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Abstract—Although many articles have shown that the control
performance of interval type-2 fuzzy logic controllers (IT2 FLCs)
is better than type-1 FLCs, the computational cost of it is
high, which makes it hard to develop in the real world. Our
previous research has recommended six TR approaches for their
efficiency, but which one has the best performance is still an
unknown problem. In the paper, IT2 FLCs using these six
TR approaches are optimized using genetic algorithms, and we
compared their control performances based on a coupled tank
apparatus for controlling the water level. Results show that
there is no statistically significant difference among the control
performances of these approaches.

I. INTRODUCTION

Zadeh [16] proposed type-1 fuzzy set (T1 FS) theory in

1965 firstly, and it has been used in many fields successfully,

such as data mining [8], time-series prediction [5], modeling

and control [9], etc.
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Fig. 1. Example of FS: (a) a T1 FS and (b) an IT2 FS.

Although T1 FSs has strong robustness than PID, its abilities

in handling uncertainties’ problems are limited [6]. The reason

is simple, for T1 FS, its membership grade is certain for a crsip

input. To solve this problem, Zadeh [17] proposed Type-2 FSs

in 1975, whose membership grades themselves are T1 FS, but

because of the high cost in computation, the Interval type-2

(IT2) FSs [6], whose secondary MFs are all equal to 1, are

the most widely used from now.

An example of an FS, is shown in Fig. 1. It can be observed

that for a T1 FS, its membership for each x is a crisp number

[shown in Fig. 1(a)], for an IT2 FS, its membership is an

interval for each x [shown in Fig. 1(b)]. For example, for the

input 5, the membership of T1 FS is crisp number 1, that

of IT2 is the interval [0, 1]. It can be also observed that the

boundary of IT2 FS is determined by two T1 FSs, X and

X , which are called lower membership function (LMF) and

upper membership function (UMF), respectively. The gray area

called the footprint of uncertainty (FOU) is between X and

X .

IT2 FSs has one more degree of freedom (DOF) than T1

FSs, which indicated its potential in handling uncertainties’

problems, so when the model is hard to built or exact MF is

difficult to determine, IT2 FSs are good choice. To construct

the MFs, we can depend on surveys or just use optimization

algorithms, such as genetic algorithms.

The schematic diagram of an IT2 fuzzy logic con-

troller(FLC) is shown in Fig. 2. Beside the FS are IT2 and

the additional operation: type-reduction (TR), it is the same to

T1 , the TR method is used to transform the IT2 FS into T1

FS, so that we can carry out the operation of defuzzification.
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Fig. 2. An IT2 FLC.

Assuming that an IT2 FLC’s rulebase has N rules with the

following forms (if · · · then · · · ):

Rn: IF x1 is X̃n
1 and · · · and xI is X̃n

I , THEN y is Y n

n ⊆ [1, N ]

where X̃n
i (i ⊆ [1, I]) means the ith IT2 FSs, and the output of

y is an interval, equals to [yn, yn]. For simplicity, we assume

yn = yn in many applications.
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Generally speaking, there are four steps in computing an

IT2 FLS:

1) For each input x′i, compute its membership on each IT2

FS Xn
i , then get [μXn

i
(x′i), μXn

i
(x′i)], where i ⊆ [1, I],

n ⊆ [1, N ].
2) For the nth rule, compute the firing interval Fn(x′):

Fn(x′) = [μXn
1
(x′1) × · · · × μXn

I
(x′I),

μXn
1
(x′1) × · · · × μXn

I
(x′I)]

≡ [fn, f
n
], n ⊆ [1, N ] (1)

3) According to Fn(x′) we get in the second step and the

rule consequents Y n, and using TR to get T1 FS, then

we get [6]:

Ycos(x′) =
⋃

fn∈Fn(x′)
yn∈Y n

N∑
n=1
fnyn

N∑
n=1
fn

= [yl, yr] (2)

It has also been shown that [6]:

yl = min
k∈[1,N−1]

∑k
n=1 f

n
yn +

∑N
n=k+1 f

nyn∑k
n=1 f

n
+
∑N

n=k+1 f
n

≡
∑L

n=1 f
n
yn +

∑N
n=L+1 f

nyn∑L
n=1 f

n
+
∑N

n=L+1 f
n

(3)

yr = max
k∈[1,N−1]

∑k
n=1 f

nyn +
∑N

n=k+1 f
n
yn∑k

n=1 f
n +

∑N
n=k+1 f

n

≡
∑R

n=1 f
nyn +

∑N
n=R+1 f

n
yn∑R

n=1 f
n +

∑N
n=R+1 f

n (4)

where the L and R are called switch points, and deter-

mined by

yL ≤ yl ≤ yL+1 (5)

yR ≤ yr ≤ yR+1 (6)

and {yn} and {yn} have been sorted in ascending

order, respectively. yl and yr can be computed using the

Karnik-Mendel (KM) algorithms [6] shown in Table I.

