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Abstract—Traditional clustering algorithms for medical image segmentation can only achieve satisfactory clustering performance

under relatively ideal conditions, in which there is adequate data from the same distribution, and the data is rarely disturbed by noise or

outliers. However, a sufficient amount of medical images with representative manual labels are often not available, because medical

images are frequently acquired with different scanners (or different scan protocols) or polluted by various noises. Transfer learning

improves learning in the target domain by leveraging knowledge from related domains. Given some target data, the performance of

transfer learning is determined by the degree of relevance between the source and target domains. To achieve positive transfer and

avoid negative transfer, a negative-transfer-resistant mechanism is proposed by computing the weight of transferred knowledge.

Extracting a negative-transfer-resistant fuzzy clustering model with a shared cross-domain transfer latent space (called NTR-FC-SCT)

is proposed by integrating negative-transfer-resistant and maximum mean discrepancy (MMD) into the framework of fuzzy c-means

clustering. Experimental results show that the proposed NTR-FC-SCT model outperformed several traditional non-transfer and related

transfer clustering algorithms.

Index Terms—Medical image segmentation, fuzzy clustering, transfer learning, negative transfer

Ç

1 INTRODUCTION

WITH the development of electronic information and
computer technology, medical imaging and image

processing technology have developed rapidly. Medical
imaging equipments collect images for a short time, and are
less affected by external factors. Today, medical imaging
technology has become a powerful tool and core technology

for modern clinical diagnosis and treatment. Commonly
used medical imaging techniques include Magnetic Reso-
nance Imaging (MRI), Computed Tomography (CT), Com-
puted Radiography (CR), Ultrasound, and so on. CT scans
produce clearer images than conventional x-ray for internal
organs, bone and soft tissues. MRI scans furnish greater
clearness and higher resolution than CT scans with lower
resolution [1]. Medical image segmentation is a basic and
important step in medical image processing and analysis. It
is also the basis of medical image registration, medical image
information fusion and 3D visualization. In the current clini-
cal practice, manual segmentation based on visual recogni-
tion and empirical judgment by doctors is still the most
typical and common segmentation method. However, man-
ual segmentation is tedious, time consuming and subjective.
For example, in the Isointense Infant Brain Segmentation
Challenge (ISEG2017), manual segmentation of each brain
MRI scan took an average of one week for neuroradiologists
[2]. Furthermore, the differences in physician experience and
uncertain factors such as visual fatigue will affect the correct
analysis of segmentation results.

With the rapid growth of the image processing technol-
ogy, many automatic image processing techniques have
appeared in recent years [3], [4], [5]. Image segmentation
methods can be broadly classified into four categories: graph
based methods, classification methods, deep learning meth-
ods and clustering methods [6]. A medical image in graph
based image segmentation is presented as a weighted undi-
rected graph [7]. Each pixel or region in the image is treated
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as a vertex of a graph, and the set of edges can be connected
by adjacent pixels or two adjacent regions. Then the image is
divided into several parts according to the relationship of the
adjacent pixels. The second category, also called supervised
methods, use labeled segmented images to extract features
and train a segmentation model, such as k-nearest neighbor
(KNN) [8], neural network [9], support vector machine
(SVM) [10], and so on. A major drawback of classification
methods is that they require sufficient labeled training
images. But in the areas of medical imaging, it is relatively
easy and inexpensive to obtain a large amount of unlabeled
data [11]. Deep learning learns the feature representation of
tissue contour based on deep convolutional neural networks
[12], [13]. Deep learning methods have successfully applied
for medical image segmentation in recent years. However,
deep learning methods usually need a large number of train-
ing dataset and special hardware devices. It is known that the
medical image segmentation problem can be considered as
classifying the pixels of images into homogeneous regions.
This process can be viewed as clustering problem. Clustering
method, as an unsupervised machine learning approach, is
the process of grouping a set of data points into subsets
so that data points in the same subset are similar (according
to some criteria). Widely used clustering methods include
expectation-maximization, spectral clustering and fuzzy
clustering, and so on. In the last decade, clustering-based
methods have attracted great interest in the segmentation of
medical images [14]. Portela et al. [15] proposed clustering
based semi-supervised classification for brain image segmen-
tation, which used K-means clustering as initial processing to
select brain slices. Ortiz et al. [16] improved brain image seg-
mentation by using self-organizing maps (SOMs) based
voxel clustering to extract features, and then used entropy-
gradient clustering to segment brain images. Based on the
idea of multiobjective optimization, Saha et al. [17] proposed
semi-supervised clustering in the intensity space for medical
image segmentation. Abdel-Maksouda et al. [18] combined
K means and FCM clustering to propose a hybrid clustering
method for tumour segmentation from brain image.

To make cluster-based segmentation methods perform
better, the training medical image data needs to be repre-
sentative of the target data. However, medical images are
often collected with different scanners and scanning param-
eters, and medical images may have large differences in
image quality due to machine performance or scanning
technology, such as varying degrees of rotation, noise, etc.
The requirement of training and target data under the same
distribution prevents the use of clustering methods in larger
research and clinical practice. Since the above scenarios
exist in a large number of real-world environments, this
leads to unsatisfactory segmentation results and the risk of
algorithm failure.

To solve this problem, researchers have introduced the
idea of transfer learning into clustering methods [19], [20].
With the help of some knowledge of auxiliary domain
(called source domain), transfer learning handles the cases
where the distribution, feature space or tasks are different
between source domain and testing domain (called target
domain). In transfer learning, the auxiliary knowledge from
the source domain involves the data sample, feature repre-
sentations, parameters and relationships [21], [22], [23]. The

knowledge is usually obtained from certain precise proce-
dures and reliable theory through some specific perspec-
tives. Jiang et al. [24] proposed a transfer spectral clustering
method, which used both data manifold and feature mani-
fold between related clustering tasks. Deng et al. [25] pro-
posed a transfer prototype-based fuzzy clustering method,
which incorporated prototype knowledge induced from
source domain to implement the clustering in the target
domain. Qian et al. [20] proposed a cross-domain maximum
entropy clustering method, which utilized the auxiliary
knowledge from cluster centers and fuzzy memberships
belonging to source data. However, these methods have a
common assumption that source domain and target domain
must have the same number of clusters. Moreover, most
existing transfer clustering methods are not developed for
noisy scenarios. Thus, these methods may be not suitable
for noisy medical image segmentation.

