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Abstract— Recognition of epileptic seizures from offline
EEG signals is very important in clinical diagnosis of
epilepsy. Compared with manual labeling of EEG signals
by doctors, machine learning approaches can be faster and
more consistent. However, the classification accuracy is
usually not satisfactory for two main reasons: the distrib-
utions of the data used for training and testing may be dif-
ferent, and the amount of training data may not be enough.
In addition, most machine learning approaches generate
black-box models that are difficult to interpret. In this
paper, we integrate transductive transfer learning, semi-
supervised learning and TSK fuzzy system to tackle these
three problems. More specifically, we use transfer learning
to reduce the discrepancy in data distribution between the
training and testing data, employ semi-supervised learning
to use the unlabeled testing data to remedy the shortage of
training data, and adopt TSK fuzzy system to increase model
interpretability. Two learning algorithms are proposed to
train the system. Our experimental results show that the
proposed approaches can achieve better performance than
many state-of-the-art seizure classification algorithms.
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I. INTRODUCTION

EPILEPSY is a common neurological disorder in which
clusters of nerve cells in the brain function abnormally

and cause seizures. Electroencephalogram (EEG) signals are
commonly used to determine the presence and the type of
epilepsy [1], [2]. As it is very time-consuming for doctors
to label the EEG signals manually, researchers have studied
machine learning approaches to automatically detect seizures
from EEG signals [3]–[11]. Many different methods, includ-
ing decision tree [9], naïve Bayes [7], [9], support vector
machine [6], [11], nearest-mean [7] and linear discriminant
analysis [5], [8], [10], have been applied.

Compared with manual labeling, detection by machine
learning methods is faster and more consistent. However,
the detection accuracy could be an issue. Yang et al. [12]
pointed out that the main reason for low detection accu-
racy is that most machine learning methods are developed
based on the assumption that the distributions of the training
and testing data are identical or similar, which may not be
true in practice. For example, a classifier may be trained
using data from a repository of existing subjects and then
applied to a new subject. To cope with this issue, transfer
learning (TL) [13]–[18], [40], [42], particularly, large margin
projection (LMPROJ) [18], has been used to reduce the data
distribution mismatch between the training and testing data.
The results demonstrate that TL is very suitable for this
problem.

This paper also utilizes LMPROJ TL to improve seizure
classification performance. It further considers two more prob-
lems: 1) how to increase model interpretability which is very
important in medical diagnostics, and 2) how to make use
of the information contained in the unlabeled testing data
to improve classification performance. To deal with the first
problem, we adopt the Takagi-Sugeno-Kang (TSK) fuzzy sys-
tem [19]–[22], which is intrinsically interpretable, as our base
classifier. For the second problem, in addition to LMPROJ,
we use a semi-supervised learning (SSL) approach to take
advantage of the unlabeled testing data. We also propose two
learning algorithms for this TL-SSL-TSK based model and
demonstrate its outstanding performance.
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The rest of this paper is organized as follows. Section II
briefly reviews the typical feature extraction and machine
learning methods that are used for epileptic EEG recognition.
Section III introduces the TSK fuzzy system model and the
learning algorithm. Section IV introduces the details of the
proposed TL-SSL-TSK model and the two learning algorithms
developed for the model. Section V compares the performance
of the proposed algorithms with that of existing methods on
six real EEG datasets. Section VI concludes the findings of
the study.

II. RELATED WORK

This section provides a brief review of typical methods used
for EEG feature extraction and classification.

A. Feature Extraction Methods

Signal processing methods are used to extract features
from the original raw EEG signals that are more con-
cise and powerful to improve the classification perfor-
mance [12], [23]–[29], [43] and to reduce the computational
cost [4], [7], [8]–[10], [12], [23]–[29]. In general, there are
three types of features: 1) time-domain features [23], [25],
e.g. principal component features of the raw EEG signals,
2) frequency-domain features [3], [24], e.g. Fourier trans-
form features, and 3) time-frequency features [3], [25]–[27],
e.g. wavelets. All these three types of features will be consid-
ered in this paper.

B. Machine Learning Approaches

Machine learning methods can potentially detect seizures
from EEG signals more quickly and consistently than manual
labeling by doctors. If well trained, the methods can also
achieve very high accuracy. Many classical machine leaning
methods have been studied for this purpose, such as decision
tree [9], naïve Bayes [7], [9], support vector machine [6], [11],
nearest-mean [7] and linear discriminant analysis [5], [8], [10].

Traditional machine learning methods usually assume that
the distribution of the training and testing data are consistent,
but they are indeed different in many real-world situations.
As a result, the testing performance could be much worse than
the training performance. TL [13] is a well-known approach
for handling data distribution discrepancy. For example,
Yang et al. [12] have used LMPROJ [18], a transductive
TL algorithm, for seizure detection using EEG signals and
achieved outstanding performance.

Another problem with many existing machine learning
approaches is that black-box models can only be obtained,
which lack the interpretability that is very important in medical
diagnostics. In this paper, intrinsically interpretable TSK fuzzy
system is used as our base model.

