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5.4 Similarities of Ỹ in Example 21 for the three companies. 132
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8.8 ỸC (dashed curve) and the mapped word (solid curve) for different combi-
nations of touching/eye contact. The title of each sub-figure, X1/X2 ⇒ Y ,
means that “when touching is X1 and eye contact is X2, the flirtation level
is Y .” 252

8.9 An SJA architecture for one-to-four indicators. 255

C.1 The AHP hierarchy for car selection. 290

xv



Abstract

This research is focused on multi-criteria decision-making (MCDM) under uncertainties,

especially linguistic uncertainties. This problem is very important because many times lin-

guistic information, in addition to numerical information, is an essential input of decision-

making. Linguistic information is usually uncertain, and it is necessary to incorporate

and propagate this uncertainty during the decision-making process because uncertainty

means risk.

MCDM problems can be classified into two categories: 1) multi-attribute decision-

making (MADM), which selects the best alternative(s) from a group of candidates us-

ing multiple criteria, and 2) multi-objective decision-making (MODM), which optimizes

conflicting objective functions under constraints. Perceptual Computer, an architecture

for computing with words, is implemented in this dissertation for both categories. For

MADM, we consider the most general case that the weights for and the inputs to the

criteria are a mixture of numbers, intervals, type-1 fuzzy sets and/or words modeled by

interval type-2 fuzzy sets. Novel weighted averages are proposed to aggregate this diverse

and uncertain information so that the overall performance of each alternative can be com-

puted and ranked. For MODM, we consider how to represent the dynamics of a process

(objective function) by IF-THEN rules and then how to perform reasoning based on these

rules, i.e., to compute the objective function for new linguistic inputs. Two approaches

xvi



for extracting IF-THEN rules are proposed: 1) linguistic summarization to extract rules

from data, and 2) knowledge mining to extract rules through survey. Applications are

shown for all techniques proposed in this dissertation.

xvii



Chapter 1

Introduction

1.1 Multi-Criteria Decision-Making (MCDM)

Decision-making is an essential part of everyday life, e.g., we make decisions on which

restaurant to have dinner, which car to buy, how to design an optimal investment strategy

to balance profit and risk, etc. Multi-criteria decision-making (MCDM) refers to making

decision in the presence of multiple and often conflicting criteria, where criteria means

the standards of judgment or rules to test acceptability [72]. All MCDM problems share

the following common characteristics [46]:

• Multiple criteria: Each problem has multiple criteria.

• Conflict among criteria: Multiple criteria usually conflict with each other.

• Incommensurable units: Multiple criteria may have different units of measurement.

1



• Design/selection: Solutions to an MCDM problem are either to design the best

alternative(s) or to select the best one(s) among a pre-specified finite set of alter-

natives.

In this dissertation we focus on MCDM under uncertainties, especially linguistic un-

certainties. Uncertainties are emphasized here because according to Harvard Business

Essentials ( [23], pp. 59), “in business, uncertainty of outcome is synonymous with risk,

and you must factor it into your evaluation.”

MCDM problems can be broadly classified into two categories — multi-attribute

decision-making (MADM) and multi-objective decision-making (MODM). The main dif-

ference between them is that MADM focuses on discrete decision spaces whereas MODM

focuses on continuous decision spaces [192].

1.2 Multi-Attribute Decision-Making (MADM)

A typical MADM problem is formulated as [72]:

(MADM)


select Ai from A1, . . . , An

using C1, . . . , Cm

(1.1)

where {A1, . . . , An} denotes n alternatives, and {C1, . . . , Cm} represents m criteria. The

selection is usually based on maximizing a multi-attribute utility function.

There are four steps in MCDM:

1. Define the problem.

2



2. Identify alternatives.

3. Evaluate the alternatives.

4. Identify the best alternative(s).

The last two steps are particularly difficult because the alternatives may have diverse

inputs and uncertainties, as illustrated by the following [15,16]:

Example 1 A contractor has to decide which of the three companies (A, B or C) is

going to get the final mass production contract for a missile system. The contractor uses

five criteria to base his/her final decision (see the first column in Table 1.1), namely:

tactics, technology, maintenance, economy and advancement. Each of these criteria has

some associated sub-criteria, e.g., for tactics there are seven sub-criteria, namely effective

range, flight height, flight velocity, reliability, firing accuracy, destruction rate, and kill

radius, whereas for economy there are three sub-criteria, namely system cost, system life

and material limitation. Each criterion and sub-criterion also has its weight, as shown

in the second column of Table 1.1, where ñ means a type-1 fuzzy set “about n.” The

performances of the three companies for each sub-criterion are also given in Table 1.1.

Observe that some of them are words instead of numbers.

To select the best missile system, the decision-maker needs to determine:

1. How to model linguistic uncertainties expressed by the words.

2. How to aggregate the diverse inputs and weights consisting of numbers, type-1 fuzzy

sets, and words. Presently no method in the literature can do this.
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3. How to rank the final aggregated results to find the best missile system. ¥

These questions will be answered in Chapters 2-4, and we will return to this example in

Chapter 5.

Table 1.1: Criteria with their weights, sub-criteria with their weights and sub-
criteria data for the three companies [15,16].
Item Weighting Company A Company B Company C

Criterion 1: Tactics 9̃
1. Effective range (km) 7̃ 43 36 38

2. Flight height (m) 1̃ 25 20 23
3. Flight velocity (M. No) 9̃ 0.72 0.80 0.75

4. Reliability (%) 9̃ 80 83 76
5. Firing accuracy (%) 9̃ 67 70 63

6. Destruction rate (%) 7̃ 84 88 86
7. Kill radius (m) 6̃ 15 12 18

Criterion 2: Technology 3̃
8. Missile scale (cm) (l×d–span) 4̃ 521×35–135 381×34–105 445×35–120

9. Reaction time (min) 9̃ 1.2 1.5 1.3
10. Fire rate (round/min) 9̃ 0.6 0.6 0.7

11. Anti-jam (%) 8̃ 68 75 70
12. Combat capability 9̃ Very Good Good Good

Criterion 3: Maintenance 1̃
13. Operation condition requirement 5̃ High Low Low

14. Safety 6̃ Very Good Good Good
15. Defiladea 2̃ Good Very Good Good

16. Simplicity 3̃ Good Good Good
17. Assembly 3̃ Good Good Poor

Criterion 4: Economy 5̃
18. System cost (10,000) 8̃ 800 755 785

19. System life (years) 8̃ 7 7 5
20. Material limitation 5̃ High Low Low

Criterion 5: Advancement 7̃

21. Modularization 5̃ Averageb Good Averageb

22. Mobility 7̃ Poor Very Good Good

23. Standardization 3̃ Good Good Very Good
a Defilade means to surround by defensive works so as to protect the interior when in danger of

being commanded by an enemy’s guns.
b The word general used in [16] has been replaced by the word average, because it was not clear

to us what general meant.
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1.3 Multi-Objective Decision-Making (MODM)

Mathematically, an MODM problem can be formulated as [72]:

(MODM)


max f(x)

s.t. x ∈ Rm,g(x) ≤ b,x ≥ 0
(1.2)

where f(x) represents n conflicting objective functions, g(x) ≤ b represents m constraints

in continuous decision spaces, and x is an m-vector of decision variables.

To solve an MODM problem, first the objective functions f(x) must be defined. Some-

times this is trivial, e.g., in [2, 133] a subset of transportation projects are selected for

implementation subject to budget constraints, and the objective function is a weighted

average of these projects’ impacts on traffic flow, traveler’s safety, economic growth, en-

vironment, etc. However, sometimes the objective functions are difficult to calculate, as

illustrated by the following:

Example 2 Fracture stimulation in an oilfield is to inject specially engineered fluids un-

der high pressure into the channels of a low permeability reservoir to crack the reser-

voir and hence improve the flow of oil. It is a complex process involving many param-

eters [24, 42, 52, 92], e.g., the porosity and permeability of the reservoir, the number of

stages, the number of holes and the length of perforations during well completion, the

injected sand, pad and slurry volumes during fracture stimulation, etc. The last six pa-

rameters are adjustable; so, an interesting problem is to optimize fracture simulation de-

sign by maximizing post-fracturing oil production under a cost constraint. Unfortunately,
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post-fracturing oil production is difficult to compute because a model is needed to predict

it from well parameters whereas it is very difficult to find such a model. Presently all suc-

cessful approaches [52, 92] are black-box models, i.e., they are not very useful in helping

people understand the relationship between fracture parameters and the post-fracturing oil

production. An approach that can describe the dynamics of fracture stimulation and also

is easily understandable, e.g., in terms of IF-THEN rules, would be highly desirable. ¥

Such an approach, called linguistic summarization, will be introduced in Chapter 6.