Since the medical images of different domains may have
variations due to changes caused by noise, field offset and
bias field, in this paper, we study the problem of medical
image segmentation in a noisy scenario by transferring
medical images collected from related scenarios. We con-
sider the new noisy scenario as the target domain and the
existing medical image dataset from related scenario else-
where as the source domain, and then use the learning on
clean images of source data to improve the clustering in tar-
get data. To improve the transfer learning performance, we
consider learning the negative-transfer-resistant mecha-
nism, so that the influence of positive transfer knowledge is
reinforced and the influence of negative transfer knowledge
is reduced or even eliminated. Meanwhile, we think medi-
cal images in different scenarios may share certain common
representations such as bone and soft tissue, and the shared
representations could be preserved in a shared space.
Inspired of maximum mean discrepancy (MMD) [26], we
learn the shared latent space for source and target domains
such that the distributions in different domains are close to
each other. We investigate transferring ability of each clus-
ter belonging to source domain in the shared latent space
for medical image segmentation modeling. We use the clus-
tering centers in the source domain as the transfer knowl-
edge, regardless of whether the number of clusters in the
source domain is the same as that in the target domain.
With the above ideas, we propose a negative-transfer-resis-
tant fuzzy clustering model with a shared cross-domain
transfer latent space (called NTR-FC-SCT). The motivation
of NTR-FC-SCT is shown in Fig. 1. Two cluster centers pre-
sented as black triangle and circle have positive transfer

Fig. 1. The motivation of NTR-FC-SCT.
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influence to the clustering in the target domain, while the
cluster center presented as Black Square has negative influ-
ence to the clustering in the target domain. NTR-FC-SCTwill
automatically resist black square participating in the clus-
tering in the target domain by using the negative-transfer-
resistance mechanism. We evaluate the proposed model on
real world datasets, and compare with several non-transfer
and related transfer clustering methods. The results on real
world brain CT dataset demonstrate that NTR-FC-SCT is
more robust than the comparisonmethods.

The novelty of this study is as follows. 1) We formulate the
problem of insufficient and noisy medical image segmenta-
tion as a model of transfer clustering task. To the best of our
knowledge, our study is the first attempt to address this issue.
2) The negative-transfer-resistance mechanism is proposed to
identify and resist negative source transfer knowledge. 3) The
MMD is introduced intoNTR-FC-SCT to unify the representa-
tion of image data of different domains in the shared transfer
latent space, which helps transferring knowledge across dif-
ferent domains. 4) Clustering centers based transfer matching
scheme is used to deal with the inconsistency problem of clus-
tering numbers between source and target domains, so that
more robust cluster performance can be promoted.

The rest of this paper is organized as follows. Concepts
related to FCM, transfer learning and MMD are reviewed
in Section 2. In Section 3, the negative-transfer-resistant
mechanism and new proposed algorithm is introduced. Its
parameter learning based on iteratively optimization strategy
is then presented accordingly. The experimental results in
real-world brain CT image datasets are reported in Section 4.
Conclusions are given in the last section.

2 RELATED WORK

2.1 Conventional FCM for Image Segmentation

Fuzzy C-means (FCM) clustering [27] is one of most com-
monly used fuzzy clustering methods. FCM allows data
points to belong to more than one cluster defined by a mem-
bership matrix. Let X ¼ fx1;x2; . . . ;xNg be a given dataset
where d and N are data dimension and capacity, respec-
tively. Suppose C clusters exist in X, FCM derives the fol-
lowing objection function:

min
U;V

J ¼
XN
i¼1

XC
j¼1

mm
ij xi � vj

�� ��2
s:t:0 � mij � 1;

XC
j¼1

mij ¼ 1;

(1)

where U ¼ ½mij�N�C denotes the fuzzy membership matrix,
and V ¼ ½v1;v2; . . . ;vC �T denotes the clustering center
matrix. m ðm > 1Þ denotes the fuzzy index.

FCM finds an optimal group of sets to explain the data
samples intoC clusters viamatrixesY andU. FCMminimizes
the total membership weighted distance of each sample xi to
the clustering center vj. FCM can easily optimize the objective
functions by an iterative technique. Among center-based clus-
tering methods, FCMwas simple, efficient and high popular-
ity. It is widely used in transfer clustering methods. For
example, a FCM-based transfer learning was proposed in
[28], which combined with Gini-Simpson diversity index and

quadratic weights on membership. A knowledge-leveraged
transfer FCM (KL-TFCM) was proposed in [29], which used
three-interlinked framework of knowledge extraction, knowl-
edge matching, and knowledge utilization to leverage source
information to help clustering in the target domain. However,
the above FCM-based transfer learning clustering methods
are completed in the original space, and while they do not
consider resisting negative transfer.

2.2 Transfer Learning and Maximum
Mean Discrepancy

Currently, when the training data is not enough to represent
the data in the current domain, transfer learning, multi-task
learning and co-clustering are three effective techniques that
can enhance the clustering performance in the current domain.
Multi-task learning performs multiple learning tasks together
through by sharing certain knowledge among all tasks [30],
[31]. Co-clustering performs clustering on both objects and fea-
tures to exploit the clear duality between rows and columns of
a contingency table [32]. Transfer learning clustering enhances
the clustering performance in the target domain by leveraging
useful knowledge from different but related domains. Many
researches show that the transfer clusteringmethods have bet-
ter learning ability to obtain an effectivemodel with the idea of
transfer learning [28], [29], [33]. In real applications, due to the
existences of noise and field offset etc, the insufficient medical
images are inadequate to complete image segmentation.
Therefore, we think transfer learning clustering can be used as
an effect technology to promote the segmentation of insuffi-
cient and noisymedical images in the newdomain.

In transfer learning, a fundamental problem is to evaluate
the distribution difference between source domain and target
domain. Many criteria, like Kullback-Leibler (KL) divergence
can be used for distribution estimation. But some criteria need
density estimation, some are parametric and not suitable for
high-dimensional data [34], [35]. In these cases, maximum
mean discrepancy (MMD) as a nonparametric estimate crite-
rion receives is widely used for comparing distributions. Let
Xs ¼ fx1;s;x2;s; . . . ;xNs;sg and Xt ¼ fX1;t;X2;t; . . .XNt;tg
denote the samples from distributions PsourceðXsÞ and
PtargetðXtÞ belonging to source and target domains, respec-
tively. The MMD for comparing distributions between
PsourceðXsÞ and PtargetðXtÞ is defined as

Dist PsourceðXsÞ; PtargetðXtÞ
� � ¼ 1

Ns

XNs

i¼1

fðxi;sÞ � 1

Nt

XNt

i¼1

fðxi;tÞ
�����

�����
2

:

(2)

MMD is based on reproducing kernel Hilbert space
(RKHS). Suppose f : X ! H, H is a universal RKHS. By
inducing nonlinear mapping f, function evaluation can be
represented fðxÞ ¼< fðxÞ; f > , then equation (2) can be
rewritten as

DistðPsourceðXsÞ; PtargetðXtÞÞ ¼ 1

Nt

XNt

i¼1

fðxi;tÞ � 1

Ns

XNs

i¼1

fðxi;sÞ
�����

�����
2

:

(3)

When the difference between source and target domains is
small, the relationship between two domains is strong and the
transfer knowledge can be fully utilized. However, when the
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data in the source domain is not sufficiently related, the clus-
tering performance in the target domain may not only fail to
promote, it may even actually decrease. Thus, transfer learn-
ing would resist negative transfer when source and target
domains are not a goodmatch. One strategy of resisting nega-
tive transfer is to identify and reject unhelpful knowledge
from source domain. Some data selection and source selection
methods have been proposed. The former implements some
rules to select data samples to reconstruct the training set of
source domain. For example, Rosenstein et al. [36] proposed a
detecting negative transfer algorithm based on naive Bayes
classification model. Croonenborghs et al. [37] proposed an
option-based transfer in reinforcement learning algorithm to
achieve a balance between positive and negative transfer. The
source selection methods are applicable for multiple source
scenarios, which select the best source domain (task) for trans-
fer learning. An example of this strategy is Talvitie and Singh
[38] proposed a Markov decision process to select the proper
source task.