III. TSK FUZZY SYSTEM MODEL

The Mamdani model [20] and the TSK model [21],
[22], [38] are two popular fuzzy system models. The latter
is adopted in this study due to its simplicity and flexibility.
This section introduces the TSK fuzzy system model and
the corresponding training algorithm. The integration of the
model with TL and SSL for achieving better classification
performance will be discussed in the next section.

A. Concept and Principle

TSK fuzzy system is a rule based system. A typical rule
can be described as TSK fuzzy rule Rk :

IF x1 is Ak
1 ∧ x2 is Ak

2 ∧ · · · ∧ xd is Ak
d (1)

THEN f k (x) = pk
0 + pk

1x1 + · · · + pk
d xd for k = 1, · · · , K

where K is the number of fuzzy rules, d is the number of
inputs, Ak

i is a fuzzy set in the i th input domain for the kth rule,
and ∧ is a fuzzy conjunction operator. Each rule is premised
on the input vector x = [x1, x2, · · · , xd ]T which is mapped to
a singleton f k (x), a linear function of the input. The output
of the TSK fuzzy system is computed as

y0 =
∑K

k=1

μk(x) f k(x)
∑K

k′=1 μk′
(x)

=
∑K

k=1
μ̃k(x) f k(x), (2.a)

where

μk (x) =
d∏

i=1

μAk
i
(xi ) (2.b)

and

μ̃k (x) = μk (x)

/
K∑

k′=1

μk′
(x) (2.c)

in which μAk
i
(xi ) is the membership grade of xi on Ak

i
[17], [22].

Gaussian membership function is used in this paper:

μAk
i
(xi) = exp

(
−(xi − ck

i )
2

2δk
i

)
, (2.d)

where

ck
i =

N∑

j=1

u jkx j i

/
N∑

j=1

u jk, (2.e)

δk
i = h ·

N∑

j=1

u jk(x j i − ck
i )

2

/
N∑

j=1

u jk, (2.f)

in which N is the total number of dataset. u jk denotes
the fuzzy membership and can be obtained by Fuzzy
C-means (FCM) clustering or the likes [30], [39]. h is a scaling
parameter which can be set manually, or optimized by some
learning strategies such as cross-validation.

Denote

xe = (1, xT )T , (3.a)

x̃k = μ̃k (x) xe, (3.b)

xg = ((x̃1)T , (x̃2)T , · · · , (x̃K )T )T , (3.c)

pk = (pk
0, pk

1, · · · , pk
d)T (3.d)

pg = ((p1)T , (p2)T , · · · , (pK )T )T , (3.e)

(2.a) can then be expressed as [17], [22]:

yo = pT
g xg. (3.f)
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B. Learning Algorithm for TSK Fuzzy Model

Given a training dataset of EEG signals (source domain)
DS = {xi , yi |xi ∈ Rd , yi ∈ RC , i = 1, · · · , NS}, the least
squares method can be used to optimize the consequent
parameters pg . The objective function is:

min
pg

JT S K (pg) = 1

2

C∑

j=1

NS∑

i=1

∥∥∥pT
g, j xgi − yi j

∥∥∥
2

+ λ1

2

C∑

j=1

pT
g, j pg, j , (4)

where C is the number of classes, pg, j is the consequent
parameter vector of the j th class, xi is the d-dimension input
vector of the i th sample, yi is the C-dimension label vector
of the i th sample (yi j = 1 when the i th sample belongs to the
j th class; otherwise, yi j = 0), and λ1 > 0 is a regularization
parameter, which controls the tradeoff between the complexity
of the classifier and the tolerance of error. λ1 can be set
manually or determined by cross-validation [31].

The minimum of JT S K (pg) is obtained when the derivative
of JT S K w.r.t. each pg, j is zero. The solution is:

pg, j =(λ1I((d+1)∗K )×((d+1)∗K )+
NS∑

i=1

xgi xT
gi )

−1

(
NS∑

i=1

xgi yi j

)
.

(5)

The steps for training TSK fuzzy system is summarized in
Algorithm 1.

Algorithm 1 TSK Fuzzy System Model
Initialization: Set the number of fuzzy rules K and the
regularization parameter λ1.

Stage 1: Construct dataset for linear regression

Step 2: Determine the antecedents of the TSK fuzzy system
by clustering or other partition techniques to
partition the dataset in the input space.

Step 3: Construct the new dataset D̃ ={
xgi , yi

}
using (3.a)-

(3.c)

Stage 2: Obtain the decision function of the TSK fuzzy
system model

Step 4: Obtain the parameters of the TSK fuzzy system
using (5) and construct the decision function (3.f).

IV. TRANSDUCTIVE TL AND SSL

In this section, the TL-SSL-TSK model, which integrates
TL, SSL with a TSK fuzzy system model, is proposed.

A. Transductive TL

As mentioned before, TL can be used to reduce the dis-
crepancy in data distribution between the training data (source
domain) and testing data (target domain). Maximum mean
discrepancy (MMD) is used in this paper to measure the

distribution distance between the two domains. By minimizing
the MMD, the difference in data distribution between the
source and the target domains can be reduced effectively,
which makes the testing performance close to the training
performance. The effectiveness of TL for EEG signal classifi-
cation has been demonstrated in [12]. In this paper, the same
technique is used to enhance the performance of the TSK fuzzy
system.

