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Abstract—Ensemble learning, which aggregates multiple base
(weak) learners to obtain a strong learner, is an effective approach
for improving the generalization performance of a machine learn-
ing model. Several completely unsupervised ensemble learning
approaches have been proposed in the literature for binary
classification. However, most of them only considered the case
that the two classes are balanced, and hence their performances
deteriorate when there is significant class imbalance, which often
happens in practice. This paper proposes a spectral meta-learner
for class imbalance (SMLCI) approach to explicitly consider the
class imbalance. Experiments on 12 UCI datasets from various
domains verified that SMLCI significantly outperformed the
individual base classifiers, and also five existing unsupervised
ensemble learning approaches, when the balanced classification
accuracy is used as the performance measure.
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I. INTRODUCTION

Ensemble learning [7], [22] is a popular machine learning

approach for aggregating multiple base (weak) learners to

obtain a strong learner. Compared with each individual base

learner, the strong learner usually has a smaller variance and

better generalization performance.

In practice the strong learner may be applied to data that the

base learners have not seen before. For example, in a brain-

computer interface application studied in [21], several base

learners were built from labeled EEG trials from some existing

subjects, and then the aggregated strong learner was applied

to unlabeled EEG trials from a new subject. This represents a

completely unsupervised ensemble learning problem, as none

of the EEG trials from the new subject was labeled. On the

other hand, if there are some labeled samples from the new

subject available to refine the strong learner, then it becomes

a supervised or semi-supervised ensemble learning problem.

Generally unsupervised ensemble learning is more challenging

than supervised or semi-supervised ensemble learning, and this

paper considers the former.

According to the characteristics of the base learners, ensem-

ble learning approaches can be categorized into two groups

[22]:

1) Homogeneous ensemble learning, in which all base

learners are of the same type, e.g., random forest for

classification and regression [12], where all base learners

are decision trees.

2) Heterogeneous ensemble learning, in which the base

learners are of different types, e.g., the base learners

could be a mixture of decision trees [17], neural net-

works [18], support vector machines [19], etc..

This paper focuses on heterogeneous ensemble learning for

binary classification problems. However, our approach can also

be applied to homogeneous ensemble learning problems.

According to whether the base learners are dependent on

each other or not, ensemble learning approaches can also be

categorized into two groups [22]:

1) Sequential approaches, where the construction of a base

learner depends on the performance of its pervious base

learners, e.g., adaBoost [6].

2) Parallel approaches, where the base learners are con-

structed in parallel and independent of each other, e.g.,

bagging [11].

This paper focuses on the latter. In summary, this paper studies

unsupervised heterogeneous ensemble learning for binary clas-

sification, where the base learners are constructed in parallel.

Majority vote (MV), which assigns a sample to the class

that the most base classifiers agree on, is perhaps the most

widely-used ensemble learning approach for classification. In

its simplest form, all base classifiers have equal weights.

However, in practice the base classifiers usually have different

accuracies, and it is more intuitive to use weighted voting to

emphasize better classifiers. The challenge is how to optimally

design such weights, especially in unsupervised ensemble

learning, where only unlabeled samples are available.

Recently a few more sophisticated unsupervised heteroge-

neous ensemble learning approaches for binary classification

have been proposed. Parisi et al. [15] proposed a spectral

meta-learner (SML) approach to estimate the accuracies of the

base classifiers from their population covariance matrix, and

then used them in a maximum likelihood estimator (MLE) to

aggregate these base classifiers. Researchers from the same

group then proposed several improvements [9], [10] to the

SML. Wu et al. [20] proposed an agreement rate initial-

ized maximum likelihood estimator (ARIMLE), which used

a simplified agreement rate (AR) approach [16] to estimate

the classification accuracy of each base classifier from the

unlabeled samples, initialized an MLE from these accuracies,

and then iterated the MLE to obtain better performance.
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The above approaches have demonstrated promising per-

formances in various applications. However, most of them

assume that the two classes are balanced, i.e., the positive

class has roughly the same number of samples as the negative

class. In practice usually it is difficult to know a priori if this

assumption is true. In fact, most real-world applications have

more or less class imbalance [8], [14]. The performances of

the above approaches may deteriorate in such cases.