Linguistic summarization extracts rule from data; however, sometimes we do not have

such training data, as illustrated by the following:

Example 3 A Social Judgment Advisor (SJA) is developed in [153] to describe the re-

lationship between behavioral indicators [65] (e.g., touching, eye contact, acting witty,

primping, etc) and flirtation level. Because numerical values are not appropriate for such

an application and there is no training data, words are used in a survey to obtain IF-THEN

rules. However, different people may give different responses for the same scenario; so,

the survey result for each question is usually a histogram instead of a single word. How

should a rulebase be constructed from such word histograms? ¥

This problem will be solved by a knowledge mining approach and we will return to this

example in Chapter 7.

Once a rulebase is constructed, either from linguistic summarization or knowledge

mining, it can be used to compute a linguistic objective function for new inputs. How

this can be done will be shown in Chapter 8.
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1.4 Perceptual Computer (Per-C) for MCDM

The above three examples show that computing with words (CWW) is very important for

MCDM under linguistic uncertainties. According to Zadeh [181,183], the father of fuzzy

logic, CWW is “a methodology in which the objects of computation are words and proposi-

tions drawn from a natural language.” It is “inspired by the remarkable human capability

to perform a wide variety of physical and mental tasks without any measurements and any

computations.” Nikravesh [101] further pointed out that CWW is “fundamentally differ-

ent from the traditional expert systems which are simply tools to ‘realize’ an intelligent

system, but are not able to process natural language which is imprecise, uncertain and

partially true.”

There are at least two types of uncertainties associated with a word [135]: intra-

personal uncertainty and inter-personal uncertainty. The former is explicitly pointed out

by Wallsten and Budescu [135] as “except in very special cases, all representations are

vague to some degree in the minds of the originators and in the minds of the receivers,”

and they suggest to model it by a type-1 fuzzy set (T1 FS, Section 2.1.1). The latter

is pointed out by Mendel [83] as “words mean different things to different people” and

Wallsten and Budescu [135] as “different individuals use diverse expressions to describe

identical situations and understand the same phrases differently when hearing or reading

them.” Because an interval type-2 FS (IT2 FS, Section 2.2.1) can be viewed as a group

of T1 FSs, it can model both types of uncertainty; hence, we suggest IT2 FSs be used in
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CWW [77,79,83]. Additionally, Mendel [84] has explained why it is scientifically incorrect

to model a word using a T1 FS.

A specific architecture is proposed in [78] for making subjective judgments by CWW,

as shown in Fig. 1.2. It is called a perceptual computer—Per-C for short. In Fig. 1.2,

the encoder1 transforms linguistic perceptions into IT2 FSs that activate a CWW engine.

The CWW engine performs operations on the IT2 FSs. The decoder2 maps the output

of the CWW engine into a recommendation, which can be a word, rank, or class.

Encoder CWW Engine Decoder
(Words)

RecommendationPerceptions

(Word/Rank/Class)

IT2 FSs IT2 FSs

Perceptual Computer    Per-C

Fig. 1.1: Conceptual structure of Per-C.

When specified to MCDM, the Per-C can be described by the diagram shown in

Fig. 1.2. The encoder has been studied by Liu and Mendel [70]. This dissertation pro-

poses methods to construct the CWW engines and the decoder so that the Per-C can be

completed.

Encoder Decoder

Novel Weighted Averages (NWAs)

Linguistic
Summarization Perceptual

Reasoning
(PR)Knowledge

Mining

CWW Engine

M
ADM

M
ODM Rules

IT2 FSs IT2 FSs Recommendation

(Word/Rank/Class)

Perceptions

Data

Survey

Fig. 1.2: Per-C for MCDM.

1Zadeh calls this constraint explicitation in [181, 183]. In [184, 185] and some of his recent talks, he
calls this precisiation.

2Zadeh calls this linguistic approximation in [181,183].
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1.5 Dissertation Outline

The rest of this dissertation is organized as follows. Chapter 2 introduce the basic concepts

of type-1 and interval type-2 fuzzy sets and systems, and Liu and Mendel’s Interval Ap-

proach for word modeling. Chapter 3 is about decoding. Because the output of Per-C is a

recommendation in the form of word, rank or class, three different decoders corresponding

to these three outputs are proposed. Chapter 4 proposes novel weighted averages as a

CWW engine for MADM, which can aggregate mixed signals, e.g., numbers, intervals, T1

FSs and words modeled by IT2 FSs. Chapter 5 applies NWA to the missile evaluation

application introduced in Example 1. Chapter 6 introduces linguistic summarization, a

data mining approach to extract rules from data. Chapter 7 introduces a knowledge min-

ing approach to construct rules through survey. Chapter 8 proposes perceptual reasoning

as a CWW engine for MODM, which performs approximate reasoning based on rules.

Finally, Chapter 9 draws conclusions and proposes future works.
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Chapter 2

Background Knowledge

Fuzzy set theory was first introduced by Zadeh [177] in 1965 and has been successfully

used in many areas, including modeling and control [6, 9, 51, 129, 141, 157–160, 171], data

mining [3, 44, 104, 132, 169, 173, 182], time-series prediction [58, 68, 134], decision making

[83, 87, 88, 152, 153], etc. Background knowledge on type-1 and interval type-2 fuzzy sets

and systems, and Liu and Mendel’s Interval Approach for word modeling [70] are briefly

introduced in this chapter.
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2.1 Type-1 Fuzzy Logic

2.1.1 Type-1 Fuzzy Sets (T1 FSs)

Definition 1 A type-1 fuzzy set (T1 FS) X is comprised of a domain DX of real numbers

(also called the universe of discourse of X) together with a membership function (MF)

µX : DX → [0, 1], i.e.,

X =
∫

DX

µX (x)/x (2.1)

Here
∫

denotes the collection of all points x ∈ DX with associated membership grade

µX (x). ¥

Two examples of T1 FSs are shown in Fig. 2.1. A T1 FS X and its MF µX (x) are syn-

onyms and are therefore used interchangeably, i.e., X ⇔ µX (x). Additionally, the terms

membership, membership function and membership grade are also used interchangeably.

� �[P

[
� �����

�
;� ;�

Fig. 2.1: Examples of T1 FSs. The universe of discourse is [0, 10].

In general, MFs can either be chosen arbitrarily, based on the experience of an indi-

vidual (hence, the MFs for two individuals could be quite different depending upon their

11



experiences, perspectives, cultures, etc.), or, they can be designed using optimization

procedures [45,50,138,139].

The centroid of a T1 FS is equivalent to the mean of a random variable in probability

theorem, and hence it is useful in ranking T1 FSs [144,164].

Definition 2 The centroid of a T1 FS X is defined as

c(X) =

∫
DX

xµX (x)dx∫
DX

µX dx
(2.2)

if DX is continuous, or

c(X) =
∑N

i=1 xiµX (xi)∑N
i=1 µX (xi)

(2.3)

if DX is discrete. ¥

Cardinality of a crisp set is a count of the number of elements in that set. Cardinality

of a T1 FS is more complicated because the elements of the FS are not equally weighted

as they are in a crisp set. Definitions of the cardinality of a T1 FS have been proposed

by several authors [7, 22, 38, 60, 63, 161, 180]. Basically there have been two kinds of

proposals [26]: (1) those that assume that the cardinality of a T1 FS can be a crisp number,

and (2) those that claim that it should be a fuzzy number. De Luca and Termini’s [22]

definition of the cardinality of a T1 FS is used in this dissertation.
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Definition 3 The cardinality of a T1 FS X is defined as

card(X) =
∫

DX

µX (x)dx (2.4)

when DX is continuous, or

card(X) =
N∑

i=1

µX (xi) (2.5)

when DX is discrete. ¥

2.1.2 Set Theoretic Operations for T1 FSs

Just as crisp sets can be combined using the union and intersection operations, so can

FSs.