Given a set of labeled training data DS = {xi , yi |xi ∈
Rd , yi ∈ RC , i = 1, · · · , NS} in the source domain and a set
of unlabeled testing data DT = {xi |xi ∈ Rd , i = 1, · · · , NT}
in the target domain, the projected squared MMD distance
between the source domain and target domain is defined
as [12], [18]:

d(Psource, Ptarget)

= PMMD2

=
C∑

j=1

∥∥∥∥
1

NS

∑NS

i=1
pT

g, j xgi,S − 1

NT

∑NT

i=1
pT

g, j xgi,T

∥∥∥∥
2

=
C∑

j=1

(
1

N2
S

∑NS

i=1

∑NS

j=1
pT

g, j xgi,SxT
gj,Spg, j

+ 1

N2
T

∑NT

i=1

∑NT

j=1
pT

g, j xgi,SxT
gj,Tpg, j

− 2

NS NT

∑NS

i=1

∑NT

j=1
pT

g, j xgi,SxT
gj,Tpg, j ), (6)

where xgi,S is the i th sample in the source domain (training
dataset), xgi,T is the i th sample in the target domain (testing
dataset), and pg is an expected projection for the TSK-FS
model. Let

� = 1

N2
S

xg,S [1]NS×NS xT
g,S + 1

N2
T

xg,T [1]NT×NT xT
g,T

− 1

NS NT
xg,S [1]NS×NT xT

g,T − 1

NS NT
xg,T [1]NT×NS xT

g,S,

(7)

then (6) can be written as

d(Psource, Ptarget) =
C∑

j=1

pT
g, j�pg, j . (8)

B. SSL

For offline classification, SSL can be adopted to further
improve the classification performance by using the unla-
beled testing data which also contain useful information. One
approach to realize this idea is illustrated in Fig. 1. It is based
on the assumption that the data within the same class are close
to each other.

The above heuristics is used to further improve the per-
formance of our system. Specifically, a novel FCM-like [30]
SSL approach is designed for label clustering:

min JSS L(U) =
C∑

j=1

NT∑

i=1

μm
i j

∥∥∥pT
g,Sxgi,T − θ j

∥∥∥
2

s.t . μi j ∈ [0, 1] and
C∑

j=1

μi j =1 (9)
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Fig. 1. Illustration of label clustering SSL.

where C is the total number of clusters, NT is the total number
of data of target domain (testing dataset), m is the fuzzy index
in FCM, xgi,T is the i th sample in the target domain, pg,S is
the expected projection of source domain for the TSK fuzzy
system model, U = [μi j ]C×NT is the matrix of fuzzy partition
with μi j denoting the label membership of the i th unlabeled
sample of the target domain belonging to the j th cluster, and
θ j = [0, . . . , 0, 1

j th
, 0, . . . , 0]T is a known label vector of the

j th cluster (1 ≤ j ≤ C).

C. Learning Algorithms of the TL-SSL-TSK Model

Two learning algorithms are proposed for the TL-SSL-TSK
model, which result in two versions of the models, the simple
version, namely the S-TL-SSL-TSK model, and the advanced
version, the A-TL-SSL-TSK model.

1) Learning Algorithm of S-TL-SSL-TSK: TL and SSL can
be integrated with the TSK model using the simple learning
objective function:

min
pg

JS−T L−SS L−T S K = 1

2

C∑

j=1

NS∑

i=1

∥∥∥pT
g, j xgi,S − yi j ,S

∥∥∥
2

+ λ1

2

C∑

j=1

pT
g, j pg, j + λ2

C∑

j=1

pT
g, j�pg, j

+ λ3

C∑

j=1

NT∑

i=1

μ̂m
i j

∥∥∥pT
g xgi,T − θ j

∥∥∥
2

(10)

where λ1 > 0, λ2 > 0, λ3 > 0 are the regularization
parameters. The first two terms in (10) are used to learn the
regularized TSK model based only on the EEG data from

the source domain. The third term is due to transductive TL,
and the fourth term due to SSL. For simplicity, the label
membership parameter μ̂i j is set to be a fixed knowledge
transfer parameter which directly inherits from the source
domain. Similar to classical FCM, μ̂i j is computed as:

μ̂i j =

(
1∥∥∥pT

g,Sxgi,T−θ j

∥∥∥
2

) 1
m−1

C∑
k=1

(
1∥∥∥pT

g,Sxgi,T−θk

∥∥∥
2

) 1
m−1

(11)

where the xgi,T is the i th unlabeled sample in the target
domain, pg,S is an expected projection of the source domain
for the TSK-FS model and can be obtained using (5),
θ j = [0, . . . , 0, 1

j th
, 0, . . . , 0]T is a known label vector of the

j th cluster.
Let Û = [Û1, . . . , ÛC ] ∈ R1×C NT be the label

membership values for all the unlabeled data where
Û j = [μ̂1 j , . . . , μ̂i j , . . . , μ̂NT j ] ∈ R1×NT and j = 1 . . . C ,
�

U = diag(Û) ∈ RC NT×C NT be a diagonal matrix of Û,
V = [E, . . . , E︸ ︷︷ ︸

C

] ∈ RNT×C NT be a transformation matrix where

E is an identity matrix of size NT, and Q = [q1, . . . , qC ] ∈
RC×C NT be a transformation matrix where all the values of
the j th row of q j ∈ RC×NT are 1 and the rest are 0. Then,
(10) can be further expressed as:

min
pg

JS−T L−SS L−T S K

= 1

2
tr

(
(pT

g xg,S − yS)(pT
g xg,S − yS)T

)
+ λ1

2
tr(pT

g pg)

+ λ2tr
(

pT
g �pg

)

+ λ3tr
(
(pT

g xg,TV − Q)
�

U(pT
g xg,TV − Q)T

)
(12)

where

� = 1

N2
T

xg,T [1]NT×NT xT
g,T + 1

N2
S

xg,S [1]NS×NS xT
g,S

− 1

NS NT
xg,T [1]NT×NS xT

g,S − 1

NS NT
xg,S [1]NS×NT xT

g,T .

The optimal consequent parameters pg can be computed by
setting the derivatives of JS−T L−SS L−T S K w.r.t. pg to zero,
and the solution is

pg =
(

xg,SxT
g,S + λ1I((d+1)∗K )× ((d+1)∗K )

+2λ2� + 2λ3xg,TV
�

UV
T

xT
g,T

)−1

× (xg,SyT + 2λ3xg,TV
�

UQ
T
). (13)

The algorithm for S-TL-SSL-TSK is given in Algorithm 2.
Remark: Although the S-TL-SSL-TSK algorithm introduces

the transductive TL and SSL mechanism for fuzzy system
training, the learning ability of this algorithm can still be
further enhanced. Since the label membership parameter μ̂i j

in S-TL-SSL-TSK is a fixed parameter, i.e. directly inheriting
from the source domain in step 4 of Algorithm 2, the algorithm
is weak in adapting to μ̂i j . In the next subsection, a more
adaptive algorithm will be proposed.
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Algorithm 2 Learning Algorithm for S-TL-SSL-TSK
Initialization: Set the number of fuzzy rules K , the regular-
ization parameters λ1, λ2,λ3, and the fuzzy index m.

Stage 1: Construct dataset for linear regression

Step 1: Determine the antecedents of the TSK fuzzy system
by clustering or other partition techniques to
partition the dataset in the input space.

Step 2: Construct the new training dataset D̃S = {
xg,S, yS

}

in the source domain and the new testing datasets
D̃T = {

xg,T
}

by using (3.a)-(3.c).

Stage 2: Obtain the knowledge transfer parameter

Step 3: Obtain the consequent parameters pg,S of the source
domain using (5).

Step 4: Obtain the knowledge transfer parameter, i.e. label
membership μ̂i j , using (11) with the optimized pg,S;

Stage 3: Generate the S-TL-SSL-TSK model

Step 5: Obtain the consequent parameters pg of the target
domain using (13) and get the decision function
(3.f) of the S-TL-SSL-TSK model.

2) Learning Algorithm of A-TL-SSL-TSK: To further enhance
the abilities of TL and SSL in the proposed TL-SSL-TSK
model, a more sophisticated label clustering mechanism is
proposed to replace the fourth term in (10):

Jlabel−clustering =
NT∑

i=1

C∑

j=1

(
ημm

i j + (1 − η)μ̂m
i j

)

×
∥∥∥pT

g xgi,T − θ j

∥∥∥
2
, (14)

where η ∈ [0, 1] is a trade-off parameter controlling the degree
of knowledge transfer between the source domain and the tar-
get domain. When η → 1, the knowledge in the target domain,
i.e., parameter μi j , is emphasized. In contrast, when η → 0,
the knowledge in the source domain, i.e., parameter μ̂i j , is
emphasized.

Substituting (14) into (10), the objective function
of A-TL-SSL-TSK is expressed as:

min
pg

JA−T L−SS L−T S K

= 1

2

C∑

j=1

NS∑

i=1

∥∥∥pT
g, j xgi,S − yi j,S

∥∥∥
2

+ λ1

2

C∑

j=1

pT
g, j pg, j + λ2

C∑

j=1

pT
g, j�pg, j

+ λ3

NT∑

i=1

C∑

j=1

(
ημm

i j + (1 − η)μ̂m
i j

) ∥∥∥pT
g xgi,T − θ j

∥∥∥
2

s.t . μi j ∈ [0, 1] and
C∑

j=1

μi j = 1 (15)

Similar to (12), (15) can be expressed as:

min
pg

JA−T L−SS L−T S K

= 1

2
tr

(
(pT

g xg,S − yS)(pT
g xg,S − yS)T

)
+ λ1

2
tr(pT

g pg)

+ λ2tr
(

pT
g �pg

)
+ λ3tr

(
(pT

g xg,TV − Q)