3 NEGATIVE-TRANSFER-RESISTANT FUZZY
CLUSTERING MODEL WITH A SHARED

CROSS-DOMAIN TRANSFER LATENT SPACE

The schematic diagram of NTR-FC-SCT is shown in Fig. 2.
In the noisy transfer learning scenario, compared with data
sample, feature representations, parameters and relation-
ships are usually considered as being more insightful and
more resistant to noise. In this study, we use the cluster cen-
ters in the source domain as auxiliary knowledge. The rea-
son is that cluster centers are computed by certain reliable
theories and rigorous procedures; such that the obtained
cluster centers can well represent a cluster and all affiliated
samples in a cluster.

3.1 Negative-Transfer-Resistant Mechanism

To resist the negative transfer, our objective is to discard bad
cluster centers in the source domain and select helpful cluster
centers that can help the clustering task satisfactorily. Let we

have a total of NSD training images in the source domain
xi;sðxi;s 2 Rd�1; i ¼ 1; 2; . . . ; NSDÞ andNTD training images in

the target domain xi;tðxi;t 2 Rd�1; i ¼ 1; 2; . . . ;NTDÞ, where

NTD � NSD. We consider there exists a shared latent space,
spanned by a projection matrix Q 2 Rr�d, where r is the
dimensions of the shared latent space. In this way, the known
cluster centers v̂SD

h ðh ¼ 1; 2; . . . ; CSD) in the source domain
obtained by a certain clustering method could be represented
as Qv̂SD

h . The projection of a target domain sample xi;t could

be represented asQxi;t. Suppose ~v
TD
j ðj ¼ 1; 2; . . . ; CTD) is the

unsolved cluster centers in the target domain in the shared
latent space. We consider the following optimization term for
resisting negative transfer:

min
~v

Jð~VÞ ¼
XCTD

j¼1

XCSD

h¼1

~vTD
j � SjhQv̂SD

h

��� ���2; (4)

where the parameter Sjh is called the weight of transfer
knowledge, and its value is in the range ½0; 1�. Sjh denotes
the matching degree between the jth cluster center of the
target domain and the hth cluster center of the source
domain. To find useful transfer knowledge from the cluster
centers in the source domain, it is needed to devise a strat-
egy to set the values of Sjh to high values for positive trans-
fer and low values for negative transfer. In Eq. (4), we set
Sjh as follows:

Sjh ¼ 1=
XCSD

h0¼1

~vTD
j �Qv̂SD

h

��� ���2
~vTD
j �Qv̂SD

h0
��� ���2; (5)

When Sjh tends to 1, ~vTD
j exactly matches Qv̂SD

h . In this case,
the clustering results will be coherent and these two centers
clusters of different domains are much closer to each other.
When Sjh tends to 0, ~vTD

j does not match Qv̂SD
h . In this case,

we makeQv̂SD
h participate in transfer learning as little as pos-

sible. That is to say, the transfer performance will be at least
no worse than performing the target clustering without trans-
fer. In other words, if the source clustering transfer ability of
Qv̂SD

h decreases cluster performance of target domain data, it
means the partial source clustering may be not related or the
relationship is not sufficiently leveraged, then the negative
transfer has occurred. By adjusting the value of Qv̂SD

h , Eq. (4)
can help the transfer model make positive transfer when two
domains are appropriately matched and resist negative trans-
fer when two domains are notmatched. At one extreme, Sjh is
set to be 1, the transferred knowledge from the source domain
are completely helpful, such that the cluster centers in the
source and target domains are coincided with each other, and
all transferred knowledge are completely adopted. At the
other extreme, when Sjh tends to 0, it means the transferred
knowledge from the source domain are unhelpful. The clus-
tering on the target domain will disregard the transferred
knowledge. But in most cases part transferred knowledge are
selectively keep and the other parts are disregard.

3.2 The Proposed NTR-FC-SCT

To find a proper projection matrix Q, we think the difference
between source and target domains in the shared latent space
should be as small as possible, such that the relationship
between domains is strengthened, and the transfer knowl-
edge of data in the source domainwill bemore helpful to com-
pletemedical segmentation in the target domain. Based on the

Fig. 2. The schematic diagram of NTR-FC-SCT.
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definition of MMD, the difference between two domains in
the shared latent space can be computed as follows

dðPsource; PtargetÞ ¼ 1

NTD

XNTD

i¼1

Qxi;t � 1

NSD

XNSD

i¼1

Qxi;s

�����
�����
2

¼ 1

ðNTDÞ2
XNTD

i¼1

XNTD

j¼1

Qxi;tx
T
j;tQ

T þ 1

ðNSDÞ2
XNSD

i¼1

XNSD

j¼1

Qxi;sx
T
j;sQ

T

� 2

NTDNSD

XNTD

i¼1

XNSD

j¼1

Qxi;tx
T
j;sQ

T :

(6)

The distribution difference between source and target
domains is simply the distance between the two mean in
the shared latent space. Let

V ¼ 1

ðNTDÞ2
XNTD

i¼1

XNTD

j¼1

xi;tx
T
j;t þ

1

ðNSDÞ2
XNSD

i¼1

XNSD

j¼1

xi;sx
T
j;s

� 2

NTDNSD

XNTD

i¼1

XNSD

j¼1

xi;tx
T
j;s:

(7)

The optimization of dðPsource; PtargetÞ can be simplified as

min
Q

dðPsource; PtargetÞ ¼ min
Q

QVQT ;

s:t: QQT ¼ Ir�r:
(8)

where Ir�r is a r� r identity matrix, such that the projection
matrixH is orthogonal.

Coming to the transfer learning tasks, we incorporate
Eqs. (4) and (8) into the FCM framework. We obtain the
objective function of NTR-FC-SCT as follows:

J ¼
XNTD

i¼1

XCTD

j¼1

mTD
ij

� �m
Qxi;t � ~vTD

j

��� ���2� �

þ �1

XCTD

j¼1

XCSD

h¼1

~vTD
j � SjhQv̂SD

h

��� ���2 þ �2QVQT ;

s:t: QQT ¼ Ir�r;
XCTD

j¼1

mTD
ij ¼ 1;

(9)

where parameters �1 > 0 and �2 > 0 are the coefficients of
transfer optimization term and MMD term, respectively. In
NTR-FC-SCT, the parameter �1 is used to control the influence

of transfer optimization term
PCTD

j¼1

PCSD

h¼1 k~vTD
j � SjhQv̂SD

h k2
to the entire objective function. The larger the �1 value, the

greater the contribution of the transfer termwill be. In this case,

the unsolved cluster centers ~vTD
j in the target domain should be

close to SjhQv̂SD
h in the shared latent space. Conversely, when

�1 tends to 0, the contribution of the transfer term is weakened,

the difference between the unsolved cluster centers and known

cluster centers in twodifferent domains can be relaxed.

