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Abstract. Machine learning has achieved great success in many appli-
cations, including electroencephalogram (EEG) based brain-computer
interfaces (BCIs). Unfortunately, many machine learning models are vul-
nerable to adversarial examples, which are crafted by adding deliber-
ately designed perturbations to the original inputs. Many adversarial
attack approaches for classification problems have been proposed, but
few have considered target adversarial attacks for regression problems.
This paper proposes two such approaches. More specifically, we con-
sider white-box target attacks for regression problems, where we know
all information about the regression model to be attacked, and want to
design small perturbations to change the regression output by a pre-
determined amount. Experiments on two BCI regression problems veri-
fied that both approaches are effective. Moreover, adversarial examples
generated from both approaches are also transferable, which means that
we can use adversarial examples generated from one known regression
model to attack an unknown regression model, i.e., to perform black-box
attacks. To our knowledge, this is the first study on adversarial attacks
for EEG-based BCI regression problems, which calls for more attention
on the security of BCI systems.

Keywords: Adversarial attack · Brain-computer interfaces ·
Regression · Target attack · White-box attack

1 Introduction

Machine learning has been widely used to solve many difficult tasks. One of them
is brain-computer interfaces (BCIs). BCIs enable a user to directly communicate
with a computer via brain signals [18], and have attracted lots of research inter-
est recently [10,11]. Electroencephalogram (EEG) is the most frequently used
input signal in BCIs, because of its low-cost and non-invasive nature. Three com-
monly used BCI paradigms are motor imagery (MI) [15], event-related potentials
c© Springer Nature Switzerland AG 2019
T. Gedeon et al. (Eds.): ICONIP 2019, LNCS 11953, pp. 476–488, 2019.
https://doi.org/10.1007/978-3-030-36708-4_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-36708-4_39&domain=pdf
https://doi.org/10.1007/978-3-030-36708-4_39


White-Box Target Attack for EEG-Based BCI Regression Problems 477

(ERP) [16,20], and steady-state visual evoked potentials (SSVEP) [12]. Machine
learning can be used to extract more generalizable features [23] and construct
more accurate models [22], and hence makes BCIs more robust and user-friendly.

Recent research has shown that many machine learning models are vulner-
able to adversarial examples. By adding deliberately designed perturbations to
legitimate data, adversarial examples can cause large changes in the model out-
puts. The perturbations are usually so small that they are hardly noticeable
by a human or a computer program, but can dramatically degrade the model
performance. For example, in image recognition, adversarial examples can easily
mislead a classifier to give a wrong output [6]. In speech recognition, adversar-
ial examples can generate audio that sounds meaningless to a human, but be
understood as a meaningful voice command by a smart phone [2]. Our recent
work [24] also showed that adversarial examples can dramatically degrade the
classification accuracy of EEG-based BCIs.

There aremanydifferent approaches for crafting adversarial examples. Szegedy
et al. [17] first discovered the existence of adversarial examples in 2014, and pro-
posed an optimization-based approach, L-BFGS, to find them. Goodfellow et al. [6]
proposed a fast gradient sign method (FGSM) in 2014, which can rapidly find
adversarial examples by searching for perturbations in the direction the loss has
the fastest change. Carlini and Wagner [3] proposed the CW method in 2017, which
can find adversarial examples with very small distortions.

All above approaches focused on classification problems, which find perturba-
tions that can push the original examples cross the decision boundary. Jagielski
et al. [7] conducted the first non-target adversarial attacks for linear regression
models. This paper considers target adversarial attacks for regression problems,
which change the model output by a pre-determined amount. Our contributions
are:

1. We propose two approaches, based on optimization and gradient, respectively,
to perform white-box target attack for regression problems.

2. We validate the effectiveness of our proposed approaches in two EEG-based
BCI regression problems (drowsiness estimation and reaction time estima-
tion). They can craft adversarial EEG trials that a human cannot distinguish
from the original EEG trials, but can dramatically change the outputs of the
BCI regression model.

3. We show that adversarial examples crafted by our approaches are transferable:
adversarial examples crafted from a ridge regression model can also success-
fully attack a neural network model, and vice versa. This makes black-box
attacks possible.

The attacks proposed in this paper may pose serious security and safety prob-
lems in real-world BCI applications. For example, an EEG-based BCI system may
be used to monitor the driver’s drowsiness level and urge him/her to take breaks
accordingly. An attack that deliberately changes the estimated drowsiness level
from a high value to a low value may overload the driver, and hence cause accidents.