×
(
ηU + (1 − η)

�

U
)

(pT
g xg,TV − Q)T

)

s.t . μi j ∈ [0, 1] and
C∑

j=1

μi j = 1 (16)

The joint optimization of pg and μi j in (16) makes it non-
convex and a closed-form solution is not available. Thus,
an iterative optimization method [15], [32] is adopted in this
paper, which contains the two steps below.

i) Step 1: Compute pg :
When the parameter μi j is fixed, i.e., Ŭ is fixed, the mini-

mization of JA−T L−SS L−T S K can be computed by setting the
derivatives of (16) w.r.t. pg to zero, and we obtain:

pg =
(

I((d+1)∗K )× ((d+1)∗K ) + λ1xg,SxT
g,S + 2λ2�

+2λ3xg,TV
(
ηU + (1 − η)

�

U
)

VT xT
g,T

)−1

×
(

λ1xg,SyT

+2λ3xg,TV
(
ηU + (1 − η)

�

U
)

QT

)
(17)

ii) Step 2: Compute μi j :
When the parameter pg is fixed, by minimizing (17) using

the Lagrangian method, the following update equation for the
label fuzzy membership μi j is obtained.

μi j =

(
1∥∥∥pT

g xgi,T−θ j

∥∥∥
2

) 1
m−1

C∑
k=1

(
1∥∥∥pT

g xgi,T−θk

∥∥∥
2

) 1
m−1

(18)

The complete learning algorithm for A-TL-SSL-TSK is given
in Algorithm 3.

V. EXPERIMENTAL STUDY

In this section, the two proposed models, i.e.,
S-TL-SSL-TSK and A-TL-SSL-TSK, are evaluated by
performing two-class classification between EEG signals of
healthy subjects and that of epileptic subjects captured during
seizure. In addition, they are compared with six classical
non-TL-based methods and four TL-based or SSL-based
methods, as shown in Table I.

To ensure fair comparison, the same EEG data and feature
extraction methods are used for all the algorithms, as in our
previous work [12]. The details of the experimental settings
and the scenarios of TL are described below.

A. Experimental Settings

In our experiments, all the algorithms were implemented
using MATLAB on a computer with Intel Core i5-3317U
1.70 GHz CPU and 16GB RAM. The experimental settings
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Algorithm 3 Learning Algorithm for the A-TL-SSL-TSK
Model

Initialization: Set the number of fuzzy rulesK , regulariza-
tion parameters λ1, λ2, λ3, transfer parameter η, convergence
threshold ε, fuzzy index m, maximum number of iterations
T . Initialize the fuzzy partition μ(s)

i j and set the iterative
index l = 1

Stage 1: Construct dataset for linear regression

Step 1: Determine the antecedents of TSK fuzzy system
by clustering or other partition techniques to
partition the dataset in the input space.

Step 2: Construct the new training dataset D̃s = {
xg,S, yS

}

of source domain and the new testing datasets
D̃t = {

xg,T
}

by using (3.a)-(3.c).

Stage 2: Obtain the knowledge transfer parameter

Step 3: Obtain the consequent parameters pg,S of the source
domain by (5).

Step 4: Obtain the knowledge transfer parameter, i.e., label
membership μ̂i j , using (11) and the optimized pg,S.

Stage 3: Generate the A-TL-SSL-TSK model

Step 5: Compute the consequent parameter p(l+1)
g

using (17) with μ(l)
i j

Step 6: Compute the label fuzzy membership μ(l+1)
i j using

(18) with p(l+1)
g ;

Step 7: If
∣∣U (l+1) − U (l)

∣∣ < ε or the number of iterations
l > T , terminate and output the consequent
parameter p(l+1)

g of the A-TL-SSL-TSK model;
otherwise, set l = l + 1 and go to step 5.

Step 8: Obtain the optimized consequent parameters pg of
the target domain by following steps 5 to 7 and get
the decision function (3.f) of the A-TL-SSL-TSK
model.

are summarized in Table I. Note that TSVM and S4VM are
SSL-based methods, where the unlabeled EEG data in the
target domain are used for learning. LMPROJ and GTL2 are
TL-based methods.

B. TL Scenarios for Epileptic EEG Recognition

The two TL scenarios used in our previous work [12] were
adopted in this study. In the first scenario, the data distributions
of the source and the target domain were the same, as shown
in the first part of Table III. In the second scenario, the data
distributions were different, as shown in the second part of
Table III. More details of these two scenarios can be found
in [12, Sec. 4.1.2].

C. Experimental Results and Discussions

1) Recognition Performance Analysis: The following
arrangements were made to achieve comprehensive

TABLE I
EXPERIMENTAL SETTINGS

comparison. Three different feature extraction methods
were used, i.e., WPD, STFT, and KPCA. For each method,
we compared S-TL-SSL-TSK and A-TL-SSL-TSK with
six non-TL-based methods and four sets of features. The
classification results are shown in Tables IV-VI and the
findings below are drawn.