3.3 Optimization of NTR-FC-SCT

The solution of objective function in Eq. (9) relates to the
matrixes Q, U and ~V. In the following, we optimize them

one by one using the iteratively optimization strategy. In
terms of the Lagrange optimization, the minimization of J
in Eq. (9) by introducing the Lagrangian multiplier a in Eq.
(9) can be converted to the following unconstrained minimi-
zation problem:

L ¼
XNTD

i¼1

XCTD

j¼1

mTD
ij

� �m
Qxi;t � ~vTD

j

��� ���2� �

þ �1

XCTD

j¼1

XCSD

h¼1

~vTD
j � SjhQv̂SD

h

��� ���2

þ �2QVQT þ
XNTD

i¼1

ai 1�
XCTD

j¼1

mTD
ij

 !
:

(10)

In the first step, we fix parameters Q and U, and only
consider ~V. To minimize this objective on parameter ~V, we
set the derivative with regard to ~V to zero:

@L

@~vTD
j

¼�
XNTD

i¼1

mTD
ij

� �m
ðQxi;t�~vTD

j Þ

þ�1

XCSD

h¼1

~vTD
j � SjhQv̂SD

h

� �
¼ 0

,~vTD
j

XNTD

i¼1

mTD
ij

� �m
þ�1C

SD

 !

¼
XNTD

j¼1

mTD
ij

� �m
Qxi;t þ �1

XCSD

h¼1

SjhQv̂SD
h :

(11)

We can get ~V in a closed form as follows

~vTD
j ¼

XNTD

j¼1

mTD
ij

� �m
Qxi;t þ �1

XCSD

h¼1

SjhQv̂SD
h

 !
=

XNTD

i¼1

mTD
ij

� �m
þ�1C

SD

 !
:

(12)

Likewise, in the next step, we fix parametersQ and ~V, and
only consider U. The minimization problem of Eq. (10) with
respect toU can be equivalent to the following problem,

@L
@mTD

ij

¼ mðmTD
ij Þm�1 Qxi;t � ~vTD

j

��� ���2 � ai ¼ 0

, mTD
ij ¼ ai

	
m Qxi;t � ~vTD

j

��� ���2� � 1
m�1

:

(13)

In light of
PCTD

j¼1 mTD
ij ¼ 1, we can obtain

mTD
ij ¼ 1

Qxi;t � ~vTD
j

��� ���2
0
B@

1
CA

1
m�1

=
XCTD

k¼1

1

Qxi;t � ~vTD
k

�� ��2
 ! 1

m�1

:

(14)

In the next step, we update matrix Q and fix parameters
~V andU. Let

~U1 ¼ ½~m11; . . . ; ~mi1; . . . ; ~mNTD1� 2 R1�NTD
; ; (15)
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where ~U ¼ ½~U1; . . . ~UCTD � 2 R1�CTDNTD
;U

_

¼ diagð~UÞ 2
RCTDNTD�CTDNTD

: Let

v ¼ ½E; . . . ;E|fflfflfflfflffl{zfflfflfflfflffl}
CTD

� 2 RNTD�CTDNTD
; (16)

where E 2 RNTD�NTD
. Let Q ¼ ½q1; . . . ;qCTD � 2 Rr�CTDNTD

,

where qi ¼ ½vTD
i ; . . . ;vTD

i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
NTD

� 2 Rr�NTD
. Substituting Eqs. (16),

(17) and (18) back to Eq. (9), the minimization problem of
Eq. (10) with respect to Q can be equivalent to the following

problem,

‘ðQÞ ¼ tr ðQxtv�QÞU
_

ðQxtv�QÞT
� �

þ�1tr ðQV̂
SD
ST � ~V

TDÞðQV̂
SD
ST � ~V

TDÞ
T

� �
þ �2trðQVQT Þ;

(17)
where

V ¼ 1

ðNTDÞ2 xt 1½ �NTD�NTD
xtð ÞT þ 1

ðNSDÞ2 xs 1½ �NSD�NSD
xsð ÞT

� 1
NTDNSD xt 1½ �NTD�NSD

xsð ÞT � 1
NTDNSD xs 1½ �NSD�NTD

xtð ÞT :
:

Likewise, the minimization problem of Eq. (10) with
respect to Q can be equivalent to the following problem,

@‘

@Q
¼ðQxtv U

_

vð ÞT xtð ÞT �Q U
_

vð ÞT xtð ÞT Þ

þ �1 QV̂
SD
STS V̂

SD
� �T

� ~V
TD

S V̂
SD

� �T� �
þ �2QV:

(18)

In this study, the widely gradient descent method is
adopted to compute the optimalQ. By setting the initial value
Q as Q0, the gradient descent method successively optimal Q
as follows

Ql ¼ Ql�1 � h
@‘

@Q
jQ¼Ql�1 ; (19)

where h is the learning rate and l is the iteration number. Con-
sidering the constraint of QQT ¼ I. After each updating step
ofQl, letQl ¼ Ql0R be the QR decomposition ofQl, whereQl0

has orthogonal columns and R is an upper triangle. Then we
replaceQl withQl0 for the next iteration. Eq. (19) will be itera-
tively solved until the convergence condition is satisfied.

Based on the above analysis, the proposed NTR-FC-SCT
model is presented in Algorithm 1.

4 EXPERIMENTS

4.1 Data Sets and Settings

We use ultrashort echo time (UTE) and modified Dixon brain
image datasets [39], [40]. It consists of 256 brain CT image sli-
ces of 10 patients, with each image of a resolution of 256� 256
pixels. All CT images with corresponding manual segmenta-
tion are segmented into three classes: bone, water and soft
issues. These class labels are assigned by physicians or techni-
cians. We randomly select 20 brain CT images as the original
target domain data, and the rest 236 brainCT images as source
domain data. We consider the application of NTR-FC-SCT in
the scenario of target images polluted by noise. To this aim, all

target images were corrupted by 5, 10, 15, 20, 25 and 30 per-
cent Gaussian noise. The example images in the source and
target domains are shown in Fig. 3. Following the training
protocol established in [41], we construct a total training data
set combining 236 source brain images and random 8 target
brain images, while the remaining 12 target brain images are
used as testing brain images. We repeat the experiment for 10
runs and record the experimental results.

Algorithm 1.NTR-FC-SCT Model

Initialize Set the maximum number of iterations tmax, the fuzzy
index m, the regularization parameters �1 and �2, and
the learning rate h.

Repeat:
Exacting transfer knowledge form the source domain;
Perform soft-partition clustering methods in the source
domain, such as FCM, and obtain the cluster centers of data in
the source domain;
t ¼ tþ 1;
Initialize the clustering centers of data in the target domain;
Compute the weight of transfer knowledge Sjh using Eq. (10);

FixUðtÞ and Q(t), obtain ~V
TD

(t) using Eq. (12);

Fix ~V
TD

(t) and Q(t), obtain U(t) using Eq. (14);

Fix U(t) and ~V
TD

(t), obtain Q(t) using Eqs. (18) and (19);
Compute J(t) using Eq. (9);

Until kJðtÞ � Jðt� 1Þk � d or t � tmax;

To compare the segmentation performance of NTR-FC-
SCTwith that of existing methods, complete image segmenta-
tion is obtained and compared with segmentations obtained
by FCM [27], transfer spectral clustering (TSC) [24], and type-I
knowledge-transfer-oriented c-means (T1-KT-FCM) [28]. As
introduced in Section 2, FCM is the baseline algorithm of
NTR-FC-SCT. TSC performs transfer learning based on bipar-
tite graph co-clustering, which adopts both the data manifold
and sample manifold shared among different domains. T1-
KT-FCMmakes the cluster centers in the source domain as the
transfer information to control the knowledge transfer in the
test images. T1-KT-FCM incorporates this idea into FCM to