Definition 4 Let T1 FSs X1 and X2 be two T1 FS in DX that are described by their

MFs µX1(x) and µX2(x). The union of X1 and X2, X1 ∪ X2, is described by its MF

µX1∪X2(x), where

µX1∪X2(x) = max[µX1(x), µX2(x)] ∀x ∈ X. (2.6)

The intersection of X1 and X2, X1 ∩ X2, is described by its MF µX1∩X2(x), where

µX1∩X2(x) = min[µX1(x), µX2(x)] ∀x ∈ X. ¥ (2.7)
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Although µX1∪X2(x) and µX1∩X2(x) can be described using different t-conorms and t-

norms [64], in this paper only the maximum t-conorm and the minimum t-norm are used

in (2.6) and (2.7), respectively.

Example 4 The union and intersection of the two TI FSs that are depicted in Fig. 2.1

are shown in Figs. 2.2(a) and 2.2(b), respectively. ¥

� �[P

[
� �����

�
;� ;�

(a)

� �[P

[
� �����

�
;� ;�

(b)

Fig. 2.2: Set theoretic operations for the two T1 FSs X1 and X2 depicted in Fig. 2.1. (a)
Union and (b) intersection.

2.1.3 α-cuts and a Decomposition Theorem for T1 FSs

Definition 5 The α-cut of T1 FS X, denoted X(α), is an interval of real numbers,

defined as:

X(α) = {x|µX (x) ≥ α} = [a(α), b(α)] (2.8)

where 0 ≤ α ≤ 1. ¥

An example of an α-cut is depicted in Fig. 2.3, and in this example, X(α) = [2.8, 5.2].
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Fig. 2.3: A trapezoidal T1 FS and an α-cut.

One of the major roles of α-cuts is their capability to represent a T1 FS. In order to

do this, first the following indicator function is introduced:

IX(α)(x) =


1, ∀ x ∈ X(α)

0, ∀ x /∈ X(α)
(2.9)

Associated with IX(α)(x) is the following square-well function:

µX (x|α) = αIX(α)(x) (2.10)

This function, an example of which is depicted in Fig. 2.4, raises the α-cut X(α) off of

the x-axis to height α.

Theorem 1 (T1 FS Decomposition Theorem) [64] A T1 FS X can be represented

as:

µX (x) =
⋃

α∈[0,1]

µX (x|α) (2.11)
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� _ �; [P D

[

���������������������������������������������������������

Fig. 2.4: Square-well function µX (x|α).

where µX (x|α) is defined in (2.10) and ∪ (which is over all values of α) denotes the

standard union operator, i.e. the supremum (often the maximum) operator. ¥

This theorem is called a “Decomposition Theorem” [64] because X is decomposed into

a collection of square well functions that are then aggregated using the union operation.

An example of (2.11) is depicted in Fig. 2.5. When the dark circles at each α-level

(e.g., α3) are connected, µX (x|α) is obtained. Note that greater resolution is obtained

by including more α-cuts, and the calculation of new α-cuts does not affect previously

calculated α-cuts.

[D�

D �

D �

�QD  

� �; [P

���������������������������������������������������������

Fig. 2.5: Illustration of the T1 FS Decomposition Theorem when n α-cuts are used.
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2.1.4 Type-1 Fuzzy Logic System (T1 FLS)

A T1 fuzzy logic system (FLS) uses only T1 FSs. It consists of four components —

rulebase, fuzzifier, inference engine and defuzzifier, as shown in Fig. 2.6. The fuzzifier

maps the crisp inputs into T1 FSs. The inference engine operates on these T1 FSs

according to the rules in the rulebase, and the results are also T1 FSs, which will be

mapped into a crisp output by the defuzzifier. By a rule, we mean an IF-THEN statement,

such as:

Ri : IF x1 is F i
1 and · · · and xp is F i

p, THEN y is Gi i = 1, ..., N (2.12)

where F i
j and Gi are T1 FSs.

)X]]LILHU
,QIHUHQFH
(QJLQH

5XOHEDVH 'HIX]]LILHU&ULVS
LQSXWV

&ULVS
RXWSXW

7��)6V 7��)6V

Fig. 2.6: A type-1 fuzzy logic system.

2.2 Interval Type-2 Fuzzy Logic

2.2.1 Interval Type-2 Fuzzy Sets (IT2 FSs)

Despite having a name which carries the connotation of uncertainty, researches have

shown that there are limitations in the ability of T1 FSs to model and minimize the

effect of uncertainties [39, 83, 159]. This is because a T1 FS is certain in the sense that
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its membership grades are crisp values. Recently, type-2 FSs [179], characterized by

MFs that are themselves fuzzy, have been attracting interests. Interval type-2 (IT2)

FSs [83], a special case of type-2 FSs, are considered in this dissertation for their reduced

computational cost.

Definition 6 [80,83] An IT2 FS X̃ is characterized by its MF µX̃(x, u), i.e.,

X̃ =
∫

x∈DX̃

∫
u∈Jx⊆[0,1]

µX̃(x, u)/(x, u)

=
∫

x∈DX̃

∫
u∈Jx⊆[0,1]

1/(x, u)

=
∫

x∈DX̃

 ∫
u∈Jx⊆[0,1]

1/u

/
x (2.13)

where x, called the primary variable, has domain DX̃ ; u ∈ [0, 1], called the secondary

variable, has domain Jx ⊆ [0, 1] at each x ∈ DX̃ ; Jx is also called the primary membership

of x, and is defined below in (2.15); and, the amplitude of µX̃(x, u), called a secondary

grade of X̃, equals 1 for ∀x ∈ DX̃ and ∀u ∈ Jx ⊆ [0, 1]. ¥

An example of an IT2 FS is shown in Fig. 2.7.

Definition 7 Uncertainty about X̃ is conveyed by the union of all its primary member-

ships, which is called the footprint of uncertainty (FOU) of X̃ (see Fig. 2.7), i.e.,

FOU(X̃) =
⋃

∀x∈DX̃

Jx = {(x, u) : u ∈ Jx ⊆ [0, 1]} . ¥ (2.14)
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Fig. 2.7: An interval type-2 fuzzy set.

The size of an FOU is directly related to the uncertainty that is conveyed by an IT2

FS. So, an FOU with more area is more uncertain than one with less area.

Definition 8 The upper membership function (UMF) and lower membership function

(LMF) of X̃ are two T1 MFs X and X that bound the FOU (see Fig. 2.7). ¥

Note that the primary membership Jx is an interval, i.e.,

Jx =
[
µX

(x), µ
X

(x)
]

(2.15)

Using (2.15), FOU(X̃) can also be expressed as

FOU(X̃) =
⋃

∀x∈DX̃

[
µX (x), µ

X
(x)

]
(2.16)

A very compact way to describe an IT2 FS is:

X̃ = 1/FOU(X̃) (2.17)
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where this notation means that the secondary grade equals 1 for all elements of FOU(X̃).

Because all of the secondary grades of an IT2 FS equal 1, these secondary grades convey

no useful information; hence, an IT2 FS is completely described by its FOU.

Definition 9 For continuous universes of discourse DX̃ and U , an embedded T1 FS Xe

is

Xe =
∫

x∈DX̃

u/x, u ∈ Jx. ¥ (2.18)

The set Xe is embedded in FOU(X̃). An example of Xe is given in Fig. 2.7. Other

examples are X and X.

Definition 10 The centroid of an IT2 FS is an interval determined by the centroids of

all its embedded T1 FSs, i.e.,

C(X̃) = [cl(X̃), cr(X̃)] (2.19)

where

cl(X̃) = min
∀µ

X
(xi)∈[µ

X
(xi),µX̄

(xi)]

∑N
i=1 xiµX (xi)∑N
i=1 µX (xi)

(2.20)

cr(X̃) = max
∀µ

X
(xi)∈[µ

X
(xi),µX̄

(xi)]

∑N
i=1 xiµX (xi)∑N
i=1 µX (xi)

(2.21)

in which N is the number of discretizations in DX̃ . ¥
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It has been shown [57,83] that cl(X̃) and cr(X̃) can be re-expressed as:

cl(X̃) =

∑L
i=1 xiµX

(xi) +
∑N

i=L+1 xiµX
(xi)∑L

i=1 µ
X

(xi) +
∑N

i=L+1 µX (xi)
(2.22)

cr(X̃) =

∑R
i=1 xiµX

(xi) +
∑N

i=R+1 xiµX
(xi)∑R

i=1 µX (xi) +
∑N

i=R+1 µ
X

(xi)
(2.23)

where L and R are called switch points. There are no closed-form solutions for L and

R; however, they can be computed iteratively by the Karnik-Mendel (KM) [57, 83] or

Enhanced KM (EKM) Algorithms presented in Appendix A.