(1) Among the six non-TL-based methods (LDA, DT,
NB, NM, SVM and TSK), TSK showed the best overall
performance. The results indicate that TSK is an effective
approach for epileptic EEG recognition. In addition, it has
better interpretability than other black-box methods like SVM.

(2) For Datasets D1 and D2, where the source and the
target domains had the same data distribution, most non-TL-
based methods achieved high accuracy. However, for Datasets
D3-D6, where the source and the target domains had different
data distributions, their performance deteriorated significantly.
This is because the data distributions of the training and testing
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Fig. 2. Typical EEG signals in Groups A-E.

TABLE II
DESCRIPTION OF THE EEG DATA

datasets were inappropriately assumed to be the same, and
hence they were not able to adapt to the new data of different
distribution in the target domain.

(3) Compared with the six classical non-TL-based methods,
the six TL-based or SSL-based methods achieved higher
accuracy consistently. These results indicate that TL and SSL
can indeed be used to improve the classification performance
of epileptic EEG recognition.

(4) Among the six TL-based or SSL-based methods,
S-TL-SSL-TSK and A-TL-SSL-TSK showed the best overall
recognition performance, especially for Datasets D3-D6.
This is because TSVM and S4VM only used SSL, and
LMPROJ and GTL2 only used TL, whereas the proposed
S-TL-SSL-TSK and A-TL-SSL-TSK used both, i.e.,
S-TL-SSL-TSK and A-TL-SSL-TSK explicitly reduced the
discrepancy in data distribution between the source and the

target domains, and made use of the information contained in
the unlabeled EEG samples of the target domain at the same
time.

(5) A-TL-SSL-TSK almost always outperformed
S-TL-SSL-TSK. This is expected, since A-TL-SSL-TSK
employed a more flexible TL mechanism and was tuned using
more parameters. However, the computational cost of
A-TL-SSL-TSK is higher. So, the choice between
S-TL-SSL-TSK and A-TL-SSL-TSK is a tradeoff between
computational cost and classification accuracy.

To evaluate whether the performance difference among
the algorithms were statistically significant, Friedman
test [36], [37] and the Holm post hoc test [36], [37] were
performed. Friedman test was used to compute the average
ranks of the different methods, and to evaluate whether sta-
tistically significant difference existed among them. The null
hypothesis was that there was no statistically significant differ-
ence. If the p-value was smaller than 0.05, the null hypothesis
was rejected. The Holm post hoc test was also performed to
verify if there was statistically significant difference between
the control approach, i.e., the one achieving the best Friedman
rank, and the other approaches.

We first compared S-TL-SSL-TSK with all the other meth-
ods except A-TL-SSL-TSK, and then A-TL-SSL-TSK with
all the other methods except S-TL-SSL-TSK. The results
are summarized in Tables VII and VIII. The results of the
Friedman test indicate that there was statistically significant
difference in accuracy between the two proposed methods and
the other ten methods. The Holm’s post hoc test shows that
S-TL-SSL-TSK and A-TL-TSK-FS significantly outperformed
all the six non-TL-based methods and TSVM, but not so
for GTL2, S4VM and LMPROJ. Although the increase in
performance of our proposed methods over GTL2, S4VM and
LMPROJ was not statistically significant, they improved the
interpretability which is important for medical diagnostics.

In summary, the experimental results demonstrate that
S-TL-SSL-TSK and A-TL-SSL-TSK are suitable for epileptic
EEG recognition: their classification performance is compara-
ble to or ever better than many state-of-the-art classification
algorithms, and they have better interpretability.

2) Model Interpretability Analysis: The interpretability
of A-TL-SSL-TSK is analyzed here to demonstrate the
advantage of the proposed methods. A model constructed by
A-TL-SSL-TSK using the Dataset D1 is shown in Table IX,
which result in five fuzzy rules.

In Table IX, the parameters involved in the fuzzy sets of
five fuzzy rules are given. Fig. 3 presents the corresponding
membership functions (MFs) of each fuzzy set obtained for
all the fuzzy rules, where each MF corresponds to a fuzzy
linguistic description, such as “the energy of a band of EEG
signal is Low (or A little low, Medium, A little high, High).
The given linguistic description is only a possible explanation
for the IF-Part of fuzzy rule, since different medical experts
may use different linguistic descriptions for the same rule.

To provide further explanation, take the rules in the second
row of Fig. 3 as an example. According to the antecedent
parameters (centers c and variance δ of Band 1 in Fig. 3,
i.e., (3.58, 1.87) for 1st fuzzy rule, (4.27, 2.87) for 2nd fuzzy
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TABLE III
DETAILS OF THE TL SCENARIOS FOR EPILEPTIC EEG RECOGNITION

TABLE IV
PERFORMANCE COMPARISON OF THE CLASSIFIERS USING WPD FEATURES

TABLE V
PERFORMANCE COMPARISON OF THE CLASSIFIERS USING STFT FEATURES

rule, (5.11, 2.06) for 3rd fuzzy rule, (1.66, 2.33) for 4th fuzzy
rule, and (8.34, 2.52) for 5th fuzzy rule, five MFs can be
generated to represent this feature (Band 1). In addition, these

five MFs can be linguistically expressed as “A little low”,
“Medium”, “A little high”, “Low”, and “High” in ascending
order of the values of the centers. Similarly, the other features
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TABLE VI
PERFORMANCE COMPARISON OF THE CLASSIFIERS USING KPCA FEATURES

