 0.1324 0.1157 0.4831 0.0078 0.7389 0.0082 0.7586 0.0108

TABLE 14
ARI Performance of all Comparison Methods on
5 percent Noisy CT Image Datasets

FCM NTR-FC-SCT NTR-FC-SCT NTR-FC-SCT
Dataset M=0) (M= 0)
Means Std Means Std Means Std Means Std

Subjectl 0.0021 0.0043 0.4671 0.0069 0.8621 0.0042 0.8880 0.0028
Subject2 0.0854 0.0814 0.6893 0.0114 0.9017 0.0089 0.9111 0.0109
Subject3 0.0861 0.0521 0.7022 0.0093 0.8702 0.0047 0.8839 0.0031
Subject4 0.0013 0.0041 0.4705 0.0078 0.8856 0.0122 0.8913 0.0107
Subject5 0.1186 0.0877 0.6244 0.0086 0.8901 0.0099 0.9080 0.0078
Subject6 0.0839 0.0560 0.5921 0.0077 0.8901 0.0058 0.8950 0.0108
Subject7 0.0012 0.0026 0.5156 0.0143 0.8815 0.0103 0.8922 0.0119
Subject8 0.0651 0.0732 0.5702 0.0084 0.8977 0.0127 0.9169 0.0095

not mine enough transfer knowledge from source domain
when training samples in the source domain are too few. On
the other hand, exploiting clear and concise transfer knowl-
edge need a certain amount of high quality samples in the
source domain. Thus, it can be inferred that the more sam-
ples in the source domain, the more helpful the knowledge
obtained in the source domain and the more efficient the
NTR-FC-SCT will be in the target domain.

4.3 Parameter Sensitive
In the experiments, the parameters A\; and \; are determined
in a given search grid. In the following, we discuss the
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Fig. 10. NMI performance of NTR-FC-SCT with different proportion of
samples in the source domain on 5 percent noisy Subject1 and Subject2

The value of ARI index

10% 30% 50% 70% 90% 100%
The ratio of source domain samples

Fig. 11. ARI performance of NTR-FC-SCT with different proportion of
samples in the source domain on 5 percent noisy Subject1 and Subject2

performance of NTR-FC-SCT using different parameters.
Tables 15, 16 show the means of NMI and ARI on the subject
using different A\; and \,, while fixing the parameter m = 2.

1) NTR-FC-SCT is sensitive to parameters A; and o.
Different A\; and A, lend to different cluster perfor-
mance of NTR-FC-SCT in terms of NMI and ARIL. It
can be found that in most situations when the value
of NMI is better, the value of ARI is also better. Thus,
it is feasible to use NMI and ARI as performance cri-
terions to determine the suitable parameters.

2)  Fixed the value of m, NTR-FC-SCT obtains the worst
NMI and ARI when A\; = 0 and Ay = 0. The clustering
performance of NTR-FC-SCT is improved when X
and A, are not equal to 0. Since when A\ =0 and
A2 =0 NTR-FC-SCT is degenerated to the classical
FCM clustering,.

3) We can find that when the value of )\, is large, NTR-
FC-SCT obtains the satisfactory performance in
terms of NMI and ARI. This further demonstrates
that the proposed negative-transfer-resistance mech-
anism has played an effective role. Thus, in the sub-
sequent experiments, we can reduce the search grid
of Ay in the range {0,10e —4,...,10e6}. We can’t
find the rule to select parameter \;. We think it is rea-
sonable to select optimal A, within the search grid.
The range {0,10e — 4,...,10e6} is appropriate.