Fig. 3. The example brain CT images in source and target domains,
(a) images in source domain, (b) Subject1 in the target domain with 5 per-
cent noise, (c) Subject1 in the target domain with 10 percent noise, (d) Sub-
ject1 in the target domain with 15 percent noise, (e) Subject1 in the target
domain with 20 percent noise, (f) Subject1 in the target domain with 25 per-
cent noise, (g) Subject1 in the target domain with 30 percent noise.
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achieve automatic image segmentation. To obtain the optimal
parameters in all four methods, the common used grid search
is conducted. Fuzzy index m in all fuzzy clusters is set within
the grid f1:1; 1:5; 2; 2:5g. The K-nearest parameters in TSC are
set within the grid f0; 0:005; 0:1; 0:5; 0:7; 1; 1:5; 10; 50; 100g.
The �; g parameters in T1-KT-FCM are set within the grid
f10e� 4; 10e� 3; . . . ; 10e4g. The parameters �1; �2 in NTR-
FC-SCT are set within the grid f0; 10e� 4; 10e� 3; . . . ; 10e6g,
learning rate h in NTR-FC-SCT are set within the grid
f1e� 4; 1e� 3; 1e� 2g, and the maximum number of itera-
tions is 10e5.

In this study, the performance of image segmentation by
clustering methods is evaluated in terms of two validity indi-
cators: normalized mutual information (NMI) [42] and
adjusted rand index (ARI) [43]. NMI and ARI can efficiently
evaluate the agreement degree between the known clusters
and the estimated data structure. Both NMI and ARI take
values from 0 to 1, and larger value means better cluster per-
formance. Experimental environment is Intel Core i3-4170
3.7 GHz CPU and 12 GM RAM, Windows 10, and MATLAB
R2016a in this study.

4.2 Performance Comparison

The clustering performance of fourmethods is reported in the
following. The mean and standard deviation of NMI and ARI

for all compared clustering methods are displayed in Tables
1, 2, 3, 4, 5, 6, respectively. The experimental results show that
three transfer learning methods are superior to FCM. The
introduction of transfer knowledge from source domain has
indeed promoted the cluster performance of data in the target
domain. FCM is not a transfer learning cluster method which
simply combines the source domain and target domain data
as the training data. Due to underlying noise or outliers in the
target domain, the distribution difference between source and
target domains are significant different. Thus, FCM can not
obtain good clustering performance in terms ofNMI andARI.
Our model achieves the best performance in all datasets. TSC
may be not suitable for the transfer scenario in noisy medical
image segmentation, since the character of medical image are
usually different in noisy scenario, while the manifold and
sample manifold shared among different domains can not
resist negative transfer for TSC. T1-KT-FCM exploits the
transfer knowledge across domains in the original data space;
however, the limited transfer knowledge can not be fully
exploited in such original space. NTR-FC-SCT has shown bet-
ter performance than the other comparison methods in terms
of NMI and ARI. Both the reliable knowledge obtained in the
source domain and the ability of resisting negative transfer
has the important influence on the segmentation performance
of NTR-FC-SCT. To better observe the behavior of all

TABLE 1
NMI Performance of all Comparison Methods on

5 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0112 0.0041 0.5085 0.2249 0.5802 0.0254 0.7146 0.0056
Subject2 0.1515 0.1468 0.5801 0.1632 0.6359 0.0148 0.7526 0.0142
Subject3 0.1583 0.1040 0.5573 0.1591 0.6438 0.0290 0.7253 0.0059
Subject4 0.0137 0.0062 0.5149 0.1868 0.6091 0.0590 0.7256 0.0138
Subject5 0.2333 0.1355 0.5649 0.1840 0.6329 0.0254 0.7432 0.0094
Subject6 0.1823 0.1094 0.5659 0.1446 0.6505 0.0234 0.7441 0.0116
Subject7 0.0086 0.0046 0.5283 0.2242 0.6096 0.0212 0.7352 0.0110
Subject8 0.1324 0.1157 0.5664 0.1917 0.6603 0.0245 0.7586 0.0108
Subject9 0.1188 0.1240 0.5845 0.1638 0.6700 0.0399 0.7693 0.0111
Subject10 0.0185 0.0083 0.5765 0.2749 0.6512 0.0258 0.7781 0.0127
Subject11 0.1178 0.2362 0.5882 0.2124 0.6580 0.0179 0.7862 0.0068
Subject12 0.0642 0.0376 0.5719 0.1542 0.6631 0.0358 0.7759 0.0079

TABLE 2
NMI Performance of all Comparison Methods on

10 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0155 0.0098 0.5063 0.2137 0.4748 0.0095 0.6337 0.0091
Subject2 0.2943 0.1666 0.5797 0.1689 0.5792 0.0194 0.7230 0.0045
Subject3 0.2182 0.0813 0.5502 0.1716 0.5224 0.0366 0.6908 0.0117
Subject4 0.0196 0.0163 0.5061 0.1966 0.4706 0.0110 0.6475 0.0127
Subject5 0.1959 0.1420 0.5635 0.1591 0.5273 0.0205 0.7056 0.0122
Subject6 0.2868 0.0777 0.5683 0.1421 0.5310 0.0162 0.6894 0.0177
Subject7 0.0076 0.0038 0.5336 0.2612 0.4696 0.0106 0.6710 0.0162
Subject8 0.2006 0.1377 0.5680 0.1448 0.5357 0.0217 0.7077 0.0158
Subject9 0.2052 0.1502 0.5923 0.1901 0.5409 0.0165 0.7274 0.0104
Subject10 0.0153 0.0136 0.5755 0.2609 0.5103 0.0186 0.7244 0.0046
Subject11 0.0814 0.1664 0.5846 0.2263 0.5231 0.0215 0.7203 0.0122
Subject12 0.1534 0.1036 0.5694 0.1864 0.5409 0.0062 0.7144 0.0149

TABLE 3
NMI Performance of all Comparison Methods on

15 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0130 0.0106 0.5053 0.2261 0.4470 0.0181 0.5684 0.0082
Subject2 0.2346 0.1282 0.5815 0.1536 0.5631 0.0172 0.6452 0.0118
Subject3 0.2155 0.0679 0.5541 0.2003 0.4881 0.0175 0.5978 0.0024
Subject4 0.1789 0.2392 0.5076 0.2182 0.4509 0.0171 0.5849 0.0157
Subject5 0.2061 0.0862 0.5621 0.1394 0.5341 0.0121 0.6220 0.0030
Subject6 0.2592 0.1368 0.5691 0.1526 0.5079 0.0163 0.6261 0.0096
Subject7 0.0963 0.1848 0.5274 0.1991 0.4664 0.0168 0.5939 0.0130
Subject8 0.1826 0.1223 0.5674 0.1458 0.5087 0.0223 0.6198 0.0101
Subject9 0.2245 0.1570 0.5869 0.1486 0.5118 0.0120 0.6419 0.0157
Subject10 0.0735 0.1450 0.5697 0.2271 0.4975 0.0197 0.6098 0.0169
Subject11 0.0937 0.1846 0.5826 0.2770 0.5267 0.0242 0.6107 0.0075
Subject12 0.2454 0.1816 0.5720 0.2135 0.5328 0.0129 0.6537 0.0117