This paper proposes a spectral meta-learner for class imbal-

ance (SMLCI) approach to explicitly cope with class imbal-

ance. Experiments on 12 UCI datasets from various domains

demonstrated the effectiveness of the SMLCI.

The remainder of this paper is organized as follows: Sec-

tion II introduces several representative existing unsupervised

heterogeneous ensemble learning approaches. Section III pro-

poses our SMLCI. Section IV compares the performance

of SMLCI with eight individual base classifiers, and also

five existing unsupervised heterogeneous ensemble learning

approaches. Finally, Section V draws conclusions.

II. EXISTING UNSUPERVISED HETEROGENEOUS

ENSEMBLE LEARNING APPROACHES

This section introduces five representative existing unsuper-

vised heterogeneous ensemble learning approaches, which will

be compared with our proposed SMLCI in Section IV.

A. Problem Setup

We consider binary classification. Let X be the input space

and Y ∈ {−1, 1} be the output space. A labeled sample

(X,Y ) ∈ X × Y is a random vector with joint probability

density p(x, y). Let {fi}mi=1 be m classifiers operating on

X , and assume there are n unlabeled samples, {xj}nj=1,

with unknown true labels {yj}nj=1. Define the classification

sensitivity of fi as

ψi = P(fi(X) = 1|Y = 1) (1)

and its specificity as

ηi = P(fi(X) = −1|Y = −1) (2)

Then, the balanced classification accuracy (BCA) of fi is

computed as [9], [10], [15], [20]:

πi =
1

2
(ψi + ηi). (3)

The BCA is used as the performance measure in this paper,

as it emphasizes the classification accuracies of both classes

equally, which is more appropriate than the overall classifi-

cation accuracy (the number of correctly classified samples

divided by the total number of samples) for class imbalance

problems.

B. Majority Vote (MV)

MV is perhaps the simplest and also most widely-used

ensemble learning approach for classification. It assigns a

sample to the class that the most base classifiers agree on.

Mathematically,

ŷj = sign

[
m∑
i=1

fi(xj)

]
, j = 1, ..., n. (4)

C. Spectral Meta-Learner (SML)

SML [15] is a linear approximation to the MLE, which

has demonstrated promising performance in many applications

[15], [21]. It uses two important assumptions: 1) The n
unlabeled samples {xj}nj=1 are independent and identically

distributed realizations from pX(x); and, 2) Them base binary

classifiers {fi}mi=1 are conditionally independent.

As shown in [15], the MLE is a linear combination of the

binary labels from the base classifiers:

ŷj = sign

[
m∑
i=1

(fi(xj) lnαi + lnβi)

]
(5)

where the weights and the bias depend on the unknown

specificities and sensitivities of the m base classifiers, i.e.,

αi =
ψiηi

(1− ψi)(1− ηi) (6)

βi =
ψi(1− ψi)

ηi(1− ηi) (7)

A Taylor expansion of the unknown coefficients αi and βi
in (6) and (7) around (ψi, ηi) = (1/2, 1/2) gives:

αi ≈ 1 + 4(ψi + ηi − 1) = 1 + 4(2πi − 1) (8)

βi ≈ 1 (9)

Hence, (5) can be rewritten as:

ŷj ≈ sign

[
m∑
i=1

fi(xj)(2πi − 1)
]

(10)

Denote ŷi = [fi(x1), ..., fi(xn)]
T , i = 1, ...,m, and

Y − [ŷ1, ..., ŷm]. Then, the covariance matrix of the m binary

classifiers is computed as:

Q = Y TY (11)

Let the leading eigenvector be v = [v1, ..., vm]. It has been

shown [15] that vi ∝ 2πi−1. Then, (10) can be re-formulated

as:

ŷj ≈ sign

[
m∑
i=1

fi(xj) · vi
]
, j = 1, ..., n (12)

The complete SML algorithm is shown in Algorithm 1.

D. Improved Spectral Meta-Learner (i-SML)

The derivation of SML uses an assumption that (ψi, ηi) =
(1/2, 1/2). Thus, it is sub-optimal when few classifiers are

significantly more accurate than all others. So, Jaffe et al. [10]

proposed an improved spectral meta-learner (i-SML) by first

estimating the class imbalance b = P (Y = 1)−P (Y = −1) of

the labels and then using it to directly estimate the sensitivity

and specificity of each base classifier.
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Algorithm 1: The SML algorithm [15].