The remainder of this paper is organized as follows: Sect. 2 introduces several
typical adversarial attack approaches for classification problems. Section 3 pro-
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poses two white-box target attack approaches for regression problems. Section 4
evaluates the performances of our proposed approaches in two EEG-based BCI
regression problems. Section 5 draws conclusion.

2 Adversarial Attacks for Classification Problems

This section introduces two typical adversarial attack approaches for classifica-
tion problems, which are extended to regression problems in the next section.

2.1 Adversarial Attack Types

Assume a valid benign example x ∈ [0, 1]k (k is the dimensionality of x) is
classified into Class y by a classifier f(x). It is possible to find an adversarial
example x′ ∈ [0, 1]k, which is very similar to the original sample x according
to some distance metric d, but is misclassified to f(x′) �= y. According to how
f(x′) is different from y, there can be two types of attacks:

1. Target attack, in which all adversarial examples are classified into a pre-
determined class y′ �= y.

2. Non-target attack, whose goal is to construct adversarial examples that will be
misclassified, but does not require them to be misclassified into a particular
class.

According to how much knowledge the attacker can obtain about the target
model (the model to be attacked), adversarial attacks can also be categorized into:

1. White-box attack, in which the attacker knows all information about the target
model, such as its architecture and all parameter values.

2. Black-box attack, in which the attacker does not know the architecture and
parameters of the target model; instead, he/she can feed some inputs to it and
observe its outputs. In this way, he/she can obtain some training examples,
and train a substitute model to craft adversarial examples to attack the tar-
get model. This approach makes use of the transferability of the adversarial
examples [13].

2.2 White-Box Target Attack Approaches

This paper considers white-box target attacks only. Assume we know the archi-
tecture and all parameters of the classifier f(x). We want to craft an adversarial
example x′ from an input x so that f(x′) = yt, where yt is a fixed class for all x′.

Two representative target attack approaches for classification problems are:

1. Carlini and Wagner (CW) [3], which improves L-BFGS [17]. It introduces a
new variable ω so that

δ =
1
2
(tanh(ω) + 1) − x (1)
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automatically satisfies the constraint x′ = x+δ = 1
2 (tanh(ω)+1) ∈ [0, 1]k. ω

in (1) is the variable to be optimized, which can assume any value in (−∞,∞).
Given x, w is found through:

min
∥
∥
∥
∥

1
2
(tanh(ω) + 1) − x

∥
∥
∥
∥
2

+ c · �

(
1
2
(tanh(ω) + 1)

)

= min‖δ‖2+c · �(x′)

(2)

where c is a trade-off parameter, and

�(x′) = max
(

max
i�=yt

Z(x′)i − Z(x′)yt
,−λ

)

, (3)

in which Z(x′)i is the logits of the target model in Class i, and λ controls
the confidence of the adversarial example. A large λ forces the adversarial
example to be classified into the target class yt with high confidence.

2. Iterative Target Class Method (ITCM)1 [9], which modifies FGSM [6], an
efficient approach for non-target attacks:

x′ = x + ε · sign(∇xJ(x, ytrue)), (4)

where ε controls the amplitude of the perturbation, J is a loss function, and
ytrue is the true label of x.
ITCM performs target attack by replacing ytrue in (4) by the target class yt.
It also improves the attack performance by taking multiple small steps of α in
the gradient direction and clipping the maximum perturbation to ε, instead
of taking a single large step of ε in (4):

x′
0 = x, (5)

x′
m+1 = Clipx,ε{x′

m − α · sign(∇x′
m

J(x′
m, yt))}, (6)

where Clipx,ε(x′) ensures the difference between each dimension of x′ and the
corresponding dimension of x does not exceed ε.

3 White-Box Target Attack for Regression Problems

The section proposes two white-box target attack approaches for regression prob-
lems.

Let x be an input, y the groundtruth output, and g(x) the regression model.
Target attack aims to generate a small perturbation δ such that the adversarial
example x′ = x + δ can change the regression output to g(x′) ≥ y + t, where
t > 0 is a predefined target2:

min
x′

‖x′ − x‖2, s.t. g(x′) − y ≥ t (7)

1 It is also called the iterative least-likely class method in [9].
2 The regression output can also be changed to g(x′) ≤ y−t. Without loss of generality,

g(x′) ≥ y + t is considered in this paper.
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3.1 CW for Regression (CW-R)

To extend the CW target attack approach from classification to regression, we
optimize the following loss function:

min
ω

∥
∥
∥
∥

1
2
(tanh(ω) + 1) − x

∥
∥
∥
∥
2

+ c · �(x,ω, t), (8)

where

�(x,ω, t) = max
{

g(x) + t − g

(

x +
1
2
(tanh(ω) + 1)

)

, 0
}

(9)

= max{g(x) + t − g(x′), 0}. (10)

The constructed adversarial example is then x′ = x + 1
2 (tanh(ω) + 1).