TABLE 4
NMI Performance of all Comparison Methods on

20 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0246 0.0289 0.5095 0.1908 0.4782 0.0069 0.6000 0.0055
Subject2 0.3092 0.1299 0.5796 0.1631 0.5596 0.0082 0.6348 0.0128
Subject3 0.2597 0.0992 0.5556 0.1588 0.5029 0.0108 0.5926 0.0051
Subject4 0.0102 0.0061 0.5136 0.2026 0.4778 0.0066 0.5254 0.0133
Subject5 0.3071 0.0852 0.5654 0.1471 0.5333 0.0119 0.6237 0.0084
Subject6 0.2998 0.0697 0.5662 0.1376 0.5247 0.0176 0.5875 0.0099
Subject7 0.0994 0.1742 0.5298 0.2377 0.4804 0.0088 0.5719 0.0063
Subject8 0.2557 0.1427 0.5683 0.1438 0.5426 0.0160 0.6023 0.0114
Subject9 0.3098 0.0342 0.5852 0.1508 0.5366 0.0089 0.6433 0.0062
Subject10 0.0966 0.2007 0.5788 0.2565 0.5309 0.0066 0.5991 0.0080
Subject11 0.1196 0.2075 0.5818 0.2101 0.5525 0.0080 0.6516 0.0129
Subject12 0.1530 0.1197 0.5707 0.1767 0.5466 0.0167 0.5869 0.0122
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algorithms, Figs. 4, 5, 6, 7, 8, 9 graphically shows the segmen-
tation results of all comparison methods obtained on subject1
with different noise. Similar to the results in the Tables 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, NTR-FC-SCT obtains the best segmen-
tation results for distinguishing the bone, water and soft
issues. The boundaries between different organizations are
smooth, and obvious are relatively clearer than the other three
methods.

4.3 Flexibility Evaluation of NTR-FC-SCT

To validate the effect of two regularization terms on the
performance of NTR-FC-SCT, we present two comparison
methods NTR-FC-SCT ð�1¼ 0Þ and NTR-FC-SCT ð�2¼ 0Þ,

obtained with the parameter �1¼ 0 and �2¼ 0 in NTR-FC-
SCT, respectively.We compare themwith FCM andNTR-FC-
SCT on Subjects 1-8 and show their mean and standard devia-
tion ofNMI andARI in Tables 13, 14, respectively. The experi-
mental results show that the performances of both NTR-FC-
SCT ð�1¼ 0Þ and NTR-FC-SCT ð�2¼ 0Þ are better than base-
line method FCM. The regularization term in NTR-FC-SCT

ð�2¼ 0Þ is
PCTD

j¼1

PCSD

h¼1 k~vTD
j � SjhQv̂SD

h k2, which can effec-
tively resist negative transform by using the transfer optimi-
zation strategy and improve the segmentation performance in

TABLE 5
NMI Performance of all Comparison Methods on

25 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0107 0.0058 0.5078 0.2154 0.4969 0.0043 0.5469 0.0104
Subject2 0.1708 0.1001 0.5792 0.1741 0.5842 0.0076 0.6572 0.0182
Subject3 0.2460 0.0981 0.5503 0.1685 0.5232 0.0145 0.5940 0.0093
Subject4 0.0121 0.0081 0.5177 0.2390 0.5045 0.0112 0.5717 0.0197
Subject5 0.1503 0.1169 0.5621 0.1599 0.5580 0.0122 0.6090 0.0083
Subject6 0.2199 0.0660 0.5662 0.1533 0.5434 0.0311 0.5935 0.0142
Subject7 0.0284 0.0285 0.5331 0.2528 0.5156 0.0137 0.5677 0.0095
Subject8 0.1320 0.1375 0.5705 0.1577 0.5547 0.0156 0.6272 0.0136
Subject9 0.2594 0.1054 0.5859 0.1542 0.5682 0.0124 0.6437 0.0127
Subject10 0.1980 0.0293 0.5763 0.2203 0.5488 0.0073 0.6416 0.0157
Subject11 0.2156 0.2697 0.5830 0.2349 0.5745 0.0184 0.6732 0.0117
Subject12 0.3935 0.0908 0.5724 0.1827 0.5617 0.0122 0.6386 0.0078

TABLE 6
NMI Performance of all Comparison Methods on

30 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0120 0.0093 0.5086 0.2028 0.5569 0.0124 0.6567 0.0084
Subject2 0.2553 0.1770 0.5833 0.1497 0.6333 0.0113 0.7439 0.0109
Subject3 0.2010 0.0804 0.5526 0.1537 0.5872 0.0206 0.6602 0.0110
Subject4 0.0891 0.1752 0.5143 0.2144 0.5664 0.0050 0.6720 0.0114
Subject5 0.1820 0.1376 0.5663 0.1463 0.6172 0.0193 0.7080 0.0028
Subject6 0.2316 0.1094 0.5695 0.1928 0.6062 0.0120 0.6872 0.0086
Subject7 0.1080 0.1686 0.5316 0.2091 0.5769 0.0172 0.6966 0.0054
Subject8 0.1755 0.1045 0.5696 0.1777 0.6231 0.0097 0.7037 0.0103
Subject9 0.2584 0.0893 0.5913 0.1901 0.6295 0.0216 0.7356 0.0200
Subject10 0.0113 0.0135 0.5751 0.2901 0.6247 0.0198 0.7441 0.0115
Subject11 0.2121 0.2838 0.5827 0.2652 0.6343 0.0212 0.7491 0.0042
Subject12 0.1547 0.1170 0.5702 0.1941 0.6226 0.0045 0.7256 0.0095

Fig. 4. Clustering segmentations on subject1þ5 percent noise, (a)FCM,
(b)TSC, (c)T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 5. Clustering segmentations on subject1þ10 percent noise,
(a)FCM, (b)TSC, (c)T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 6. Clustering segmentations on subject1þ15 percent noise, (a)FCM,
(b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 7. Clustering segmentations on subject1þ20 percent noise,
(a)FCM, (b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

Fig. 8. Clustering segmentations on subject1þ25 percent noise,
(a)FCM, (b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.
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noisy scenario. The regularization term in NTR-FC-SCT
ð�1¼ 0Þ is QTVQ, which finds a shared latent space for data
cross domains, so that the projection data distributions of the
source and target domains are close to each other. NTR-FC-
SCT has the advantages of both NTR-FC-SCT ð�1¼ 0Þ and
NTR-FC-SCT ð�2¼ 0Þ. It can exploit more transfer knowledge;
meanwhile, and achieve a good balance between making use
of positive transfer and resisting negative transfer.