Input: n unlabeled samples, {xj}nj=1;

m base binary classifiers, {fi}mi=1.

Output: The n estimated class labels, ŷj .

Apply each of {fi}mi=1 to the n unlabeled samples and

obtain the predictions fi(xj), i = 1, ...,m, j = 1, ..., n;

Compute the covariance matrix Q in (11);

Compute the first leading eigenvector, v, of Q;

Return ŷj computed by (12).

The class imbalance b can be estimated by a 3D covariance

tensor approach or a restricted-likelihood approach [10]. Once

b is obtained, ψi and ηi can be computed as:

ψi =
1

2

(
1 + μi + vi

√
1− b
1 + b

)
(13)

ηi =
1

2

(
1− μi + vi

√
1 + b

1− b

)
(14)

where v = [v1, ..., vm] is the leading eigenvector of Q in (11),

μi is the sample mean of the ith base classifier, i.e.,

μi =
1

n

n∑
j=1

fi(xj) (15)

(13) and (14) are then substituted into (6) and (7) to compute

αi and βi, which are next substituted into (5) to compute the

final class labels.

E. Latent Spectral Meta-Learner (L-SML)

Latent SML (L-SML) [9] is an unsupervised model that

allows for dependencies between the base classifiers. It as-

sumes the m base classifiers can be partitioned into several

groups according to a latent variable: the classifiers in the

same group can be correlated, but these from different groups

are conditionally independent. L-SML has two steps [9]:

1) Estimate the model parameters. It proceeds in two

stages: (i) Estimate the sensitivity and specificity of

the base classifiers given the latent variables αk (k =
1, ...,K, K < m); and (ii) estimate the probabilities

associated with the latent variables P(αk = 1|Y = 1)
and P(αk = −1|Y = −1).

2) Label predictions. The label of xj can be estimated by

the MLE:

ŷj = arg max
y=±1

P(f1(xj), . . . , fm(xj)|y) (16)

F. ARIMLE

ARIMLE [20] is also an unsupervised ensemble learning

approach to construct a strong learner from several base binary

classifiers. It first uses the AR method [16] to estimate the

error rate of each base classifier from the unlabeled samples,

then computes the accuracies from the error rates and employs

them to initialize an MLE, and computes the final prediction

by using an EM algorithm to refine the MLE.

The error rate of a binary classifier is defined as:

ei = P (fi(X) �= Y ), i = 1, . . . ,m (17)

Define the AR of two classifiers fi1 and fi2 (i1 �= i2) as

the probability that they give identical outputs [16], i.e.,

ai1,i2 = P (fi1(X) = fi2(X)) = 1− ei1 − ei2 + 2ei1,i2
(18)

where ei1,i2 is the joint error rate of fi1 and fi2 . Under the

assumption that fi1 and fi2 are independent, we have ei1,i2 =
ei1 · ei2 , and hence (18) can be re-expressed as:

ai1,i2 = 1− ei1 − ei2 + 2ei1 · ei2 (19)

Therefore it’s feasible to find the m error rates for the m
binary classifiers by computing ai1,i2 for all 1

2m(m− 1) pos-

sible combinations of (i1, i2), i1 = 1, . . . ,m, i2 = 1, . . . ,m,

and i1 �= i2, which can be easily solved by a constrained

optimization routine [20].

Once getting the error rates {e1}mi=1, assuming the classifi-

cation accuracies of positive and negative classes are similar,

we have:

πi ≈ 1− ei, i = 1, . . . ,m (20)

Substituting (20) into (10), a good initialization of the labels

{ŷj}mj=1 can be obtained, i.e.,

ŷj = sign

[∑m
i=1(2πi − 1)fi(xj)∑m

i=1(2πi − 1)
]
, j = 1, ..., n (21)

Then an EM algorithm can be used to refine the MLE. After

several iterations, we can get final predicted class labels for

the unlabeled samples. It usually gets better performance than

initial predictions.

The complete ARIMLE algorithm is shown in Algorithm 2.

Algorithm 2: The ARIMLE algorithm [20].

Input: n unlabeled samples, {xj}nj=1;

m base binary classifiers, {fi}mi=1.