The centroid of an IT2 FS provides a legitimate measure of its uncertainty [147]. The

average centroid, or the center of centroid, of an IT2 FS is very useful in ranking IT2 FSs

( [144]; see also Section 3.3).

Definition 11 The average centroid, or center of centroid, of an IT2 FS X̃ is

c(X̃) =
cl(X̃) + cr(X̃)

2
. ¥ (2.24)

The average cardinality [147] of an IT2 FS is very useful in computing the average

subsethood of an IT2 FS in another and hence in decoding ( [151]; see also Section 3.4.2).

Definition 12 The cardinality of an IT2 FS X̃ is the union of the cardinalities of all its

embedded T1 FSs Xe, i.e.,

card(X̃) =
⋃
∀Xe

card(Xe) = [card(X), card(X)] (2.25)
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The average cardinality of an IT2 FS X̃, AC(X̃), is the center of its cardinality, i.e.,

AC(X̃) =
card(X) + card(X)

2
. ¥ (2.26)

2.2.2 Representation Theorems for IT2 FSs

So far the vertical-slice representation (decomposition) of an IT2 FS, given in (2.16), has

been emphasized. In this section a different representation is provided for such an IT2

FS, one that is in terms of so-called wavy slices [80]. It is stated here for a discrete IT2

FS.

Theorem 2 (Wavy Slice Representation Theorem for an IT2 FS) Assume that

primary variable x of an IT2 FS X̃ is sampled at N values, x1, x2, . . . , xN , and at each of

these values its primary memberships ui are sampled at Mi values, ui1, ui2, . . . , uiMi. Let

Xe,j denote the jth embedded T1 FS for X̃. Then FOU(X̃) in (2.17) can be represented

as

FOU(X̃) =
n

X⋃
j=1

Xe,j ≡ [X,X] (2.27)

and nX =
∏N

i=1 Mi. ¥

This theorem expresses FOU(X̃) as a union of simple T1 FSs. Note that both the

union of the vertical slices and the union of embedded T1 FSs can be interpreted as

covering representations, because they both cover the entire FOU.
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In the sequel it will be seen that one does not need to know the explicit natures of

any of the wavy slices in FOU(X̃) other than µX (x) and µ
X

(x). In fact, for an IT2 FS,

everything can be determined just by knowing its lower and upper MFs.

2.2.3 Set Theoretic Operations for IT2 FSs

The Wavy-Slice Representation Theorem and the formulas for the union and intersection

of two T1 FSs can be used to derive the union and intersection of two IT2 FSs [83].

Definition 13 For continuous universes of discourse, (a) the union of two IT2 FSs, X̃1

and X̃2, X̃1 ∪ X̃2, is another IT2 FS, i.e.,

X̃1 ∪ X̃2 = 1/FOU(X̃1 ∪ X̃2) = 1/[µX1
(x) ∨ µX2

(x), µX1
(x) ∨ µX2

(x)] (2.28)

where ∨ denotes the disjunction operator (e.g., maximum); (b) the intersection of two

IT2 FSs, X̃1 and X̃2, X̃1 ∩ X̃2, is also another IT2 FS, i.e.,

X̃1 ∩ X̃2 = 1/FOU(X̃1 ∩ X̃2) = 1/[µX1
(x) ∧ µX2

(x), µX1
(x) ∧ µX2

(x)] (2.29)

where ∧ denotes the conjunction operator (e.g., minimum). ¥

It is very important to observe, from (2.28) and (2.29), that all of their calculations

only involve calculations between T1 FSs.

Example 5 Two IT2 FSs, X̃1 and X̃2 are depicted in Fig. 2.8(a). Their union and

intersection are depicted in Figs. 2.8(b) and 2.8(c), respectively. ¥
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Fig. 2.8: Set theoretic operations for IT2 FSs. (a) Two IT2 FSs X̃1 and X̃2, (b) X̃1 ∪ X̃2,
and (c) X̃1 ∩ X̃2.

2.2.4 Interval Type-2 Fuzzy Logic System (IT2 FLS)

An IT2 FLS is depicted in Fig. 2.9. Each input is fuzzified into an IT2 FS, after which

these FSs activate a subset of rules in the form of

Ri : IF x1 is F̃ i
1 and · · · and xp is F̃ i

p, THEN y is G̃i i = 1, ..., N (2.30)
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where F̃ i
j and G̃i are IT2 FSs. The output of each activated rule is obtained by using

an extended sup-star composition [83]. Then all of the fired rule outputs are blended in

some way and reduced from IT2 FSs to a number.

)X]]LILHU
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5XOHEDVH 'HIX]]LILHU
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Fig. 2.9: An interval type-2 fuzzy logic system.

The first step in this chain of computations is to compute a firing interval. This can

be a very complicated calculation, especially when the inputs are fuzzified into IT2 FSs,

as they would be when the inputs are words. For the minimum t-norm, this calculation

requires computing the sup-min operation between the lower (upper) MFs of the FOUs

of each input and its corresponding antecedent [83]. The firing interval propagates the

uncertainties from all of the inputs through their respective antecedents. An example of

computing the firing interval is depicted in the left-hand part of Fig. 2.10 for a rule that

has two antecedents.

For Mamdani Inference, the next computation after the firing interval computation is

the meet operation between the firing interval and its consequent FOU, the result being

a fired-rule output FOU. Then all fired rule output FOUs are aggregated using the join

operator, the result being yet another FOU.

An example of this computing is depicted in the right-hand part of Fig. 2.10, and an

example of aggregating two fired-rule output FOUs is depicted in Fig. 2.11. Fig. 2.11(a)
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Fig. 2.10: Mamdani Inference for IT2 FLSs: from firing interval to fired-rule output FOU.

shows the fired-rule output sets for two fired rules, and Fig. 2.11(b) shows the union of

those two IT2 FSs. Observe that the union tends to spread out the domain over which

non-zero values of the output occur, and that B̃ does not have the appearance of either

B̃1 or B̃2.
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Fig. 2.11: Pictorial descriptions of (a) Fired-rule output FOUs for two fired rules, and (b)
combined fired output FOU for the two fired rules in (a) using Mamdani Inference.
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Referring to Fig. 2.9, this aggregated FOU is then type-reduced, the result being an

interval-valued set, after which that interval is defuzzified by taking the average of the

interval’s two end-points.

2.3 Encoding: The Interval Approach

Liu and Mendel proposed an Interval Approach to for word modeling [70], i.e., to con-

struct the decoder in Fig. 1.2. First, for each word in an application-dependent encoding

vocabulary, a group of subjects are asked the following question:

On a scale of 0-10, what are the end-points of an interval that you associate

with the word ?

After some pre-processing, during which some intervals (e.g., outliers) are eliminated,

each of the remaining intervals is classified as either an interior, left-shoulder or right-

shoulder IT2 FS. Then, each of the word’s data intervals is individually mapped into its

respective T1 interior, left-shoulder or right-shoulder MF, after which the union of all of

these T1 MFs is taken. The result is an FOU for an IT2 FS model of the word. The

words and their FOUs constitute a codebook.

The dataset used in this dissertation was collected from 28 subjects at the Jet Propul-

sion Laboratory1 (JPL). 32 words were randomly ordered and presented to the subjects.