Next, we discuss the influence of the number of samples
in the source domain on the performance of NTR-FC-SCT.
We randomly select 10, 30, 50, 70, 90 and 100 percent pro-
portion of training samples in the source domain as the

source training dataset. To make the results fair, we repeat
the above sampling 10 times for each sample size. NMI and
ARI performances of NTR-FC-SCT on Subject1 and Subject2
with 5 percent noisy are shown in Figs. 10 and 11, respec-
tively. The experimental results show that the values of NMI
and ARI increase with the increase of the number of samples
in the source domain. The reason is that NTR-FC-SCT can

Fig. 9. Clustering segmentations on subject1þ30 percent noise, (a)
FCM, (b)TSC, (c) T1-KT-FCM, (d)NTR-FC-SCT.

TABLE 7
ARI Performance of all Comparison Methods on

5 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0021 0.0043 0.3399 0.1756 0.7579 0.0301 0.8880 0.0028
Subject2 0.0854 0.0814 0.3931 0.1561 0.8032 0.0160 0.9111 0.0109
Subject3 0.0861 0.0521 0.4144 0.1478 0.8072 0.0318 0.8839 0.0031
Subject4 0.0013 0.0041 0.3466 0.1701 0.7730 0.0629 0.8913 0.0107
Subject5 0.1186 0.0877 0.3884 0.1761 0.8085 0.0316 0.9080 0.0078
Subject6 0.0839 0.0560 0.4153 0.1393 0.8069 0.0264 0.8950 0.0108
Subject7 0.0012 0.0026 0.3593 0.1594 0.7728 0.0243 0.8922 0.0119
Subject8 0.0651 0.0732 0.3902 0.1753 0.8293 0.0276 0.9169 0.0095
Subject9 0.0658 0.0682 0.4153 0.1524 0.8305 0.0378 0.9187 0.0102
Subject10 0.0071 0.0055 0.3806 0.2090 0.8036 0.0304 0.9242 0.0106
Subject11 0.0771 0.1614 0.3858 0.1903 0.8089 0.0215 0.9299 0.0053
Subject12 0.0094 0.0109 0.3744 0.1365 0.8131 0.0424 0.9269 0.0081

TABLE 8
ARI Performance of all Comparison Methods on

10 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0028 0.0113 0.3403 0.1791 0.5742 0.0284 0.8155 0.0056
Subject2 0.1798 0.1182 0.3955 0.1613 0.5515 0.0292 0.8812 0.0056
Subject3 0.1158 0.0542 0.4121 0.1696 0.6163 0.0635 0.8515 0.0148
Subject4 0.0046 0.0063 0.3433 0.1729 0.5650 0.0237 0.8281 0.0134
Subject5 0.1051 0.0953 0.3848 0.1535 0.6339 0.0317 0.8777 0.0093
Subject6 0.1523 0.0812 0.4168 0.1373 0.6359 0.0297 0.8467 0.0136
Subject7 0.0008 0.0012 0.3607 0.1920 0.5573 0.0211 0.8482 0.0125
Subject8 0.1140 0.0988 0.3915 0.1311 0.6423 0.0301 0.8522 0.0149
Subject9 0.1202 0.1143 0.4210 0.1781 0.6382 0.0300 0.8839 0.0101
Subject10 0.0011 0.0089 0.3800 0.1963 0.5939 0.0328 0.8849 0.0037
Subject11 0.0493 0.1062 0.3848 0.1608 0.6045 0.0401 0.8742 0.0118
Subject12 0.0484 0.0401 0.3737 0.1681 0.6302 0.0112 0.8738 0.0125

TABLE 9
ARI Performance of all Comparison Methods on

15 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0009 0.0031 0.3389 0.1753 0.3607 0.0262 0.6833 0.0089
Subject2 0.1206 0.1058 0.3935 0.1414 0.4404 0.0126 0.6679 0.0107
Subject3 0.1083 0.0540 0.4127 0.1807 0.4323 0.0238 0.5997 0.0032
Subject4 0.1239 0.1680 0.3439 0.1746 0.3620 0.0344 0.7034 0.0137
Subject5 0.0847 0.0405 0.3859 0.1306 0.4408 0.0298 0.7278 0.0046
Subject6 0.1421 0.1255 0.4182 0.1430 0.4259 0.0204 0.6636 0.0077
Subject7 0.0639 0.1304 0.3588 0.1519 0.3662 0.0287 0.5863 0.0161
Subject8 0.0729 0.0824 0.3902 0.1349 0.4120 0.0355 0.5671 0.0136
Subject9 0.1302 0.0900 0.4174 0.1444 0.4186 0.0102 0.6287 0.0148
Subject10 0.0398 0.0848 0.3778 0.2008 0.4098 0.0241 0.5256 0.0122
Subject11 0.0593 0.1239 0.3843 0.2049 0.4230 0.0250 0.6560 0.0087
Subject12 0.1478 0.1185 0.3750 0.1692 0.4119 0.0303 0.6518 0.0128

TABLE 10
ARI Performance of all Comparison Methods on

20 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0019 0.0080 0.3440 0.1486 0.3241 0.0059 0.6624 0.0098
Subject2 0.1754 0.1208 0.3933 0.1522 0.3859 0.0059 0.6005 0.0116
Subject3 0.1443 0.0831 0.4147 0.1533 0.3742 0.0102 0.5570 0.0066
Subject4 0.0015 0.0060 0.3464 0.1713 0.3270 0.0090 0.5008 0.0139
Subject5 0.1679 0.0931 0.3883 0.1370 0.3730 0.0056 0.6152 0.0068
Subject6 0.1701 0.0682 0.4176 0.1304 0.3838 0.0091 0.5775 0.0079
Subject7 0.0625 0.1226 0.3602 0.1912 0.3309 0.0064 0.4983 0.0083
Subject8 0.1520 0.1066 0.3913 0.1339 0.3809 0.0088 0.5055 0.0102
Subject9 0.1619 0.0404 0.4164 0.1424 0.3871 0.0056 0.5725 0.0053
Subject10 0.0620 0.1394 0.3812 0.1927 0.3571 0.0027 0.5494 0.0065
Subject11 0.0713 0.1457 0.3838 0.1649 0.3695 0.0065 0.5819 0.0122
Subject12 0.0657 0.0780 0.3746 0.1617 0.3641 0.0048 0.4376 0.0106

TABLE 11
ARI Performance of all Comparison Methods on

25 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0023 0.0020 0.3409 0.1786 0.3419 0.0056 0.5128 0.0139
Subject2 0.0687 0.0687 0.3948 0.1626 0.4354 0.0132 0.6609 0.0156
Subject3 0.1447 0.0664 0.4126 0.1659 0.4043 0.0113 0.5219 0.0102
Subject4 0.0125 0.0047 0.3484 0.1856 0.3738 0.0138 0.5349 0.0204
Subject5 0.0701 0.0553 0.3862 0.1545 0.4182 0.0235 0.6445 0.0077
Subject6 0.1147 0.0392 0.4186 0.1502 0.4153 0.0305 0.5271 0.0151
Subject7 0.0076 0.0109 0.3611 0.1885 0.3654 0.0088 0.5132 0.0116
Subject8 0.0656 0.0666 0.3914 0.1499 0.4143 0.0176 0.5902 0.0148
Subject9 0.1248 0.0841 0.4173 0.1462 0.4233 0.0152 0.6459 0.0121
Subject10 0.1157 0.0035 0.3804 0.1958 0.3796 0.0046 0.5953 0.0165
Subject11 0.1382 0.1889 0.3842 0.1686 0.4277 0.0200 0.6537 0.0123
Subject12 0.2421 0.0869 0.3739 0.1749 0.4058 0.0177 0.6031 0.0091
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not mine enough transfer knowledge from source domain
when training samples in the source domain are too few. On
the other hand, exploiting clear and concise transfer knowl-
edge need a certain amount of high quality samples in the
source domain. Thus, it can be inferred that the more sam-
ples in the source domain, the more helpful the knowledge
obtained in the source domain and the more efficient the
NTR-FC-SCTwill be in the target domain.