Output: The maximum likelihood estimates {ŷj}nj=1.

for i1 = 1, ...,m− 1 do
for i2 = i1 + 1, ...,m do

Compute ai1,i2 in (19);

end
Solve for {ei}mi=1 in (19) using constrained

optimization;

Compute {πi}mi=1 using (20);

end
Initialize {ŷj}nj=1 using (21);

while stopping criterion not met do
Compute {ψi}mi=1 in (1) and {ηi}mi=1 in (2), by

treating {ŷj}nj=1 as the true labels;

Compute {αi}mi=1 in (6) and {βi}mi=1 in (7);

Update {ŷj}nj=1 using (12);

end
Return The latest {ŷj}nj=1.

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on October 29,2020 at 04:18:04 UTC from IEEE Xplore.  Restrictions apply. 



3596

III. SPECTRAL META-LEARNER FOR CLASS IMBALANCE

(SMLCI)

All unsupervised ensemble learning approaches introduced

in the previous section, except i-SML, do not explicitly con-

sider class imbalance. However, class imbalance is pervasive

in real-world applications, and hence it should not be ignored.

The challenge for handling class imbalance in unsupervised

ensemble learning is that the true class imbalance level is

unknown, and it cannot be estimated from labeled training

samples either, as there are no labeled training samples at

all. Thus, classical supervised ensemble learning approaches

for handling class imbalance, such as SMOTEBoost [2],

EasyEnsemble [13] and BalanceCascade [13], cannot be ap-

plied.

This section proposes a simple spectral meta-learner for

class imbalance (SMLCI) approach, which uses cost sensitive

learning [5] to handle class imbalance. Let r be the (unknown)

class imbalance ratio (the number of positive samples divided

by the number of negative samples), and c(i, j) be the cost

of classifying a sample belonging to Class j to Class i.
Then, using the BCA as a performance measure is equivalent

to setting c(1, 1) = c(−1, 1) = 0, c(−1, 1) = 1, and

c(1,−1) = r. Cost sensitive learning [5] suggests that the

optimal decision threshold in this case should be r−1
r+1 , i.e.,

(12) should be modified to:

ŷ′j = sign

[
m∑
i=1

fi(xj) · vi − r − 1
r + 1

]
, j = 1, ..., n (22)

The threshold r−1
r+1 becomes 0 when r = 1, i.e., when the

two classes are balanced, or c(−1, 1) = c(1,−1) = 1. This

is the case in (12). In other words, (12) is optimal when

the raw classification accuracy is used as the performance

measure, whereas (22) is optimal when the BCA is used as

the performance measure.

Unfortunately in unsupervised learning there is no way to

know the true class imbalance ratio r. So, we first use SML

to estimate the pseudo-labels of the n unlabeled samples, and

then compute the estimated class imbalance ratio r from these

pseudo labels, i.e.,

r =

∑n
j=1 I(ŷj = 1)∑n

j=1 I(ŷj = −1) (23)

where ŷj is computed from (12), and I is an indicator function,

i.e.,

I(x) =

{
1, x = 1
0, otherwise

(24)

Then, we substitute r into (22) to update the estimates.

In summary, the pseudo-code of SMLCI is given in Algo-

rithm 3.

IV. EXPERIMENTS

This section compares the performance of SMLCI with

eight base binary classifiers, and also the five existing unsuper-

vised heterogeneous ensemble learning approaches introduced

in Section II.

Algorithm 3: The SMLCI approach.

Input: n unlabeled samples, {xj}nj=1;

m base binary classifiers, {fi}mi=1.

Output: The n estimated class labels, ŷ′j .

Apply each of {fi}mi=1 to the n unlabeled samples and

obtain the predictions fi(xj), i = 1, ...,m, j = 1, ..., n;

Compute the covariance matrix Q in (11);

Compute the first leading eigenvector, v, of Q;

Compute ŷj in (12);

Compute the class imbalance ratio r in (23);

Return ŷ′j in (22).

A. Experiment Setup

Twelve datasets from the UCI machine learning reposito-

ry1, shown in Table I, were used in our experiments. Eight

heterogeneous binary classifiers, including logistic regression

(LR), Linear Discriminant Analysis (LDA), k-Nearest Neigh-

bor (KNN), Support Vector Machine (SVM), Naive Bayes

(NB), Random Forest (RF), Multi-layer Perceptron (MLP),

and adaBoost (ADA), were trained on 50% randomly selected

samples from each dataset. The remaining 50% data were then

used for testing. BCA was used as the performance measure.