Each subject was asked to provide the end points of an interval for each word on the
1This was done in 2002 when J. M. Mendel gave an in-house short course on fuzzy sets and systems

at JPL.
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scale 0-10. The 32 words can be grouped into three classes: small-sounding words (lit-

tle, low amount, somewhat small, a smidgen, none to very little, very small, very lit-

tle, teeny-weeny, small amount and tiny), medium-sounding words (fair amount, modest

amount, moderate amount, medium, good amount, a bit, some to moderate and some),

and large-sounding words (sizeable, large, quite a bit, humongous amount, very large, ex-

treme amount, considerable amount, a lot, very sizeable, high amount, maximum amount,

very high amount and substantial amount). The 32 word FOUs obtained from the inter-

val approach are depicted in Fig. 2.12. Observe that only three kinds of FOUs emerge,

namely, left-shoulder (the first six FOUs), right-shoulder (the last six FOUs) and interior

FOUs. The parameters of the FOUs, their centroids and centers of centroid are given in

Table 2.1. Note that each FOU can be represented by nine parameters shown in Fig. 2.13,

where X̃ is a left-shoulder when a = b = e = f = 0 and h = 1, and X̃ is a right-shoulder

when c = d = g = i = 10 and h = 1.
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None to very little     Teeny−weeny         A smidgen            Tiny        

    Very small         Very little           A bit              Little      

     Low amount           Small          Somewhat small         Some        

  Some to moderate   Moderate amount      Fair amount           Medium      

   Modest amount       Good amount          Sizeable         Quite a bit    

Considerable amount  Substantial amount        A lot           High amount    

   Very sizeable           Large          Very large      Humongous amount  

    Huge amount     Very high amount     Extreme amount     Maximum amount  

Fig. 2.12: The 32 word FOUs ranked by their centers of centroid. To read this figure,
scan from left to right starting at the top of the page.
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Fig. 2.13: The nine parameters to represent an IT2 FS.

Table 2.1: Parameters of the 32 word FOUs. Each UMF is represented by [a, b, c, d] in
Fig. 2.13 and each LMF is represented by [e, f, g, i, h] in Fig. 2.13.
Word UMF LMF C(X̃) c(X̃)
1. None to very little [0, 0, 0.14, 1.97] [0, 0, 0.05, 0.66, 1] [0.22,0.73] 0.47
2. Teeny-weeny [0, 0, 0.14, 1.97] [0, 0, 0.01, 0.13, 1] [0.05,1.07] 0.56
3. A smidgen [0, 0, 0.26, 2.63] [0, 0, 0.05, 0.63, 1] [0.21,1.05] 0.63
4. Tiny [0, 0, 0.36, 2.63] [0, 0, 0.05, 0.63, 1] [0.21,1.06] 0.64
5. Very small [0, 0, 0.64, 2.47] [0, 0, 0.10, 1.16, 1] [0.39,0.93] 0.66
6. Very little [0, 0, 0.64, 2.63] [0, 0, 0.09, 0.99, 1] [0.33,1.01] 0.67
7. A bit [0.59, 1.50, 2.00, 3.41] [0.79, 1.68, 1.68, 2.21, 0.74] [1.42,2.08] 1.75
8. Little [0.38, 1.50, 2.50, 4.62] [1.09, 1.83, 1.83, 2.21, 0.53] [1.31,2.95] 2.13
9. Low amount [0.09, 1.25, 2.50, 4.62] [1.67, 1.92, 1.92, 2.21, 0.30] [0.92,3.46] 2.19
10. Small [0.09, 1.50, 3.00, 4.62] [1.79, 2.28, 2.28, 2.81, 0.40] [1.29,3.34] 2.32
11. Somewhat small [0.59, 2.00, 3.25, 4.41] [2.29, 2.70, 2.70, 3.21, 0.42] [1.76,3.43] 2.59
12. Some [0.38, 2.50, 5.00, 7.83] [2.88, 3.61, 3.61, 4.21, 0.35] [2.04,5.77] 3.90
13. Some to moderate [1.17, 3.50, 5.50, 7.83] [4.09, 4.65, 4.65, 5.41, 0.40] [3.02,6.11] 4.56
14. Moderate amount [2.59, 4.00, 5.50, 7.62] [4.29, 4.75, 4.75, 5.21, 0.38] [3.74,6.16] 4.95
15. Fair amount [2.17, 4.25, 6.00, 7.83] [4.79, 5.29, 5.29, 6.02, 0.41] [3.85,6.41] 5.13
16. Medium [3.59, 4.75, 5.50, 6.91] [4.86, 5.03, 5.03, 5.14, 0.27] [4.19,6.19] 5.19
17. Modest amount [3.59, 4.75, 6.00, 7.41] [4.79, 5.30, 5.30, 5.71, 0.42] [4.57,6.24] 5.41
18. Good amount [3.38, 5.50, 7.50, 9.62] [5.79, 6.50, 6.50, 7.21, 0.41] [5.11,7.89] 6.50
19. Sizeable [4.38, 6.50, 8.00, 9.41] [6.79, 7.38, 7.38, 8.21, 0.49] [6.17,8.15] 7.16
20. Quite a bit [4.38, 6.50, 8.00, 9.41] [6.79, 7.38, 7.38, 8.21, 0.49] [6.17,8.15] 7.16
21. Considerable amount [4.38, 6.50, 8.25, 9.62] [7.19, 7.58, 7.58, 8.21, 0.37] [5.97,8.52] 7.25
22. Substantial amount [5.38, 7.50, 8.75, 9.81] [7.79, 8.22, 8.22, 8.81, 0.45] [6.95,8.86] 7.90
23. A lot [5.38, 7.50, 8.75, 9.83] [7.69, 8.19, 8.19, 8.81, 0.47] [6.99,8.83] 7.91
24. High amount [5.38, 7.50, 8.75, 9.81] [7.79, 8.30, 8.30, 9.21, 0.53] [7.19,8.82] 8.01
25. Very sizeable [5.38, 7.50, 9.00, 9.81] [8.29, 8.56, 8.56, 9.21, 0.38] [6.95,9.10] 8.03
26. Large [5.98, 7.75, 8.60, 9.52] [8.03, 8.36, 8.36, 9.17, 0.57] [7.50,8.75] 8.12
27. Very large [7.37, 9.41, 10, 10] [8.72, 9.91, 10, 10, 1] [9.03,9.57] 9.30
28. Humongous amount [7.37, 9.82, 10, 10] [9.74, 9.98, 10, 10, 1] [8.70,9.91] 9.31
29. Huge amount [7.37, 9.59, 10, 10] [8.95, 9.93, 10, 10, 1] [9.03,9.65] 9.34
30. Very high amount [7.37, 9.73, 10, 10] [9.34, 9.95, 10, 10, 1] [8.96,9.78] 9.37
31. Extreme amount [7.37, 9.82, 10, 10] [9.37, 9.95, 10, 10, 1] [8.96,9.79] 9.38
32. Maximum amount [8.68, 9.91, 10, 10] [9.61, 9.97, 10, 10, 1] [9.50,9.87] 9.69
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Chapter 3

Decoding: From FOUs to a

Recommendation

3.1 Introduction

Recall that a Per-C (Fig. 1.2) consists of three components: Encoder, which maps words

into IT2 FS models; CWW engine, which operates on the inputs words and whose outputs

are FOU(s); and decoder, which maps these FOU(s) into a recommendation. The decoder

is discussed in this chapter.

The recommendation from the decoder can have several different forms:

1. Word : This is the most typical case, e.g., for the social judgment advisor developed

in [88, 153], Perceptual reasoning (Chapter 8) is used to compute an output FOU

from a set of rules that are activated by words. This FOU is then mapped into a
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codebook word so that it can be understood. The mapping that does this imposes

two requirements, one each on the CWW engine and the decoder.

First, the output of the CWW engine must resemble the word FOU in the codebook.

Recall that in Section 2.3 it has been shown that there are only three kinds of FOUs

in the codebook — left-shoulder, right-shoulder and interior FOUs — all of which

are normal ; consequently, the output of the CWW engine must also be a normal IT2

FS having one of these three shapes. Perceptual reasoning introduced in Chapter 8

lets us satisfy this requirement.

Second, the decoder must compare the similarity between two IT2 FSs so that

the output of the CWW engine can be mapped into its most similar word in the

codebook. Several similarity measures [12, 37, 90, 144, 150, 188] for IT2 FSs are

discussed in Section 3.2.

2. Rank : In some decision-making situations several alternatives are compared so that

the best one(s) can be chosen, e.g., in the procurement judgment advisor developed

in [88,152], three missile systems are compared to find the one with the best overall

performance. In these applications, the outputs of the CWW Engines are always

IT2 FSs; hence, the decoder must rank them to find the best alternative(s). Ranking

methods [91,144] for IT2 FSs are discussed in Section 3.3.