TABLE VII
RESULTS OF FRIEDMAN TEST ON ALL THE DATASETS IN TERMS OF AVERAGE PERFORMANCE (α = 0.05)

can also be divided into these five classes. Finally, with the
linguistic expression of the IF-Part of the fuzzy rule and the
corresponding linear function of the THEN-Part, the five fuzzy
rules that are generated based on the WPD features can be
described linguistically as follows:

The 1st Fuzzy Rule:
IF the energy of the EEG signal in the frequency band 1 is

A little low,
and the energy of the EEG signal in the frequency band 2 is

A little high,
and the energy of the EEG signal in the frequency band 3 is

A little high,
and the energy of the EEG signal in the frequency band 4 is

A little high,
and the energy of the EEG signal in the frequency band 5 is

A little low,

and the energy of the EEG signal in the frequency band 6 is
A little low,

THEN this rule gives the decision values of the two outputs
with the following formula:

The 2nd Fuzzy Rule:
IF the energy of the EEG signal in the frequency band 1 is

Medium,
and the energy of the EEG signal in the frequency band 2 is

Medium,
and the energy of the EEG signal in the frequency band 3 is

Medium,
and the energy of the EEG signal in the frequency band 4 is

A little low,
and the energy of the EEG signal in the frequency band 5 is

Medium,

f 1(x) =
[

0.2714 + 0.4287x1 − 0.5325x2 + 0.1676x3 − 0.1119x4 + 0.0872x5 + 0.0031x6,
−0.2616 − 0.4189x1 + 0.5427x2 − 0.1576x3 + 0.1219x4 − 0.0772x5 − 0.0025x6

]
.

f 2(x) =
[

0.1024 + 0.2909x1 − 0.2746x2 − 0.0503x3 + 0.1071x4 − 0.0213x5 + 0.0015x6,
−0.0928 − 0.2813x1 + 0.2849x2 + 0.0603x3 − 0.0971x4 + 0.0313x5 − 0.0009x6

]
.
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Fig. 3. The membership functions and the possible linguistic explanation of each fuzzy subset in the antecedent of the fuzzy rules of the TSK fuzzy
system. The system is obtained by the A-TL-SSL-TSK based on the WPD features. ∗ The antecedent parameter (c1

1 , δ1
�

) of Band 1 (first dimension
of the data) of the first fuzzy rule. ∗∗ A possible explanation for the fuzzy set obtained.

and the energy of the EEG signal in the frequency band 6 is
A little high,

THEN this rule gives the decision values of the two outputs
with the following formula:

The 3rd Fuzzy Rule:
IF the energy of the EEG signal in the frequency band 1 is

A little high,

and the energy of the EEG signal in the frequency band 2 is
A little low,

and the energy of the EEG signal in the frequency band 3 is
Low,

and the energy of the EEG signal in the frequency band 4 is
Low,

and the energy of the EEG signal in the frequency band 5 is
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TABLE VIII
HOLM’S POST HOC COMPARISON OVER THE RESULTS OF FRIEDMAN TEST ON ALL THE DATASETS

IN TERMS OF AVERAGE PERFORMANCE (α = 0.05)

TABLE IX
AN A-TL-SSL-TSK MODEL WITH FIVE RULES TRAINED USING THE DATASET D1 WITH WPD FEATURES

High,
and the energy of the EEG signal in the frequency band 6 is

High,
THEN this rule gives the decision values of the two outputs

with the following formula:
The 4th Fuzzy Rule:
IF the energy of the EEG signal in the frequency band 1 is

Low,
and the energy of the EEG signal in the frequency band 2 is

High,

and the energy of the EEG signal in the frequency band 3 is
High,

and the energy of the EEG signal in the frequency band 4 is
Medium,

and the energy of the EEG signal in the frequency band 5 is
Low,

and the energy of the EEG signal in the frequency band 6 is
Low,

THEN this rule gives the decision values of the two outputs
with the following formula:
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Fig. 4. An example showing the identification of epileptic patient using the fuzzy rules generated and the fuzzy system, where ‘+’ denotes the
combination operation and ‘max’ denotes the operation that sets the maximal element in Y to 1 and the others to 0.

The 5th Fuzzy Rule:
IF the energy of the EEG signal in the frequency band 1 is

High,
and the energy of the EEG signal in the frequency band 2 is

Low,
and the energy of the EEG signal in the frequency band 3 is

A little low,
and the energy of the EEG signal in the frequency band 4 is

High,
and the energy of the EEG signal in the frequency band 5 is

A little high,
and the energy of the EEG signal in the frequency band 6 is

Medium,
THEN this rule gives the decision values of the two outputs

with the following formula:
In a similar way, the fuzzy systems that are learned based on

the STFT features and the KPCA features can be interpreted
accordingly.