For each dataset we repeated the process 100 times to obtain

statistically meaningful results.

TABLE I
SUMMARY OF THE 12 DATASETS FROM THE UCI MACHINE LEARNING

REPOSITORY.

# Positive # Negative Pos/Neg #
Dataset Samples Samples Ratio Attributes
Biodeg 356 699 0.51 41
BreastCancer 212 357 0.59 30
Clave 407 4300 0.09 16
ClimateModel 494 46 10.74 18
ILPD 416 167 2.49 10
Ionosphere 225 126 1.79 34
Magic 6688 12332 0.54 10
Musk2 1017 5581 0.18 166
ParkinsonSpeech 520 520 1.00 27
PimaIndiansDiabetes (PID) 268 500 0.54 8
Spambase 1813 2788 0.65 57
Waveform21 1647 3353 0.49 21

B. Performance Comparison with the Base Classifiers

First, we investigated if SMLCI can outperform the eight

individual base classifiers. The boxplots of the 100 BCAs on

each dataset are shown in Fig. 1, and the average BCAs are

shown in Table II. For each dataset the best BCA is marked

in bold. Observe that:

1) The individual base classifiers had diverse performances

across the 12 datasets, and it is difficult to identify a

single base classifier that is always better than others.

Hence, using a single base classifier in a specific appli-

cation may be risky.

1https://archive.ics.uci.edu/ml/datasets.html
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2) Despite the large variance among the eight base clas-

sifiers, ensemble learning by SMLCI almost always

outperformed the best base classifier, or achieved com-

parable performance as the best base classifier. More

specifically, Table II shows that SMLCI outperformed

all eight base classifiers on six out of the 12 datasets,

outperformed seven base classifiers on another five out

of the 12 datasets, and outperformed six base classifiers

on the one remaining dataset. On average SMLCI out-

performed all eight base classifiers.

These results suggested that SMLCI, as an ensemble learn-

ing approach, can indeed improve upon the individual base

classifiers.

TABLE II
AVERAGE BCAS OF THE EIGHT BASE CLASSIFIERS AND SMLCI ON THE

12 UCI DATASETS.

Dataset LR LDA kNN SVM NB RF MLP ADA SMLCI
Biodeg .8399 .8318 .8193 .8463 .7076 .8137 .8145 .7804 .8556

BreastCancer .9335 .9390 .7389 .9386 .8640 .9393 .9180 .9153 .9543
Clave .6250 .5289 .6756 .8531 .7323 .7695 .7637 .7435 .8869

ClimateModel .8186 .7190 .5690 .7844 .6071 .5235 .7044 .5908 .8488
ILPD .5747 .5299 .5375 .5249 .6651 .5855 .5316 .5940 .6466

Ionosphere .8170 .8037 .6786 .9059 .9018 .9388 .7972 .7792 .9377
Magic .7452 .7322 .7867 .8157 .6853 .8357 .8227 .7790 .8281
Musk2 .8879 .8511 .9115 .9677 .8797 .7946 .8993 .8167 .9575

ParkinsonSpeech .9996 .8811 .7924 .9910 .7720 .9404 .9991 .9339 .9846
PID .7236 .7217 .6713 .7100 .6943 .7124 .7047 .6917 .7368

Spambase .9165 .8700 .8752 .9262 .7891 .9317 .9089 .8767 .9313
Waveform21 .8726 .8924 .8074 .8800 .8792 .8919 .8932 .8825 .9089

Average .8128 .7751 .7386 .8453 .7648 .8064 .8131 .7820 .8731

We also performed non-parametric multiple comparison

tests on the BCAs using Dunn’s procedure for multiple com-

parisons [3], [4], with a p-value correction using the False

Discovery Rate method [1]. The corrected p-values are shown

in Table III, where the statistically significant ones are marked

in bold. Although the eight base classifiers had different

performances, the performance improvement of SMLCI over

each base classifier was always statistically significant.

TABLE III
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS OF SMLCI

AND THE EIGHT BASE CLASSIFIERS.