3. Class: In some decision-making applications the output of the CWW engine must

be mapped into a class. In the journal publication judgment advisor developed

in [87, 88], the outputs of the CWW engine are IT2 FSs representing the overall
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quality of a journal article obtained from reviewers. These IT2 FSs must be mapped

into one of three decision classes: accept, rewrite, and reject. How to do this is

discussed in Section 3.4.

It is important to propagate linguistic uncertainties all the way through the Per-C,

from its encoder, through its CWW engine, and also through its decoder; hence, our

guideline for developing decoders is to preserve and propagate the uncertainties through

the decoder as far as possible. More will be said about this later in this chapter.

3.2 Similarity Measure Used As a Decoder

In this section, six similarity measures for IT2 FSs are briefly introduced, and their

performances as a decoder are compared. The best of these measures is suggested for use

as a decoder in CWW, and is the one used in later chapters.

3.2.1 Definitions

Similarity, proximity and compatibility have all been used in the literature to assess

agreement between FSs [20]. There are many different definitions for the meanings of

them [20,30,59,76,124,170,178].

According to Yager [170], a proximity relationship between two T1 FSs X1 and X2 on

a domain DX is a mapping p: DX × DX → T (often T is the unit interval) having the

properties:

1. Reflexivity: p(X1, X1) = 1;
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2. Symmetry: p(X1, X2) = p(X2, X1).

According to Zadeh [178] and Yager [170], a similarity relationship between two FSs

X1 and X2 on a domain DX is a mapping s: X × X → T having the properties:

1. Reflexivity: s(X1, X1) = 1;

2. Symmetry: s(X1, X2) = s(X2, X1);

3. Transitivity: s(X1, X2) ≥ s(X1, X3) ∧ s(X3, X2), where X3 is an arbitrary FS on

domain DX .

Observe that a similarity relationship adds the additional requirement of transitivity to

proximity, though whether or not the above definition of transitivity is correct is still

under debate [18,62].

There are other definitions of transitivity used in the literature [12, 33, 128], e.g., the

one used by Bustince [12] is:

Transitivity ′: If X1 ≤ X2 ≤ X3, i.e., µX1(x) ≤ µX2(x) ≤ µX3(x) ∀x ∈ DX (see

Fig. 3.1), then s(X1, X2) ≥ s(X1, X3).

Bustince’s transitivity is used in this dissertation.

[

X
�;

�;
�;

Fig. 3.1: An illustration of X1 ≤ X2 ≤ X3.
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Compatibility is a broader concept. According to Cross and Sudkamp [20], “the term

compatibility is used to encompass various types of comparisons frequently made between

objects or concepts. These relationships include similarity, inclusion, proximity, and the

degree of matching.”

In summary, similarity is included in proximity, and both similarity and proximity are

included in compatibility. This chapter focuses on similarity measures.

3.2.2 Desirable Properties for an IT2 FS Similarity Measure

Let s(X̃1, X̃2) be the similarity measure between two IT2 FSs X̃1 and X̃2 in DX̃ , and

c(X̃1) be the center of the centroid of X̃1 (see Definition 11).

Definition 14 X̃1 and X̃2 have the same shape if µX1
(x) = µX2

(x + λ) and µX1
(x) =

µX2
(x + λ) for ∀x ∈ DX̃ , where λ is a constant. ¥

Definition 15 X̃1 ≤ X̃2 if µX1
(x) ≤ µX2

(x) and µX1
(x) ≤ µX2

(x) for ∀x ∈ DX̃ . ¥

Two examples of X̃1 ≤ X̃2 are shown in Fig. 3.2.

2
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Fig. 3.2: Two examples of X̃1 ≤ X̃2. In both figures, X̃1 is represented by the solid curves
and X̃2 is represented by the dashed curves.
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Definition 16 X̃1 and X̃2 overlap, i.e., X̃1 ∩ X̃2 6= ∅, if and only if ∃x ∈ DX̃ such that

min(µX1
(x), µX2

(x)) > 0. ¥

Two examples of overlapping X̃1 and X̃2 are shown in Fig. 3.2.

Definition 17 X̃1 and X̃2 do not overlap, i.e., X̃1 ∩ X̃2 = ∅, if and only if min(µX1
(x),

µX2
(x)) = 0 for ∀x ∈ DX̃ . ¥

Non-overlapping X̃1 and X̃2 have no parts of their FOUs that overlap. In Fig. 3.7, X̃1

and Rewrite and X̃1 and Reject do not overlap.

Let Xe
1 be an embedded T1 FS of X̃1. Because µXe

1
(xi) ≤ µX1

(xi) for all embedded T1

FSs Xe
1 and µX2

(x) ≤ µX2
(x), min(µX1

(x), µX2
(x)) = 0 means min(µXe

1
(xi), µX2

(x)) = 0

and min(µXe
1
(xi), µX2

(x)) = 0 for ∀x ∈ DX̃ and ∀ Xe
1 , i.e., the following lemma follows

from Definition 17:

Lemma 3 If X̃1 and X̃2 do not overlap, then min(µXe
1
(xi), µX2

(x)) = 0 and min(µXe
1
(xi),

µX2
(x)) = 0 for ∀x ∈ DX̃ and ∀ Xe

1 . ¥

The following four properties [150] are considered desirable for an IT2 FS similarity

measure:

1. Reflexivity: s(X̃1, X̃2) = 1 ⇔ X̃1 = X̃2.

2. Symmetry: s(X̃1, X̃2) = s(X̃2, X̃1).

3. Transitivity: If X̃1 ≤ X̃2 ≤ X̃3, then s(X̃1, X̃2) ≥ s(X̃1, X̃3).
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4. Overlapping: If X̃1 ∩ X̃2 6= ∅, then s(X̃1, X̃2) > 0; otherwise, s(X̃1, X̃2) = 0.

Observe that the first three properties are the IT2 FS counterparts of those used in Zadeh

and Yager’s definition of T1 FS similarity measures, except that a different definition of

transitivity is used. The fourth property of overlapping is intuitive and is used in many

T1 FS similarity measures [20], so, it is included here as a desirable property for IT2 FS

similarity measures.

3.2.3 Problems with Existing IT2 FS Similarity Measures

Though “there are approximately 50 expressions for determining how similar two (T1)

fuzzy sets are” [13], to the best knowledge of the authors, there are only six similarity

(compatibility) measures for IT2 FSs [12, 37, 90, 144, 150, 188]. The drawbacks of five

of them are pointed out in this subsection (an example that demonstrates each of the

drawbacks can be found in [150]), and the sixth similarity measure (Jaccard similarity

measure [144]) is introduced in the next subsection.

1. Gorzalczany [37] defined an interval compatibility measure for IT2 FSs; however, it is

not a good similarity measure for our purpose because [150] as long as max
x∈DX̃

µX1
(x) =

max
x∈DX̃

µX2
(x) and max

x∈DX̃

µX1
(x) = max

x∈DX̃

µX2
(x) (both of which can be easily satisfied

by X̃1 and X̃2, even when X̃1 6= X̃2), no matter how different the shapes of X̃1 and

X̃2 are, it always gives sG(X̃1, X̃2) = sG(X̃2, X̃1) = [1, 1], i.e., it does not satisfy

Reflexivity.
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2. Bustince [12] defined an interval similarity measure for IT2 FSs X̃1 and X̃2 based

on the inclusion of X̃1 in X̃2. A problem with this approach is that [150] when X̃1

and X̃2 are disjoint, no matter how far away they are from each other, sX2
(X̃1, X̃2)

will always be a nonzero constant, i.e., it does not satisfy Overlapping.

3. Mitchell [90] defined the similarity between two IT2 FSs as the average of the simi-

larities between their embedded T1 FSs, when the embedded T1 FSs are generated

randomly. Consequently, this similarity measure does not satisfy Reflexivity, i.e.,

sM (X̃1, X̃2) 6= 1 when X̃1 = X̃2 because the randomly generated embedded T1 FSs

from X̃1 and X̃2 vary from experiment to experiment [150].

4. Zeng and Li [188] defined the similarity between X̃1 and X̃2 based on the difference

between them. A problem with this approach is that when X̃1 and X̃2 are disjoint,

the similarity is a nonzero constant, or increases as the distance increases, i.e., it

does not satisfy Overlapping.