An example is given in Fig. 4 to further explain the usage
and the importance of the rules generated by the proposed
method. In Fig. 4, the features of the original EEG signals of
a patient, extracted by WPD, are used for diagnosis based on
the trained A-TL-SSL-TSK fuzzy system. A vector is used
to encode the output of the system, with [1, 0] indicating

the control (i.e., healthy people) and [0, 1] indicating the
epileptic patient. Using Eq.(3.f), the proposed A-TL-SSL-TSK
fuzzy system yields Y=[-0.015, 1.015]. According to the
“winner takes all” criterion, we further obtain the final output
Y=[0, 1], which indicates an epileptic patient. It can be seen
from the figure that the absolute values of the components
in Fuzzy rule 1 (f1=[−0.015, 1.015]) is much closer to [0, 1]
than those in other fuzzy rules, which implies that Fuzzy rule 1
in Fig.4 takes a predominant role in the whole identification
process and thus the final decision is primarily determined by
this rule.

The above analysis illustrates that the A-TL-SSL-TSK
fuzzy system model is an interpretative model for identifying
epileptic patient using the fuzzy rules generated.

3) Computational Complexity: In this subsection, the com-
putational complexity of the fuzzy systems trained by the
proposed S-TL-SSL-TSK and the A-TL-SSL-TSK algorithms
were compared. The running time of the two algorithms
on dataset D1 is reported in Table X and the following
observations are made.

1) The average training time of the proposed
A-TL-SSL-TSK was nearly 10 times longer than that
of the S-TL-SSL-TSK since the former contained more
model parameters than the latter.

f 3(x) =
[

0.0569 − 0.0160x1 − 0.0416x2 − 0.0115x3 − 0.0264x4 + 0.0326x5 − 6.04e − 5x6,
−0.0499 + 0.0227x1 + 0.0547x2 + 0.0215x3 + 0.0363x4 − 0.0226x5 + 0.0006x6

]
.

f 4(x) =
[ −0.0159 + 0.2942x1 − 0.2838x2 − 0.0550x3 + 0.0895x4 + 0.0046x5 + 0.0003x6,

0.0257 − 0.2844x1 + 0.2940x2 + 0.0648x3 − 0.0793x4 + 0.0052x5 + 0.0002x6

]
.

f 5(x) =
[−0.0195 − 0.0178x1 + 0.0161x2 + 0.0021x3 − 0.0106x4 + 0.0097x5 − 0.0002x6,

0.0266 + 0.0249x1 − 0.0032x2 + 0.0078x3 + 0.0205x4 + 0.0003x5 + 0.0007x6

]
.
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TABLE X
COMPUTATIONAL COMPLEXITY OF THE TL-SSL-TSK MODEL TRAINED BY THE TWO PROPOSED ALGORITHMS ON DATASET D1

2) The average testing time of both algorithms was com-
parable since they adopted the same the decision function,
i.e. Eq. (3.f).

3) The real-time performance can be analyzed by
investigating the EEG signal classification process. When
raw EEG data were obtained, they were first processed by
a feature extraction method (e.g. WPD, STFT or KPCA),
and the extracted feature were then processed by a classifier
(e.g. S-TL-SSL-TSK or A-TL-SSL-TSK). Thus, the computa-
tion time for real-time applications contains two parts, i.e., the
running time of the feature extraction method and the running
time of the classifier. As shown in Table X, the testing time of
A-TL-SSL-TSK and S-TL-SSL-TSK method was comparable,
and the difference was due to the variation in running time
of different feature extraction methods. The results show that
the algorithms (S-TL-SSL-TSK or A-TL-SSL-TSK) developed
based on KPCA were much faster than those developed based
on WPD or STFT.

It can be concluded from the above analyses that when
real-time performance is concerned, if rapid model training is
desired, the S-TL-SSL-TSK method is preferable. However, if
high recognition accuracy is needed, the A-TL-SSL-TSK is a
better choice.

In addition, the running time of S-TL-SSL-TSK and
A-TL-SSL-TSK are both acceptable for real-time applica-
tions since the main computational cost is feature extrac-
tion, as shown in Table X. Furthermore, the KPCA-based
S-TL-SSL-TSK or A-TL-SSL-TSK is recommended for appli-
cations demanding real-time performance.

VI. CONCLUSIONS

This paper proposes the TL-SSL-TSK model which inte-
grates TL, SSL and TSK fuzzy system model to increase
the robustness, accuracy and interpretability of the clas-
sifier for EEG signal classification. It also proposes two
learning algorithms, S-TL-SSL-TSK and A-TL-SSL-TSK, to
train the model. Experimental results show that the proposed
approaches can achieve better performance than many state-
of-the-art classification algorithms. In addition, according to
our experiments, 50 labeled data for source domain and
50 unlabeled data for target domain are usually adequate for
the proposed methods to produce satisfactory results, which is
also clinically practical. For example, the average accuracy of
the two proposed methods are higher than 95% in most cases.
Future research will be conducted to reduce the computational

cost of the algorithms, and to extend them to other relevant
application domains, including brain-computer interface.
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