5 CONCLUSION

In this study, we have addressed the problem of medical
image segmentation with insufficient and noisy samples,
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TABLE 15
Means of NMI by NTR-FC-SCT on the Subject1+5 Percent Noise Using Different A\; and Ay, While Fixing m = 2

/1' 0 10e-4 10e-3 10e-2 10e-1 1 10e1 10e2 10e3 10e4 10e5 10e6
A
0 0.4801 0.5006 0.5181 0.5501 0.6011 0.6250 0.6091 0.6375 0.6788 0.6397 0.6427 0.6378
10e-4 0.4915 0.5326 0.5592 0.5662 0.6109 0.6161 0.6469 0.6499 0.6468 0.6493 0.6431 0.6425
10e-3 0.5094 0.5436 0.5572 0.5866 0.7007 0.6540 0.6413 0.6456 0.6465 0.6457 0.6449 0.6438
10e-2 0.5054 0.5605 0.5449 0.6980 0.7146 0.7006 0.6971 0.7075 0.6905 0.6766 0.7017 0.7106
10e-1 0.5036 0.5025 0.5036 0.5017 0.5070 0.5140 0.5138 0.5216 0.5184 0.5140 0.5147 0.5195
1 0.3540 0.3162 0.3118 0.3022 0.3340 0.3467 0.3500 0.3545 0.3517 0.3456 0.3630 0.3538
10el 0.2511 0.2533 0.2691 0.2531 0.2482 0.2995 0.3116 0.3147 0.3098 0.3054 0.3077 0.3213
10e2 0.2104 0.2058 0.2204 0.2286 0.2035 0.2682 0.2794 0.2775 0.2786 0.2834 0.2765 0.2647
10e3 0.1872 0.1861 0.1964 0.1803 0.1866 0.2560 0.2657 0.2775 0.2550 0.2749 0.2682 0.2654
10e4 0.1727 0.1741 0.1636 0.1687 0.1650 0.2231 0.2297 0.2329 0.2270 0.2272 0.2208 0.2359
10e5 0.1425 0.1313 0.1294 0.1229 0.1282 0.1500 0.1597 0.1594 0.1544 0.1574 0.1565 0.1541
10e6 0.1386 0.1319 0.1385 0.1274 0.1313 0.1360 0.1375 0.1365 0.1325 0.1314 0.1391 0.1392

TABLE 16
Means of ARI by NTR-FC-SCT on the Subject 145 Percent Noise Using Different \; and Ay, While Fixing m = 2

0 10e-4 | 103 | 10e2 | 10e-1 1 10e1 10e2 10e3 10e4 | 10e5 | 10e6
/12
0 0.7254 0.7452 0.7332 0.7778 0.7948 0.7880 | 0.7879 0.7876 0.7997 0.7905 0.7989 0.7845
10e-4 0.7534 0.7997 0.7590 0.8253 0.8656 0.8506 0.8670 0.8615 0.8579 0.8600 0.8460 0.8406
10e-3 0.7618 0.7943 0.8057 0.8553 0.8715 0.8733 0.8780 0.8717 0.8767 0.8755 0.8781 0.8769
10e-2 0.7586 0.8079 0.8055 0.8616 0.8880 0.8840 | 0.8840 0.8878 0.8837 0.8871 0.8849 0.8838
10e-1 0.6952 0.6842 0.6858 0.6788 0.7073 0.7172 0.7190 0.7139 0.7167 0.7215 0.7187 0.7135
! 0.6621 0.6716 0.6685 0.6733 0.6787 0.6788 0.6785 0.6797 0.6742 0.6813 0.6740 0.6748
10e1 0.6514 0.6555 0.6601 0.6612 0.6671 0.6615 0.6668 0.6665 0.6668 0.6647 0.6613 0.6649
10e2 0.6599 0.6637 0.6743 0.6744 0.6702 0.6724 | 0.6732 0.6746 0.6737 0.6720 0.6789 0.6771
10e3 0.6621 0.6625 0.6721 0.6583 0.6612 0.6633 0.6613 0.6650 0.6696 0.6696 0.6694 0.6666
10e4 0.6567 0.6497 0.6595 0.6536 0.6576 0.6562 0.6581 0.6597 0.6537 0.6537 0.6561 0.6512
10e5 0.6495 0.6397 0.6462 0.6357 0.6378 0.6446 | 0.6451 0.6448 0.6408 0.6426 0.6412 0.6388
10e6 0.6456 0.6403 0.6553 0.6402 0.6409 0.6506 0.6429 0.6419 0.6489 0.6466 0.6438 0.6439
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