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Abstract. The electroencephalogram (EEG) is the most widely used
input for brain computer interfaces (BCIs), and common spatial pattern
(CSP) is frequently used to spatially filter it to increase its signal-to-noise
ratio. However, CSP is a supervised filter, which needs some subject-
specific calibration data to design. This is time-consuming and not user-
friendly. A promising approach for shortening or even completely elimi-
nating this calibration session is transfer learning, which leverages rele-
vant data or knowledge from other subjects or tasks. This paper reviews
three existing approaches for incorporating transfer learning into CSP,
and also proposes a new transfer learning enhanced CSP approach.
Experiments on motor imagery classification demonstrate their effective-
ness. Particularly, our proposed approach achieves the best performance
when the number of target domain calibration samples is small.

Keywords: Brain computer interface · Common spatial pattern · Motor
imagery · Transfer learning

1 Introduction

Brain computer interfaces (BCIs) [10,19] provide a direct communication path-
way for a user to interact with a computer or external device by using his/her
brain signals, which include electroencephalogram (EEG), magnetoencephalo-
gram (MEG), functional magnetic resonance imaging (fMRI), functional near-
infrared spectroscopy (fNIRS), electrocorticography (ECoG), and so on. EEG-
based BCIs have attracted great attention because they have little risk (no need
for surgery), are convenience to use, and offer high temporal resolution. They
have been used for robotics, speller, games, and medical applications [6,14].

However, there are still many challenges for wide-spread real-world appli-
cations of EEG-based BCIs [10,13]. One of them is related to the EEG sig-
nal quality. EEG signals can be easily contaminated by various artifacts and
noise, including muscle movements, eye blinks, heartbeats, environmental elec-
tromagnetic fields, etc. Common approaches to clean EEG signals including time-
domain filtering and spatial filtering. Common spatial pattern (CSP) filtering
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[3,17,21,26] is one of the most popular and effective spatial filters for EEG to
increase its signal-to-noise ratio.

CSP performs supervised filtering, which requires some subject-specific cali-
bration data to design. This is time-consuming and not user-friendly. A promising
approach for shortening or even completely eliminating this calibration session
is transfer learning (TL) [15], which has already been extensively used to handle
individual differences and non-stationarity in EEG-based BCI [8,18,20,22–25].
TL leverages relevant data or knowledge from other subjects or tasks to reduce
the calibration effort for a new subject or task. Traditionally, EEG signal process-
ing (e.g., CSP filtering) and classification (e.g., TL) are performed sequentially
and independently. However, recent research has shown that TL may be used to
directly enhance CSP for better filtering performance [4,9,12].

This paper focuses on TL enhanced CSPs. Its main contributions are:

1. We group existing TL enhanced CSPs into two categories and give a com-
prehensive review of them. To our knowledge, this is the first review in this
direction.

2. We propose a novel TL enhanced CSP approach, and demonstrate its perfor-
mance against existing approaches on EEG-based motor imagery classifica-
tion.

The rest of this paper is organized as follows: Sect. 2 introduces CSP and
TL, and gives an overview of existing approaches for incorporating TL into
CSP. Section 3 proposes a new instance-based TL approach to enhance CSP.
Section 4 compares the performance of all these approaches. Finally, Sect. 5 draws
conclusions and points out several future research directions.

2 Existing TL Enhanced CSP Filters

This section briefly introduces CSP and TL, and reviews three existing
approaches for integrating them.

2.1 Common Spatial Pattern (CSP)

Let X ∈ R
C×T be an EEG epoch, where C is the number of channels and T the

number of time samples. For simplicity, only binary classification is considered
in this paper.