The pseudocode of the proposed CW method for regression (CW-R) is shown
in Algorithm 1. It uses iterative binary search to find the optimal trade-off
parameter c.

Algorithm 1. CW for regression (CW-R).
Input: x, the original example;

g(x), the target regression model;
t, the minimum change of the output;
M , the number of the iterations;
c0, initialization of the trade-off parameter;
N , the number of binary search steps for the optimal trade-off parameter.

Output: x′, the adversarial example.
Initialize c ← c0, ω1 ← random, dmin ← ∞, c ← 1e4, c ← 0
for n = 1 : N do

for m = 1 : M do
x′

m ← 1
2
(tanh(ωm) + 1);

� ← ‖x′
m − x‖2 + c · max{g(x) + t − g(x′

m), 0};

ωm+1 ← ωm − α · ∂�
∂ωm

;

if g(x′
m) ≥ g(x) + t and ‖x′

m − x‖2 ≤ dmin then
x′ ← x′

m;
dmin ← ‖x′

m − x‖2;

end
// Update c using binary search

c ← (c + c)/2;
if g(x′) ≥ g(x) + t then

c ← c;
else

c ← c;
end

end
return x′
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3.2 Iterative Fast Gradient Sign Method for Regression (IFGSM-R)

Iterative fast gradient sign method for regression (IFGSM-R) extends ITCM
from classification to regression.

Define the loss function

�(x,x′
m, t) = max{g(x) + t − g(x′

m), 0}, (11)

which is essentially the same as (9), except that a change of variable is not used
here. Then, the adversarial example can be iteratively calculated as:

x′
0 = x, (12)

x′
m+1 = Clipx,ε{x′

m − α · sign(∇x′
m

�(x,x′
m, t))}. (13)

The pseudocode of the proposed IFGSM-R is shown in Algorithm 2.

Algorithm 2. Iterative fast gradient sign method for regression (IFGSM-R).

Input: x, the original example;
g(x), the target regression model;
t, the minimum change of the output;
M , the number of iterations;
ε, the upper bound of the perturbation;
α, the step size.

Output: x′, the adversarial example.
x′
0 = x;

for m = 0 : M do
x′

m+1 ← Clipx,ε(x
′
m − α · sign(∇x′

m
�(x,x′

m, t))), using �(x,x′
m, t) in (11);

end
return x′

M+1

4 Experiments and Results

This section evaluates the performances of the two proposed white-box target
attack approaches in two BCI regression problems.

4.1 The Two BCI Regression Problems

We used the following two BCI regression datasets in our experiments:

1. Driving. The driving dataset was collected from 16 subjects (ten males, six
females; age 24.2 ± 3.7), who participated in a sustained-attention driving
experiment [4,22]. Our task was to predict the drowsiness index from the EEG
signals, which were recorded using 32 channels with a sampling rate of 500 Hz.
Our preprocessing and feature extraction procedures were identical to those
in [19]. We applied a [1,50] Hz band-pass filter to remove artifacts and noise,
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and then downsampled the EEG signals from 500 Hz to 250 Hz. Next, we
computed the average power spectral density in the theta band (4–7 Hz) and
alpha band (7–13 Hz) for each channel, and used them as our features, after
removing abnormal channels. Since data from one subject were not recorded
correctly, we only used 15 subjects in our paper. Each subject had about 1000
samples. More details about this dataset can be found in [4,19].

2. PVT. A psychomotor vigilance task (PVT) [5] uses reaction time (RT) to
measure a subject’s response speed to a visual stimulus. Our dataset [21]
consisted of 17 subjects (13 males, four females; age 22.4 ± 1.6), each with
465–843 trials. The 64-channel EEG signals were preprocessed using the stan-
dardized early-stage EEG processing pipeline (PREP) [1]. Then, they were
downsampled from 1000 Hz to 256 Hz, and passed through a [1,20] Hz band-
pass filter. Similar to the driving dataset, we also computed the average power
spectral density in the theta band (4–7 Hz) and alpha band (7–13 Hz) for
each channel as our features. The goal was to predict a user’s RT from the
EEG signals. More details about this dataset can be found in [20,21].