4) Finally, we get the output of defuzification:

y =
yl + yr

2
. (7)

As its name shows, the cost of iterative KM algorithms is

high in computation, so many approaches have been proposed

to alleviate that, which can be classified into three categories

[10]:

1) Enhancements to the KM algorithms, these algorithms

base on KM algorithm, making improvements on its

initialization or search operations.

2) Alternative TR methods. Most of these TR methods have

closed-form representations, this made them faster than

the first category. But they are approximate algorithms

to the KM algorithms.

TABLE I
THE KM ALGORITHMS.

Step compute the yl compute the yr
1 Initialize Initialze

fn =
fn+f

n

2
fn =

fn+f
n

2

y =
∑N

n=1 yfn

∑N
n=1 fn y =

∑N
n=1 yfn

∑N
n=1 fn

2 Find l ∈ [1, N − 1] s.t Find r ∈ [1, N − 1]
yL < yl ≤ yL+1 yR < yl ≤ yR+1

3 set set

fn =

{
f
n
, if n ≤ l

fn, if n > l
fn =

{
fn, if n ≤ r

f
n
, if n > r

get get

y′ =
∑N

n=1 ynfn

∑N
n=1 fn y′ =

∑N
n=1 ynfn

∑N
n=1 fn

4. If y′ �= y, set y = y′ If y �= y,set y = y′
and go to Step 2. and go to Step 2.
else set yl = y else set yr = y
and L = l, stop. and R = r, stop.

3) Simplified IT2 FLCs, where a bit number of IT2 FSs are

used in the important regions and in the most regions,

we use T1 FSs.

We have given a comprehensive comparison on the computa-

tional cost of these different approaches [10], and recommend

the enhanced opposite direction search (EODS) algorithm

[4] and the enhanced iterative algorithm with stop condition

(EIASC) algorithm [12] in the first category, and the Wu-

Tan (WT) [14], Nie-Tan (NT) [7], Begian-Melek-Mendel

(BMM) [1] and Greenfield-Chiclana-Coupland-John (GCCJ)

[3] methods in the second category. However, despite their

efficiency, which one has the best control performance is still

an open question. This paper tries to answer that question

by comparing their control performance using a coupled-tank

water level control apparatus [13].

The remainder of this paper is organized as follows: Sec-

tion II introduces the five recommended TR approaches in

[10]. Section III presents the experimental setup and results.

Section IV draws conclusions.

II. TR APPROACHES

This section introduces the five recommended TR approach-

es in [10]: EIASC, WT, NT, BMM, and GCCJ.

A. The EIASC Algorithm

The EODS algorithm and the EIASC algorithm are the two

most efficient algorithms in the first category, and the EIASC

algorithm is much easier to implement. So, in this paper we

use EIASC [12]. However, because EODS and EIASC give

identical outputs, our conclusions drawn on EIASC also apply

to EODS.

The EIASC algorithm is shown in Table II. It makes two

improvements to the original IASC algorithm [2]: 1) a new

stopping criterion; and, 2) a better initialization for computing

yr. Note that in EIASC, {yn}n⊆[1,N ] and {yn}n⊆[1,N ] need

to be arranged from small to large, respectively. All other

alternative TR methods introduced next do not require this.
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TABLE II
THE EIASC ALGORITHM [12].

Step compute the yl compute the yr
1. Initialize Initialize

a =
∑N

n=1 y
nfn a =

∑N
n=1 y

nfn

b =
∑N

n=1 f
n b =

∑N
n=1 f

n

L = 0 R = N
2. Compute Compute

L = L+ 1 a = a+ yR(f
R − fR)

a = a+ yL(f
L − fL) b = b+ f

R − fR

b = b+ f
L − fL yr = a/b

yl = a/b R = R− 1
3. If yl ≤ yL+1, stop; If yr ≥ yR, stop;

else, go to Step 2. else, go to Step 2.