CSP [3,17,21] separates a multivariate signal into additive subcomponents
which have maximum differences in variance between the two classes. Specifically,
CSP finds a filter matrix to maximize the variance for one class while minimizing
it for the other:

W0 = arg max
W

tr(WT Σ̄0W )
tr(WT Σ̄1W )

(1)

where W0 ∈ R
C×F is the filter matrix consisting of F filters, tr(·) is the trace

of a matrix, Σ̄0 and Σ̄1 are the mean covariance matrices of epochs in Classes 0
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and 1, respectively. The solution W0 is the concatenation of the F eigenvectors
associated with the F largest eigenvalues of the matrix Σ̄−1

1 Σ̄0.
In practice, we often construct a CSP filter matrix W∗ = [W0,W1] ∈ R

C×2F ,
where

W1 = arg max
W

tr(WT Σ̄1W )
tr(WT Σ̄0W )

(2)

i.e., W1 maximizes the variance for Class 1 while minimizing it for Class 0. Similar
to W0, W1 is the concatenation of the F eigenvectors associated with the F
largest eigenvalues of the matrix Σ̄−1

0 Σ̄1. Since Σ̄−1
1 Σ̄0 and Σ̄−1

0 Σ̄1 have the same
eigenvectors, and the eigenvalues of Σ̄−1

1 Σ̄0 are the inverses of the eigenvalues
of Σ̄−1

0 Σ̄1, W1 actually consists of the F eigenvectors associated with the F
smallest eigenvalues of the matrix Σ̄−1

1 Σ̄0. So, only one eigen-decomposition of
the matrix Σ̄−1

1 Σ̄0 (or Σ̄−1
0 Σ̄1) is needed in computing W∗.

Once W∗ is obtained, CSP projects an EEG epoch X ∈ R
C×T to X ′ ∈ R

2F×T

by:

X ′ = WT
∗ X (3)

Usually 2F < C, so CSP can increase the signal-to-noise ratio and reduce the
dimensionality simultaneously.

After CSP filtering, the logarithmic variance feature vector is then calculated
as [4]:

x = log
(

diag(X ′X ′T )
tr(X ′X ′T )

)
(4)

where diag(·) returns the diagonal elements of a matrix. x can be used as the
input to a classifier, e.g., linear discriminant analysis (LDA).

2.2 Transfer Learning (TL)

TL has been extensively used in BCIs to reduce their calibration effort [8,18,20,
23,24]. Some basic concepts of TL are introduced in this subsection.

A domain [11,15] D in TL consists of a feature space X and a marginal
probability distribution P (x), i.e., D = {X , P (x)}, where x ∈ X . Two domains
Ds and Dt are different if Xs �= Xt, and/or Ps(x) �= Pt(x).

A task [11,15] T in TL consists of a label space Y and a conditional prob-
ability distribution Q(y|x). Two tasks Ts and Tt are different if Ys �= Yt, or
Qs(y|x) �= Qt(y|x).

Given a source domain Ds with n labeled samples, and a target domain Dt

with ml labeled samples and mu unlabeled samples, TL learns a target prediction
function f : x �→ y with low expected error on Dt, under the assumptions
Xs �= Xt, Ys �= Yt, Ps(x) �= Pt(x), and/or Qs(y|x) �= Qt(y|x).

For example, in EEG-based motor imagery classification studied in this
paper, a source domain consists of EEG epochs from an existing subject, and
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the target domain consists of EEG epochs from a new subject. When there are
Z source domains {Dz

s}z=1,...,Z , we can perform TL for each of them separately
and then aggregate the Z classifiers, or treat the combination of the Z source
domains as a single source domain.

2.3 Incorporating TL into CSP: Covariance Matrix-Based
Approaches

Since covariance matrices are used in CSP, whereas the target domain does not
have enough labeled samples to reliably estimate them, a direction to incorporate
TL into CSP is to utilize the source domain covariance matrices to enhance the
estimation of the target domain ones.

Kang et al. [9] proposed a subject-to-subject transfer approach, which empha-
sizes the covariance matrices of source subjects who are more similar to the target
subject. They computed the dissimilarity between the target subject and each
source subject by Kullback-Leibler (KL) divergence between their data distrib-
utions, and then used the inverses of these dissimilarities as weights to combine
the source domain covariance matrices.