5. Wu and Mendel [150] proposed a vector similarity measure, which considers the

similarity between the shape and proximity of two IT2 FSs separately. It does not

satisfy Overlapping [144].

3.2.4 Jaccard Similarity Measure for IT2 FSs

The Jaccard similarity measure for T1 FSs [48] is defined as

sJ (X1, X2) =
f(X1 ∩ X2)
f(X1 ∪ X2)

(3.1)
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where f is a function satisfying f(X1 ∪ X2) = f(X1) + f(X2) for disjoint X1 and X2.

Usually the function f is chosen as the cardinality [see (2.25)], i.e., when ∩ ≡ min and

∪ ≡ max,

sJ (X1, X2) ≡
card(X1 ∩ X2)
card(X1 ∪ X2)

=

∫
X min(µX1(x), µX2(x))dx∫
X max(µX1(x), µX2(x))dx

. (3.2)

whose discrete version is

sJ (X1, X2) =
∑N

i=1 min(µX1(xi), µX2(xi))∑N
i=1 max(µX1(xi), µX2(xi))

(3.3)

where xi (i = 1, . . . , N) are equally spaced in DX̃ .

[144] proposes a new similarity measure for IT2 FSs, which is an extension of (3.2),

and uses average cardinality, AC, as defined in (2.26), applied to both X̃1∩X̃2 and X̃1∪X̃2,

where X̃1 ∩ X̃2 and X̃1 ∪ X̃2 are computed by (2.29) and (2.28), respectively, i.e.,

sJ (X̃1, X̃2) ≡
AC(X̃1 ∩ X̃2)
AC(X̃1 ∪ X̃2)

=

∫
X min(µX1

(x), µX2
(x))dx +

∫
X min(µX1

(x), µX2
(x))dx∫

X max(µX1
(x), µX2

(x))dx +
∫
X max(µX1

(x), µX2
(x))dx

.

(3.4)

Note that each integral in (3.4) is an area, e.g.,
∫
X min(µX1

(x), µX2
(x))dx is the area

under the minimum of µX1
(x) and µX2

(x). Closed-form solutions cannot always be

found for these integrals, so, the following discrete version of (3.4) is used in calculations:

sJ (X̃1, X̃2) =

∑N
i=1 min(µX1

(xi), µX2
(xi)) +

∑N
i=1 min(µX1

(xi), µX2
(xi))∑N

i=1 max(µX1
(xi), µX2

(xi)) +
∑N

i=1 max(µX1
(xi), µX2

(xi))
. (3.5)
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Theorem 4 The Jaccard similarity measure, sJ (X̃1, X̃2), satisfies reflexivity, symmetry,

transitivity and overlapping. ¥

Proof: Our proof of Theorem 4 is for the continuous case (3.4). The proof for the

discrete case (3.5) is very similar, and is left to the reader.

1. Reflexivity: Consider first the necessity, i.e., sJ (X̃1, X̃2) = 1 ⇒ X̃1 = X̃2. When

the areas of the FOUs are not zero, min(µX1
(x), µX2

(x)) < max(µX1
(x), µX2

(x));

hence, the only way that sJ (X̃1, X̃2) = 1 [see (3.4)] is when min(µX1
(x), µX2

(x)) =

max(µX1
(x), µX2

(x)) and min(µX1
(x), µX2

(x)) = max(µX1
(x), µX2

(x)), in which

case µX1
(x) = µX2

(x) and µX1
(x) = µX2

(x), i.e., X̃1 = X̃2.

Consider next the sufficiency, i.e., X̃1 = X̃2 ⇒ sJ (X̃1, X̃2) = 1. When X̃1 = X̃2,

i.e., µX1
(x) = µX2

(x) and µX1
(x) = µX2

(x), it follows that min(µX1
(x), µX2

(x))

= max(µX1
(x), µX2

(x)) and min(µX1
(x), µX2

(x)) = max(µX1
(x), µX2

(x)). Conse-

quently, it follows from (3.4) that sJ (X̃1, X̃2) = 1.

2. Symmetry: Observe from (3.4) that sJ (X̃1, X̃2) does not depend on the order of X̃1

and X̃2; so, sJ (X̃1, X̃2) = sJ (X̃2, X̃1).

3. Transitivity: If X̃1 ≤ X̃2 ≤ X̃3 (see Definition 15), then

sJ (X̃1, X̃2) =

∫
X min(µX1

(x), µX2
(x))dx +

∫
X min(µX1

(x), µX2
(x))dx∫

X max(µX1
(x), µX2

(x))dx +
∫
X max(µX1

(x), µX2
(x))dx

=

∫
X µX1

(x)dx +
∫
X µX1

(x)dx∫
X µX2

(x)dx +
∫
X µX2

(x)dx
(3.6)

sJ (X̃1, X̃3) =

∫
X min(µX1

(x), µX3
(x))dx +

∫
X min(µX1

(x), µX3
(x))dx∫

X max(µX1
(x), µX3

(x))dx +
∫
X max(µX1

(x), µX3
(x))dx
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=

∫
X µX1

(x)dx +
∫
X µX1

(x)dx∫
X µX3

(x)dx +
∫
X µX3

(x)dx
(3.7)

Because X̃2 ≤ X̃3, it follows that
∫
X µX2

(x)dx +
∫
X µX2

(x)dx ≤
∫
X µX3

(x)dx +∫
X µX3

(x)dx, and hence sJ (X̃1, X̃2) ≥ sJ (X̃1, X̃3).

4. Overlapping: If X̃1∩X̃2 6= ∅ (see Definition 16), ∃x such that min(µX1
(x), µX2

(x)) >

0, then, in the numerator of (3.4),

∫
X

min(µX1
(x), µX2

(x))dx +
∫

X
min(µX1

(x), µX2
(x))dx > 0 (3.8)

In the denominator of (3.4),

∫
X

max(µX1
(x), µX2

(x))dx +
∫

X
max(µX1

(x), µX2
(x))dx

≥
∫

X
min(µX1

(x), µX2
(x))dx +

∫
X

min(µX1
(x), µX2

(x))dx > 0 (3.9)

Consequently, sJ (X̃1, X̃2) > 0. On the other hand, when X̃1 ∩ X̃2 = ∅, i.e.,

min(µX1
(x),

µX2
(x)) = min(µX1

(x), µX2
(x)) = 0 for ∀x, then, in the numerator of (3.4),

∫
X

min(µX1
(x), µX2

(x))dx +
∫

X
min(µX1

(x), µX2
(x))dx = 0 (3.10)

Consequently, sJ (X̃1, X̃2) = 0. ¥
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3.2.5 Simulation Results

The 32 word FOUs shown in Fig. 2.12 are used in this section. The similarities among

all 32 words, computed using the Jaccard similarity measure in (3.4), are summarized in

Table 3.1. The numbers across the top of this table refer to the numbered words that are

in the first column of the table. Observe that the Jaccard similarity measure gives very

reasonable results, i.e., generally the similarity decreases monotonically as two words get

further away from each other1. The Jaccard similarity measure was also compared with

five other similarity measures in [150], and the results showed that to-date it is the best

one to use in CWW, because it is the only IT2 FS similarity measure that satisfies the

four desirable properties of a similarity measure.

The fact that so many of the 32 words are similar to many other words suggest that it

is possible to create many sub-vocabularies that cover the interval [0, 10]. Some examples

of five word vocabularies are given in [70].

1There are some cases where the similarity does not decrease monotonically, e.g., Words 8 and 9 in
the first row. This is because the distances among the words are determined by a ranking method (see
Section 3.3) which considers only the centroids but not the shapes of the IT2 FSs.
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3.3 Ranking Method Used As a Decoder

Though there are more than 35 reported different methods for ranking T1 FSs [142,143],

to the best knowledge of the authors, only one method on ranking IT2 FSs has been

published, namely Mitchell’s method in [91]. We will first introduce some reasonable

ordering properties for IT2 FSs, and then compare Mitchell’s method against them. A

new ranking method for IT2 FSs is proposed at the end of this section.