B. The Wu-Tan (WT) Method

This method is proposed by Wu and Tan [14], it based on

the idea: find the equivalent T1 membership grade μXn
i
(xi)

to replace each firing interval [μXn
i
(xi), μXn

i
(xi)], i.e.,

μXn
i
(xi) = μXn

i
(xi) − hni (x)[μXn

i
(xi) − μXn

i
(xi)]

where hni (x) the function of X in the nth IT2 FS.

Since the μXn
i
(xi) is a number not an interval, which leads

to the (fn) is also a number, the output of defuzzification can

be computed as

y =

∑N
n=1 y

nfn∑N
n=1 f

n
.

C. The Nie-Tan (NT) Method

NT method [7] just uses fn and f
n

as the weights of yn,

as the following equation shows:

y =

∑N
n=1 y

n(fn + f
n
)∑N

n=1(f
n + f

n
)
.

D. The Begian-Melek-Mendel (BMM) Method

The form of BMM method [1] is, i.e.,

y = α

∑N
n=1 f

nyn∑N
n=1 f

n
+ β

∑N
n=1 f

n
yn∑N

n=1 f
n . (8)

where α and β are corresponding coefficients. From the

equation, we can clearly know that the idea of it is to take

charge of the message of two T1 FLCs (LMFs and UMFs), and

give them different weights, which can be get by optimization

algorithms.

E. The Greenfield-Chiclana-Coupland-John (GCCJ) Collaps-
ing Method

GCCJ method [3] is similar to WT method, the idea are

both to find the embedded T1 FS, but which may be not the

same. In this paper, to avoid the complex computation, we use

the fake representative embedded T1 FS, i.e.,

μX(x) =
μX(x) + μX(x)

2

Note that when all hni (x) = 1 in WT method, the GCCJ

method is the same as WT method.

htpb

Fig. 3. The coupled-tank liquid level control apparatus.

III. EXPERIMENT AND RESULTS

This section introduces the experimental setup for compar-

ing the control performances of the five TR approaches, and

the results.

A. The Coupled-Tank Water Level Control Apparatus

A coupled-tank apparatus for water level controlling [13],

shown in Fig. 3, was used in this paper to compare the control

performances of the 5 TR approaches. The work process is

that given a liquid level, then detect the real-time liquid level

through the probe sensors, the controllers will feedback the

signal to pumps for controlling the volumetric flow rate (Q1
and Q2).

The following equations describe the mathmatic dynamics

of the coupled-tank apparatus:

A1
dH1

dt
= Q1 − α1

√
H1 − α3

√
H1 −H2 (9)

A2
dH2

dt
= Q2 − α2

√
H2 + α3

√
H1 −H2 (10)

where A1, A2, α1, α2, α3 are the related constants, which can

be computed by experiments; The water levels in Tanks 1 and

2 are H1 and H2; Q1 and Q2 are the flow rates (cm3/s) of

Pumps 1 and 2.

To make the experiment simple, we turn off the pump 2 to

make the system become a one input one output system, then

(10) becomes to:

A2
dH2

dt
= −α2

√
H2 + α3

√
H1 −H2 (11)

All IT2 FLCs with different TR approaches were tuned

according to the simulated plant and 1s sampling period was

used.

B. The Structure of IT2 FLCs

In the paper, all IT2 FLCs has two inputs: the feedback

error e and its rate of change ė , and one output: the change of

control signal u̇, i.e., they implemented an incremental PI con-

troller u̇ = f(e, ė). The rulebase is shown in Table III. Each

input domain had three membership functions, and Gaussian
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IT2 FSs were used for all inputs because our previous research

has shown that they can avoid the control surface discontinuity

problem [11]. Each Gaussian IT2 FS was defined by three

parameters: a mean (m) and uncertain standard deviations

([δ1, δ2]). Observe from Table III that there are 6 membership

functions and 5 outputs, so each IT2 FLC had 3× 6+5 = 23
parameters to tune.

TABLE III
RULEBASE OF THE IT2 FLCS.

e\ė Nė Zė Pė

Ne u̇1 u̇2 u̇3

Ze u̇2 u̇3 u̇4

Pe u̇3 u̇4 u̇5

C. The Optimization Procedure

A genetic algorithm (GA) is used to optimize the 23 param-

eters for each TR approach. Due to modelling uncertainties

and the parameters we maybe only suitable for the model we

designed, it is unavoidable that the performance will deteri-

orate in real model. To alleviate this problem, we exposed

the IT2 FLCs to four kinds of uncertain model parameters

(seen in Table IV) in GA tuning, as in [15]. The sum of

the integral of the time-weighted absolute errors (ITAEs) is

applied to evaluate the performance, defined in (12), and as a

fitness function:

F =
4∑

i=1

αi

⎡⎣ Ni∑
j=1

j · ei(j)

⎤⎦ (12)

where i is the ith plant, j is the jth sampling point, the

difference between setpoint and real output is ei(j), αi is the

coefficient, which is related to the ith plant, and the total

sampling time we choose 200s, which means Ni = 200.