Let pz
s be the EEG data distribution in the zth source domain Dz

s , which is
assumed to be C-dimensional Gaussian with zero mean and covariance matrix
Σz

s , i.e., pz
s ∼ N(0, Σz

s ). Let pt be the data distribution in the target domain
Dt, which is C-dimensional Gaussian with zero mean and covariance matrix Σt,
i.e., pt ∼ N(0, Σt). The KL divergence between pz

s and pt is computed as [9]:

KL(pz
s , pt) =

1
2

{
log

(
|Σt|
|Σz

s |

)
+ tr[Σ−1

t Σz
s ] − C

}
, z = 1, ..., Z (5)

where | · | is the matrix determinant.
Then, the TL-enhanced covariance matrix for the target subject is computed

as:

Σ̃t = (1 − λ)Σt + λ

Z∑
z=1

αzΣ
z
s (6)

where λ is an adjustable parameter to balance the information from the target
subject and source subjects, and

αz =
1
γ

· 1
KL(pz

s , pt)
(7)

in which γ =
∑Z

z=1
1

KL(pz
s ,pt)

is a normalization factor.
Lotte and Guan [12] proposed a similar approach for incorporating TL into

CSP, based on the covariance matrices:

Σ̃t = (1 − λ)Σt +
λ

|St(Ω)|
∑

z∈St(Ω)

Σz
s (8)
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where Ω is the set of subjects whose data have been recorded previously, St(Ω)
is a subset of subjects from Ω, |St(Ω)| is the number of subjects in St(Ω), and
λ ∈ [0, 1] is defined by

λ =

⎧⎪⎨
⎪⎩

1, targetAcc ≤ randAcc

0, targetAcc ≥ selectedAcc
selectedAcc−targetAcc

1−randAcc , otherwise
(9)

in which targetAcc is the leave-one-out validation accuracy on the target domain
labeled samples when the classifier is trained by using only the target domain
labeled samples, selectedAcc is the accuracy on the target domain labeled sam-
ples when the classifier is trained by using only the labeled samples from the
selected source subjects in St(Ω), and randAcc is the classification accuracy at
the chance level (e.g., 50% for binary classification). The algorithm for deter-
mining St(Ω) can be found in [12].

2.4 Incorporating TL into CSP: A Model-Based Approach

Instead of learning a single set of CSP filters by aggregating information from
the target subject and all (or a subset of) source subjects, as introduced in the
previous subsection, Dalhoumi et al. [4] proposed an approach to design a set
of CSP filters for each source subject, train a classifier for each source subject
according to the extracted features, and then aggregate all these source classifiers
to obtain the target classifier.

Let W z and fz be the CSP filter matrix and classifier trained for the zth
source subject, respectively, and {(Xj , yj)}j=1,...,m be the labeled target domain
data. We first filter each Xj by W z, extract the corresponding feature vector xz

j

using (4), and then feed xz
j into model fz to obtain its classification fz(xz

j ). The
final classifier is:

f(x) =
Z∑

z=1

wzfz(x) (10)

where the weights w∗ = (w1, ..., wZ) are determined by solving the following
constrained minimization problem:

w∗ = arg min
w

m∑
j=1

�

(
Z∑

z=1

wzfz(xz
j ), yj

)
(11)

s.t.

Z∑
z=1

wz = 1

wz ≥ 0, z = 1, ..., Z

where �
(∑Z

z=1 wzfz(xz
j ), yj

)
is the loss between

∑Z
z=1 wzfz(xz

j ) and yj .
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Dalhoumi et al. [4] also constructed another CSP filter matrix and the cor-
responding classifier using the target domain data only, and compared its leave-
one-out validation performance with that of f(x) to determine which one should
be used as the preferred classifier. Because the goal of this paper is to compare
different TL enhanced CSP approaches, we always use f(x).