4.3 Parameter Sensitive

In the experiments, the parameters �1 and �2 are determined
in a given search grid. In the following, we discuss the

performance of NTR-FC-SCT using different parameters.
Tables 15, 16 show the means of NMI and ARI on the subject
using different �1 and �2, while fixing the parameterm ¼ 2.

1) NTR-FC-SCT is sensitive to parameters �1 and �2.
Different �1 and �2 lend to different cluster perfor-
mance of NTR-FC-SCT in terms of NMI and ARI. It
can be found that in most situations when the value
of NMI is better, the value of ARI is also better. Thus,
it is feasible to use NMI and ARI as performance cri-
terions to determine the suitable parameters.

2) Fixed the value of m, NTR-FC-SCT obtains the worst
NMI and ARI when �1 ¼ 0 and �2 ¼ 0. The clustering
performance of NTR-FC-SCT is improved when �1

and �2 are not equal to 0. Since when �1 ¼ 0 and
�2 ¼ 0 NTR-FC-SCT is degenerated to the classical
FCM clustering.

3) We can find that when the value of �1 is large, NTR-
FC-SCT obtains the satisfactory performance in
terms of NMI and ARI. This further demonstrates
that the proposed negative-transfer-resistance mech-
anism has played an effective role. Thus, in the sub-
sequent experiments, we can reduce the search grid
of �1 in the range f0; 10e� 4; . . . ; 10e6g. We can’t
find the rule to select parameter �2. We think it is rea-
sonable to select optimal �2 within the search grid.
The range f0; 10e� 4; . . . ; 10e6g is appropriate.

5 CONCLUSION

In this study, we have addressed the problem of medical
image segmentation with insufficient and noisy samples,

TABLE 12
ARI Performance of all Comparison Methods on

30 percent Noisy CT Image Datasets

Dataset
FCM TSC T1-KT-FCM NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0008 0.0052 0.3401 0.1505 0.5432 0.0294 0.7743 0.0062
Subject2 0.1663 0.1180 0.3941 0.1505 0.5887 0.0309 0.8122 0.0136
Subject3 0.0947 0.0389 0.4132 0.1584 0.5700 0.0397 0.7414 0.0125
Subject4 0.0601 0.1242 0.3471 0.1760 0.5526 0.0094 0.7876 0.0146
Subject5 0.0867 0.0967 0.3886 0.1351 0.5858 0.0488 0.7966 0.0044
Subject6 0.1193 0.0774 0.4173 0.1744 0.5833 0.0131 0.7834 0.0053
Subject7 0.0675 0.1173 0.3611 0.1547 0.5637 0.0408 0.7874 0.0079
Subject8 0.0684 0.0490 0.3911 0.1728 0.6018 0.0277 0.7363 0.0144
Subject9 0.1227 0.0787 0.4184 0.1823 0.6060 0.0214 0.8233 0.0176
Subject10 0.0047 0.0076 0.3800 0.2041 0.5840 0.0421 0.8140 0.0134
Subject11 0.1420 0.1947 0.3839 0.2030 0.6010 0.0318 0.8226 0.0052
Subject12 0.0588 0.0640 0.3745 0.1792 0.5793 0.0106 0.7996 0.0093

TABLE 13
NMI Performance of all Comparison Methods on

5 percent Noisy CT Image Datasets

Dataset

FCM NTR-FC-SCT
(�1¼ 0)

NTR-FC-SCT
(�2¼ 0)

NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0112 0.0041 0.1312 0.0087 0.7009 0.0101 0.7146 0.0056
Subject2 0.1515 0.1468 0.4187 0.0121 0.7483 0.0135 0.7526 0.0142
Subject3 0.1583 0.1040 0.3852 0.0099 0.7011 0.0074 0.7253 0.0059
Subject4 0.0137 0.0062 0.1474 0.0137 0.7088 0.0062 0.7256 0.0138
Subject5 0.2333 0.1355 0.3566 0.0173 0.7304 0.0121 0.7432 0.0094
Subject6 0.1823 0.1094 0.4366 0.0075 0.7231 0.0071 0.7441 0.0116
Subject7 0.0086 0.0046 0.2283 0.0108 0.7184 0.0069 0.7352 0.0110
Subject8 0.1324 0.1157 0.4831 0.0078 0.7389 0.0082 0.7586 0.0108

TABLE 14
ARI Performance of all Comparison Methods on

5 percent Noisy CT Image Datasets

Dataset

FCM NTR-FC-SCT
(�1¼ 0)

NTR-FC-SCT
(�2¼ 0)

NTR-FC-SCT

Means Std Means Std Means Std Means Std

Subject1 0.0021 0.0043 0.4671 0.0069 0.8621 0.0042 0.8880 0.0028
Subject2 0.0854 0.0814 0.6893 0.0114 0.9017 0.0089 0.9111 0.0109
Subject3 0.0861 0.0521 0.7022 0.0093 0.8702 0.0047 0.8839 0.0031
Subject4 0.0013 0.0041 0.4705 0.0078 0.8856 0.0122 0.8913 0.0107
Subject5 0.1186 0.0877 0.6244 0.0086 0.8901 0.0099 0.9080 0.0078
Subject6 0.0839 0.0560 0.5921 0.0077 0.8901 0.0058 0.8950 0.0108
Subject7 0.0012 0.0026 0.5156 0.0143 0.8815 0.0103 0.8922 0.0119
Subject8 0.0651 0.0732 0.5702 0.0084 0.8977 0.0127 0.9169 0.0095

Fig. 10. NMI performance of NTR-FC-SCT with different proportion of
samples in the source domain on 5 percent noisy Subject1 and Subject2

Fig. 11. ARI performance of NTR-FC-SCT with different proportion of
samples in the source domain on 5 percent noisy Subject1 and Subject2
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and proposed NTR-FC-SCT model for leveraging source
knowledge to improve the segmentation performance of
target domain. We explore the negative-transfer-resistant
mechanism to reinforce the influence of positive transfer
and reduce, or even eliminate, the negative transfer. In par-
ticular, we find a shared latent space based on the idea of
MMD, in which the mapped data distributions of source
domain and target domain are close to each other. The
experiments focus on noisy brain CT images. The experi-
mental results show that with insufficient and noisy medical
images, it is possible to build an efficient segmentation
model with the help of medical images from the related sce-
narios. Future work will extend our algorithm to other med-
ical image segmentation applications. We will extend the
framework so as to apply various clustering algorithms in
order to obtain more satisfactory medical image segmenta-
tion results. We will also study how many images in the
source domain can be considered sufficient, and how to
select the important images to further improve the transfer.
In addition, how to speed up NTR-FC-SCT is worthy to be
studied in the future.
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