Because the second plant’s ITAE was usually larger than the

rest three, we used α2 = 1/3 and α1 = α3 = α4 = 1.

Although theoretically GA is a global optimization algorith-

m, in practice due to randomness and limited running time, it

may not always reach the global optimum. So, for each TR

approach we repeated GA tuning 30 times and recorded the 30

best IT2 FLC configurations. Each GA had a population of 100

chromosomes, and the the maximum number of iterations is

500. We apply 0.1 as the mutation rate and 0.8 as the crossover.

D. Experiment Results

Fig. 4 shows the boxplot of the training performances of

the 5 TR approaches. hni (x) = 0.5 was used in the WT

TABLE IV
THE FOUR PLANTS USED IN GA TUNING.

I II III IV

A1 = A2 (cm2) 36.52 36.52 36.52 36.52
α1 = α2 5.6186 5.6186 5.6186 5.6186
α3 10 10 10 8
Setpoint (cm) 0 → 15 0 → 22.5 → 7.5 0 → 15 0 → 15
Transport delay (s) 0 0 2 0

method, so its results were identical to those of the GCCJ

method. Observe that the training performances were very

similar. Actually, an Analysis of Variance (ANOVA) showed

that there was no statistically significant differences among the

training performances of these TR approaches (p = 0.5338).

EIASC NT BMM GCCJ (WT)

Fig. 4. Boxplot of the training performances of the 5 TR approaches.

Similar to [15], simulations were performed to test the

abilities of the optimized IT2 FLCs in solving uncertainties.

Fig. 5 shows the performances of the 5 TR approaches on

the plant when α3 = 8 and a 1s delay was introduced. The

performances were very similar. An ANOVA showed that

there was no statistically significant differences among the

testing performances of these TR approaches on this plant

(p = 0.3538).

EIASC NT BMM GCCJ (WT)

Fig. 5. Boxplot of the testing performances of the 5 TR approaches on the
plant with α3 = 8 and a 1s delay.

Fig. 6 shows the performances of the 5 TR approaches

on the plant when a 2s delay was introduced. Again, the

performances were very similar. An ANOVA showed that
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there was no statistically significant differences among the

testing performances of these TR approaches on this plant

(p = 0.3740).

EIASC NT BMM GCCJ (WT)

Fig. 6. Boxplot of the testing performances of the 5 TR approaches on the
plant with a 2s delay.

In summary, both training and testing results showed that

there were no statistically significant differences among the

control performances of the 5 TR approaches (EIASC, WT,

NT, BMM, and GCCJ). However, Table V, as well as Figs. 4-6,

show that the ITAEs of GCCJ and WT may be more compact

in both training and testing, i.e., their performance may be

more consistent in different GA runs.

TABLE V
THE MEANS AND STANDARD DEVIATIONS OF THE ITAES OF THE 5 TR

APPROACHES IN TRAINING AND TESTING.

Training (Fig. 4) Testing (Fig. 5) Testing (Fig. 6)
mean std mean std mean std
(104) (103) (104) (104) (105) (103)

EIASC 2.43 2.10 1.67 1.34 1.38 1.65
NT 2.46 2.28 1.57 1.02 1.39 1.16

BMM 2.42 1.70 1.46 0.84 1.38 1.25
GCCJ (WT) 2.39 1.53 1.23 0.64 1.38 0.97

IV. CONCLUSIONS

Although IT2 FLCs have shown better performance than

type-1 FLCs in many fields, the high cost of the KM TR

algorithms in computation impedes its develop in real world.

Our previous research has recommended six TR approaches

for their efficiency, but which one has the best performance is

still an unknown problem. In the paper, IT2 FLCs using these

six TR approaches were optimized using GA, and their control

performances were compared using a coupled-tank water-level

control apparatus. Results showed that there is no statistically

significant difference among the control performances of these

approaches. So, any of them could be used in IT2 FLC design.

However, we have yet to test their performances on a real plant

to further verify this conclusion.
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