3 Incorporating TL into CSP: Instance-Based
Approaches

This section introduces our proposed approach for incorporating TL into CSP.
It’s an instance-based approach, meaning that the source domain labeled samples
are combined with the target domain labeled samples in a certain way to design
the CSP.

The simplest instance-base approach is to directly combine the labeled sam-
ples from the target domain and all source domains. However, this is usually
not optimal because it completely ignores the individual difference: some source
domain samples may be more similar to the target domain samples, so they
should be given more consideration.

So, a better approach is to re-weight the source domain samples according
to their similarity to the target domain samples, and then use them in the
CSP. The main problem is how to optimally re-weight the source samples. We
adopt the approach proposed by Huang et al. [7], which is a generic method for
correcting sample collection bias and has not been used for CSP and BCIs. It
assigns different weights to the source domain samples to minimize the Maximum
Mean Discrepancy [2] between the source and target domains after mapping
onto a reproducing kernel Hilbert space. More specifically, it solves the following
constrained minimization problem:

min
β

∥∥∥∥∥∥
1
n

n∑
j=1

βjφ(xj
s) − 1

m

m∑
j=1

φ(xj
t )

∥∥∥∥∥∥
2

H

(12)

s.t. 0 ≤ βj ≤ b, j = 1, ..., n∣∣∣∣∣∣
n∑

j=1

βj − n

∣∣∣∣∣∣ ≤ nε

where xj
s is the jth source domain sample, xj

t is the jth target domain sample,
φ(x) is a feature mapping onto a reproducing kernel Hilbert space H, β =
(β1, ..., βn) is the weight vector for the source domain samples, n is the number
of source domain samples, m is the number of target domain samples, and b and
ε are adjustable parameters.

The source domain samples are then re-weighted by β and combined with
the target domain samples to design a CSP filter matrix.



Transfer Learning Enhanced CSP Filtering for BCIs 817

4 Experiment and Results

This section presents a comparative study of the above TL-enhanced CSP algo-
rithms.

4.1 Dataset and Preprocessing

We used Dataset 2a from BCI competition IV1, which consists of EEG data from
9 subjects. Every subject was instructed to perform four different motor imagery
tasks, namely the imagination of movement of the left hand, right hand, both
feet, and tongue. A training session and a test session were recorded on different
days for each subject and each session is comprised of 288 epochs (72 for each of
the four classes). The signals were recorded using 22 EEG channels and 3 EOG
channels at 250 Hz and bandpass filtered between 0.5 Hz and 100 Hz.

Only the 22 EEG channels were used in our study. We further processed
them using the Matlab EEGLAB toolbox [5]. They were first down-sampled to
125 Hz. Next a bandpass filter of 8–30 Hz was applied as movement imagination
is known to suppress idle rhythms in this frequency band contra-laterally [16]. As
we consider binary classification in this paper, only EEG signals corresponding
to the left and right hand motor imageries were used. More specifically, EEG
epochs between 1.5 and 3.5 s after the appearance of left or right hand motor
imagery cues were used.

4.2 Algorithms

We compared the performance of the following seven CSP algorithms:

1. Baseline 1 (BL1), which uses only the small amount of target domain labeled
samples to design the CSP filters and the LDA classifier, and applies them
to target domain unlabeled samples. That’s, BL1 does not use any source
domain samples.

2. Baseline 2 (BL2): which combines all source domain samples to design the
CSP filters and the LDA classifier, and applies them to target domain unla-
beled samples. That’s, BL2 does not use any target domain labeled samples.

3. Baseline 3 (BL3), which directly combines all source domain samples and
target domain labeled samples, designs the CSP filters and the LDA classifier,
and applies them to target domain unlabeled samples.

4. Covariance matrix-based approach 1 (CM1), which is the approach proposed
by Kang et al. [9], as introduced in Sect. 2.3. λ = 0.5 was used in our study.