LR LDA kNN SVM NB RF MLP ADA
LDA .0000
kNN .0000 .0000
SVM .0000 .0000 .0000
NB .0000 .0000 .0001 .0000
RF .3191 .0000 .0000 .0000 .0000

MLP .3333 .0000 .0000 .0000 .0000 .4745
ADA 0.0000 .2284 .0000 .0000 .0000 .0000 .0000

SMLCI 0.0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

In summary, our experiments confirmed that SMLCI can

achieve significantly better BCA than the individual base

classifiers.

C. Performance Comparison with Other Unsupervised En-
semble Learning Approaches

Next we compare the performance of SMLCI with the

five unsupervised ensemble learning approaches introduced in

Section II. Boxplots of the BCAs of the six ensemble learning

approaches on the 12 UCI datasets are shown in Fig. 2, and the

average BCAs are summarized in Table IV. For each dataset

the best BCA is marked in bold. Observe that SMLCI achieved

the best average BCA on 11 out of the 12 datasets, and the

second best average BCA on the remaining dataset.

TABLE IV
AVERAGE BCAS OF THE SIX UNSUPERVISED ENSEMBLE LEARNING

APPROACHES ON THE 12 UCI DATASETS.

Dataset MV SML i-SML L-SML ARIMLE SMLCI
Biodeg .8468 .8486 .8512 .8494 .8535 .8556

BreastCancer .9398 .9518 .9519 .9491 .9523 .9543
Clave .7003 .7859 .8592 .8577 .8644 .8869

ClimateModel .6978 .7648 .8104 .7946 .7977 .8488
ILPD .5689 .5789 .6149 .6042 .5889 .6466

Ionosphere .9139 .9165 .9327 .9173 .9232 .9377
Magic .7922 .8139 .8193 .8154 .8258 .8281
Musk2 .8836 .9102 .9259 .9199 .9371 .9575

ParkinsonSpeech .9673 .9838 .9844 .9628 .9653 .9846
PID .7132 .7211 .7267 .7244 .7281 .7368

Spambase .9245 .9270 .9292 .9286 .9303 .9313
Waveform21 .8994 .9062 .9101 .9068 .9105 .9089

Average .8206 .8424 .8597 .8525 .8564 .8731

We also performed non-parametric multiple comparison

tests on the BCAs using Dunn’s procedure for multiple com-

parisons, with a p-value correction using the False Discovery

Rate method. The corrected p-values are shown in Table V,

where the statistically significant ones are marked in bold.

Observe that:

1) All five more sophisticated ensemble learning approach-

es (SML, i-SML, L-SML, ARIMLE, and SMLCI) sig-

nificantly outperformed MV.

2) All four variants of SML (i-SML, L-SML, ARIMLE,

and SMLCI) significantly outperformed SML.

3) SMLCI significantly outperformed all other five ensem-

ble learning approaches.

In summary, our experiments further confirmed that SMLCI

can achieve significantly better BCA than five existing unsu-

pervised ensemble learning approaches.

TABLE V
p-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISONS OF THE SIX

ENSEMBLE LEARNING APPROACHES.

MV SML i-SML L-SML ARIMLE
SML .0001

i-SML .0000 .0000
L-SML .0000 .0038 .1174

ARIMLE .0000 .0000 .4746 .1134
SMLCI .0000 .0000 .0003 .0000 .0004

V. CONCLUSIONS

Ensemble learning is an effective approach for improving

the generalization performance of a machine learning model.

Several completely unsupervised ensemble learning approach-

es have been proposed in the literature for binary classification.

However, most of them can only achieve good performance

when the two classes are balanced, i.e., the positive class has

roughly the same number of samples as the negative class.
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Fig. 1. Performances of the eight base binary classifiers and SMLCI on the 12 UCI datasets.
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Fig. 2. Performances of the six unsupervised ensemble learning approaches on the 12 UCI datasets.
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Unfortunately most real-world applications have more or less

class imbalance. In this paper we have proposed an SMLCI

approach to explicitly consider the class imbalance. Experi-

ments on 12 UCI datasets verified that SMLCI significantly

outperformed the individual base classifiers, and also five

existing unsupervised ensemble learning approaches, when the

balanced classification accuracy is used as the performance

measure.
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