4.2 Experimental Settings and Performance Measures

We performed white-box target attack on the two BCI regression datasets.
Assume the attacker knows all information about the regression model, i.e., its
architecture and parameters. We crafted adversarial examples that can change
the regression model output by a pre-determined amount.

Two regression models were considered. The first was ridge regression (RR)
with ridge parameter 0.1. The second was a multi-layer perceptron (MLP) neural
network with two hidden layers and 50 nodes in each layer. We used the Adam
optimizer [8] and the root mean squared error (RMSE) as the loss function.
Early stopping was used to reduce over-fitting.

Two attack scenarios were considered:

1. Within-subject attack. For each individual subject, we randomly chose 90%
data for training the RR model and the rest 10% for testing. For the MLP,
we further randomly set apart 10% of the training set as the validation set in
early stopping. We computed the test RMSE for each subject, and also their
average across all subjects.

2. Cross-subject attack. Each time we picked one subject as the test subject,
and concatenated data from all remaining subjects together to train the RR
model. For the MLP, 90% of these data were randomly selected for train-
ing, and the remaining 10% for validation in early stopping. RMSEs were
computed on the test subject.

Attack success rate (ASR) and distortion were used to evaluate the attack
performance. The ASR was defined as the percentage of adversarial examples
whose prediction satisfied g(x′) ≥ g(x)+ t, where t > 0 was our targeted change.
The distortion was computed as the L2 distance between the adversarial example
and the original example.
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Table 1. Baseline regression performances on the original EEG data, and the attack
performances by CW-P, IFGSM-P, and random noise. t = 0.2 was used.

Scenario Within-subject Cross-subject

Dataset Driving PVT Driving PVT

Model RR MLP RR MLP RR MLP RR MLP

Baseline RMSE .1766 .1355 .1293 .1445 .2207 .2124 .2255 .2433

MO .3805 .3715 .5262 .5318 .2499 .2371 .5384 .5333

CW-P RMSE .2732 .2368 .2569 .2693 .2976 .2753 .3349 .3405

MO .5805 .5717 .7262 .7319 .4499 .4374 .7385 .7337

ASR 99.59% 99.94% 99.68% 100% 99.97% 100% 99.81% 99.91%

Distortion 2.5835 .5858 6.7537 3.7048 .8687 .4008 .4678 .5333

IFGSM-P RMSE .2858 .2788 .2719 .2828 .3176 .3193 .3553 .3857

MO .5967 .6168 .7478 .7515 .4790 .4967 .7657 .7884

ASR 96.88% 99.54% 92.29% 99.19% 98.97% 99.97% 99.94% 99.56%

Distortion 6.9672 1.7338 14.3129 7.8370 2.6852 1.3415 1.5272 2.3071

Random noise RMSE .1766 .1355 .1293 .1445 .2207 .2124 .2255 .2433

MO .3805 .3715 .5262 .5318 .2499 .2371 .5384 .5333

ASR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Distortion 7.1023 1.8663 14.5002 8.0664 2.8018 1.4866 1.6348 2.4029

4.3 Experimental Results

The baseline regression performances on the original (unperturbed) EEG data
are shown in the first panel of Table 1, where “mean output (MO)” is the
mean of the regression outputs for all EEG trials. For each regression model on
each dataset, the cross-subject RMSE was always larger than the corresponding
within-subject RMSE, which is intuitive, because individual differences make it
difficult to develop a model that generalizes well across subjects.

We set t = 0.2 in both CW-P and IFGSM-P, and called the attack a success
if g(x′) ≥ g(x)+ t. N = 9 and c0 = 0.01 were used in CW-P. M = 25, α = 0.001,
and grid search for ε ∈ {0.001, 0.002, ..., 0.03} were used in IFGSM-P. We used
L2 distance to measure the distortion of the adversarial examples. The attack
performances are shown in the second and third panels of Table 1:

1. The RMSEs after CW-P and IFGSM-P attacks were always much larger than
those before the attacks, indicating that the attacks dramatically changed the
characteristics of the model output.

2. For each regression model on each dataset, the mean output of the adversarial
examples was always larger than that of the original examples by at least t,
which was our target. This suggests that both CW-P and IFGSM-P were
effective.