5. Covariance matrix-based approach 2 (CM2), which is the approach proposed
by Lotte and Guan [12], as introduced in Sect. 2.3.

6. Model-based approach (MA), which is the approach introduced in Sect. 2.4.

1 http://www.bbci.de/competition/iv/.

http://www.bbci.de/competition/iv/
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7. Instance-based approach (IA), which is our proposed algorithm: it first solves
the constrained optimization problem in (12) for the weights of the source
domain samples, then combines target domain labeled samples and the
weighted source domain samples to train CSP filters and the LDA classifier,
and next applies them to target domain unlabeled samples.

There were 9 subjects in our dataset. Each time we picked one as our target
subject, and the remaining 8 as the source subjects. For the target subject, we
randomly reserved 40 epochs (20 epochs per class) as the training data pool,
and used the remaining 104 epochs as our test data. We started with zero target
domain training data, trained different CSP filters using the above 7 algorithms,
and evaluated their performances on the test dataset. We then sequentially added
2 labeled epochs (1 labeled epoch per class) from the reserved training data pool
to the target domain training dataset till all 40 epochs were added. Each time
we trained different CSP filters using the above 7 algorithms and evaluated their
performances on the test dataset. We repeated this process 30 times to obtain
statistically meaningful results.

4.3 Results

The performances of the 7 algorithms are shown in Fig. 1, where the first 9
subfigures show the performances on the individual subjects. Observe that some
subjects, e.g., Subjects 2 and 5, were more difficult to deal with than others,
and there was no approach that always outperformed others; however, when m,
the number of target domain labeled epochs, was small, our proposed algorithm
(IA) achieved the best performance for 5 out of the 9 subjects.

The last subfigure of Fig. 1 shows the average performance across the 9 sub-
jects. Observe that:

1. When m was small, all other methods outperformed BL1. Particularly, when
m = 0, BL1 cannot build a model because it used only subject-specific cal-
ibration data, but all other algorithms can, because they can use data from
the source subjects. This suggests that all TL-enhanced CSP algorithms are
advantageous when the target domain has very limited labeled epochs.

2. BL2 outperformed BL1 and BL3 when m was small, but as m increased, all
other algorithms outperformed BL2. This suggests that there is large individ-
ual difference among the subjects, so incorporating target domain samples is
necessary and beneficial.

3. Generally, all TL-enhanced CSP algorithms outperformed the three baselines,
suggesting the effectiveness of TL. Particularly, our proposed algorithm (IA)
achieved the best performance when m was small. This is favorable, as we
always want to achieve the best calibration performance with the smallest
number of subject-specific calibration samples.
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Fig. 1. Classification accuracies of the 7 CSP approaches, when the number of target
domain labeled samples increases.

5 Conclusions

CSP is a popular spatial filtering approach to increase the signal-to-noise ratio
of EEG signals. However, it is a supervised approach, which needs some subject-
specific calibration data to design. This is time-consuming and not user-friendly.
A promising approach for shortening or even completely eliminating this cali-
bration session is TL, which leverages relevant data or knowledge from other
subjects or tasks. This paper reviewed three existing approaches for incorporat-
ing TL into CSP, and also proposed a new TL enhanced CSP approach. Exper-
iments on motor imagery classification demonstrated the effectiveness of these
approaches. Particularly, our proposed approach achieved the best performance
when the number of target domain calibration epochs is small.

The following directions will be considered in our future research:

1. Use the Riemannian mean instead of the Euclidean mean in estimating the
mean class covariance matrices in CSP [1]. As the covariance matrix of each
epoch is semi-positive definite, they are located on a Riemannian manifold
instead of in an Euclidean space. So, the Riemannian means may be more
reasonable than the Euclidean means in CSP.
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2. Use also TL enhanced classifiers, e.g., weighted domain adaptation [20,24].
3. Extend the TL enhanced CSPs from classification to regression, using a fuzzy

set based approach similar to the one proposed in [21].
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