3. The ASRs of both CW-P and IFGSM-P were always close to 100%, indicating
that almost all attacks were successful. A closer look revealed that the ASR
of CW-P was always slightly larger than the corresponding ASR of IFGSM-P,
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and the RMSE, mean output, and distortion of CW-P were always smaller
than the corresponding quantities of IFGSM-P, i.e., CW-P was generally more
effective than IFGSM-P. However, the computational cost of CW-P was much
higher than IFGSM-P.

It’s also interesting to check if adding random noise can significantly degrade
the regression performance; if so, then no deliberate adversarial example crafting
is needed. To this end, we performed attacks by adding random Gaussian noise
N (0, σ) to the original examples, where σ was chosen so that the resulted distor-
tion approximately equaled the maximum distortion introduced by CW-P and
IFGSM-P. The corresponding attack performances are shown in the last panel
of Table 1. Though the distortion was large, random Gaussian noise almost did
not change the regression RMSE and the mean output, and its ASR was always
0.00%, suggesting that sophisticated attack approaches like CW-P and IFGSM-P
are indeed needed.

Some examples of the original EEG trials and those after adding adversar-
ial perturbations are shown in Fig. 1. The differences between the original and
adversarial trials were too small to be distinguished by a human, which should
also be very difficult to be detected by a computer algorithm.

Fig. 1. Examples of the original EEG trials (blue) and the adversarial trials (red),
generated by CW-P. (a) driving; (b) PVT. The blue and red curves almost completely
overlap. (Color figure online)

4.4 Spectrogram Analysis

This section utilizes spectrogram analysis to further understand the characteris-
tics of the adversarial examples. We computed the mean spectrogram of all EEG
trials, the mean spectrogram of all successful adversarial examples, and the mean
spectrogram of the corresponding perturbations, using wavelet decomposition.
Figure 2 shows the results, where the adversarial examples were designed for
MLP on the PVT dataset. There is no noticeable difference between the mean
spectrograms of the original EEG trials and the adversarial examples crafted
by our two approaches. This suggests that adversarial examples are difficult to
distinguish from spectrogram analysis.
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(a)

(b)

Fig. 2. Mean spectrogram of all original EEG trials (first column), mean spectrogram
of all successful adversarial examples (second column), and mean spectrogram of the
perturbations (third column), from MLP on the PVT dataset. Channel Cz was used.
(a) CW-P; (b) IFGSM-P.

The third column of Fig. 2 shows the difference between the mean spectro-
grams in the first two columns. Note that the amplitudes were much smaller
than those in the first two columns. The patterns of those two perturbations are
similar. The energy of those perturbations was concentrated in [3,10] Hz, and
was almost uniformly distributed in the entire time domain.

4.5 Transferability of Adversarial Examples Between Different
Regression Models

The transferability of adversarial examples means that adversarial examples
designed to attack one model may also be used to attack a different model.
This property makes black-box attacks possible, where we have no information
about the target regression model at all [13,14].

Figure 3 shows the mean output, when adversarial examples designed from
MLP were used to attack the RR model [Fig. 3(a)], and vice versa [Fig. 3(b)], in
within-subject attacks on the PVT dataset. In Fig. 3(a), although the attack per-
formance on RR degraded compared with the attack performance on MLP, the
adversarial examples still dramatically changed the outputs of RR. Figure 3(b)
is similar. These demonstrate that adversarial examples generated by CW-P and
IFGSM-P are also transferrable, and hence may be used in black-box attacks.
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(a) (b)

Fig. 3. Outputs of the adversarial examples, when transferred from (a) MLP to RR,
and (b) RR to MLP, in within-subject attacks on the PVT dataset.

5 Conclusions

This paper has proposed two white-box target attack approaches, CW-P and
IFGSM-P, for regression problems, and applied them to two EEG-based BCI
regression problems. Both approaches can successfully change the model output
by a pre-determined amount. Generally, CW-P achieved better attack perfor-
mance than IFGSM-P, in terms of a larger ASR and a smaller distortion; how-
ever, its computational cost is higher than IFGSM-P. We also verified that the
adversarial examples crafted from both CW-P and IFGSM-P are transferrable,
and hence adversarial examples generated from a known regression model can
also be used to attack an unknown regression model, i.e., to perform black-box
attacks.

To our knowledge, this is the first study on adversarial attacks for EEG-based
BCI regression problems, which calls for more attention on the security of BCI
systems. Our future research will study how to defend such attacks.
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