3.3.1 Reasonable Ordering Properties for IT2 FSs

Wang and Kerre [142,143] performed a comprehensive study of T1 FSs ranking methods

based on seven reasonable ordering properties for T1 FSs. When extended to IT2 FSs,

these properties are2:

P1. If X̃1 º X̃2 and X̃2 º X̃1, then X̃1 ∼ X̃2.

P2. If X̃1 º X̃2 and X̃2 º X̃3, then X̃1 º X̃3.

P3. If X̃1 ∩ X̃2 = ∅ and X̃1 is on the right of X̃2, then X̃1 º X̃2.

P4. The order of X̃1 and X̃2 is not affected by the other IT2 FSs under comparison.

P5. If X̃1 º X̃2, then3 X̃1 + X̃3 º X̃2 + X̃3.
2There is another property saying that “for any IT2 FS X̃1, X̃1 º X̃1;” however, it is not included

here since it sounds weird, though our centroid-based ranking method satisfies it.

3X̃1 + X̃3 is computed using α-cuts [64] and Extension Principle [179], i.e., let X̃α
1 , X̃α

3 and (X̃1 + X̃3)
α

be α-cuts on X̃1, X̃3 and X̃1 + X̃3, respectively; then, (X̃1 + X̃3)
α = X̃α

1 + X̃α
3 for ∀α ∈ [0, 1].
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P6. If X̃1 º X̃2, then4 X̃1X̃3 º X̃2X̃3.

where º means “larger than or equal to in the sense of ranking” and ∼ means “the same

rank.”

All the six properties are intuitive. P4 may look trivial, but it is worth emphasizing

because some ranking methods [142,143] first set up reference set(s) and then all FSs are

compared with the reference set(s). The reference set(s) may depend on the FSs under

consideration, so it is possible (but not desirable) that X̃1 º X̃2 when {X̃1, X̃2, X̃3} are

ranked whereas X̃1 ≺ X̃2 when {X̃1, X̃2, X̃4} are ranked.

3.3.2 Mitchell’s Method for Ranking IT2 FSs

Mitchell [91] proposed a ranking method for general type-2 FSs. When specialized to M

IT2 FSs X̃m (m = 1, . . . ,M), the procedure is:

1. Discretize the primary variable’s universe of discourse, DX̃ , into N points, that are

used by all X̃m, m = 1, . . . ,M .

2. Find H random embedded T1 FSs5, Xmh
e , h = 1, . . . ,H, for each of the M IT2 FSs

X̃m, as:

µXmh
e

(xn) = rmh(xn)× [µXm
(xn)−µXm

(xn)]+µXm
(xn) n = 1, 2, . . . , N (3.11)

4X̃1X̃3 is computed using α-cuts [64] and Extension Principle [179], i.e., let X̃α
1 , X̃α

3 and (X̃1X̃3)
α be

α-cuts on X̃1, X̃3 and X̃1X̃3, respectively; then, (X̃1X̃3)
α = X̃α

1 X̃α
3 for ∀α ∈ [0, 1].

5Visually, an embedded T1 FS of an IT2 FS is a T1 FS whose membership function lies within the
FOU of the IT2 FS. A more precise mathematical definition can be found in [83].
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where rmh(xn) is a random number chosen uniformly in [0, 1], and µXm
(xn) and

µXm
(xn) are the lower and upper memberships of X̃m at xn.

3. Form the HM different combinations of {X1h
e , X2h

e , . . . , XMh
e }i, i = 1, . . . ,HM .

4. Use a T1 FS ranking method to rank each of the MH {X1h
e , X2h

e , . . . , XMh
e }i. Denote

the rank of Xe
mh in {X1h

e , X2h
e , . . . , XMh

e }i as rmi.

5. Compute the final rank of X̃m as

rm =
1

HM

HM∑
i=1

rmi, m = 1, . . . ,M (3.12)

Observe from the above procedure that:

1. The output ranking, rm, is a crisp number; however, usually it is not an integer.

These rm (m = 1, . . . ,M) need to be sorted in order to find the correct ranking.

2. A total of HM T1 FS rankings must be evaluated before rm can be computed.

For our problem, where 32 IT2 FSs have to be ranked, even if H is chosen as

a small number, say 2, 232 ≈ 4.295 × 109 T1 FS rankings have to be evaluated,

and each evaluation involves 32 T1 FSs. This is highly impractical. Although two

fast algorithms are proposed in [91], because our FOUs have lots of overlap, the

computational cost cannot be reduced significantly. Note also that choosing the

number of realizations H as 2 is not meaningful; it should be much larger, and for

larger H, the number of rankings becomes astronomical.
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3. Because there are random numbers involved, rm is random and will change from

experiment to experiment. When H is large, some kind of stochastic convergence

can be expected to occur for rm (e.g., convergence in probability); however, as

mentioned above, the computational cost is prohibitive.

4. Because of the random nature of Mitchell’s ranking method, it only satisfies P3 of

the six reasonable properties proposed in Section 3.3.1.

3.3.3 A New Centroid-Based Ranking Method

A simple ranking method [144] based on the centroids of IT2 FSs is proposed in this

subsection.

Centroid-based ranking method: [144] First compute the average centroid for each

IT2 FS using (2.26) and then sort c(X̃i) to obtain the rank of X̃i. ¥

This ranking method can be viewed as a generalization of Yager’s first ranking method

for T1 FSs [164], which first computes the centroid of T1 FSs Xi and then ranks them.

Theorem 5 The centroid-based ranking method satisfies the first four reasonable proper-

ties. ¥

Proof: P1-P4 in Section 3.3.1 are proved in order.

P1. X̃1 º X̃2 means c(X̃1) ≥ c(X̃2) and X̃2 º X̃1 means c(X̃2) ≥ c(X̃1), and hence

c(X̃1) = c(X̃2), i.e., X̃1 ∼ X̃2.
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P2. For the centroid-based ranking method, X̃1 º X̃2 means c(X̃1) ≥ c(X̃2) and X̃2 º

X̃3 means c(X̃2) ≥ c(X̃3), and hence c(X̃1) ≥ c(X̃3), i.e., X̃1 º X̃3.

P3. If X̃1 ∩ X̃2 = ∅ and X̃1 is on the right of X̃2, then c(X̃1) > c(X̃2), i.e., X̃1 º X̃2.

P4. Because the order of X̃1 and X̃2 is completely determined by c(X̃1) and c(X̃2),

which have nothing to do with the other IT2 FSs under comparison, the order of

X̃1 and X̃2 is not affected by the other IT2 FSs. ¥

The centroid-based ranking method does not always satisfy P5 and P6. A counter-

example of P5 for X̃1 and X̃2 in Fig. 3.3(a) and X̃ ′
3 in Fig. 3.3(b) is shown in Fig. 3.3(c). In

Fig. 3.3(a), X1 = [0.05, 0.55, 2.55, 3.05], X1 = [1.05, 1.55, 1.55, 2.05, 0.6], X2 = [0, 1, 2, 3]

and X2 = [0.5, 1, 2, 2.5, 0.6]. Because c(X̃1) = 1.55 and c(X̃2) = 1.50, X̃1 º X̃2. In

Fig. 3.3(b), X
′
3 = [0, 5.5, 6.5, 7], X ′

3 = [6, 6.5, 6.5, 7, 0.6], X
′′
3 = [0, 1.5, 2, 3] and X ′′

3 =

[0.5, 1.5, 2, 2.5, 0.6]. In Fig. 3.3(c), c(X̃ ′
1) = 6.53 and c(X̃ ′

2) = 6.72 and hence X̃ ′
1 ¹ X̃ ′

2.

A counter-example of P6 for X̃1 and X̃2 in Fig. 3.3(a) and X̃ ′′
3 in Fig. 3.3(b) is shown in

Fig. 3.3(d), where c(X̃ ′′
1 ) = 3.44 and c(X̃ ′′

2 ) = 3.47 and hence X̃ ′′
1 ¹ X̃ ′′

2 . However, note

that these counter examples happen only when c(X̃1) and c(X̃2) are very close to each

other. For most cases, P5 and P6 are still satisfied.

In summary, the centroid-based ranking method satisfies three more of the reasonable

ordering properties than Mitchell’s method.
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Fig. 3.3: Counter examples for P5 and P6. (a) X̃1 (the solid curve) º X̃2 (the dashed
curve). (b) X̃ ′

3 used in demonstrating P5 and X̃ ′′
3 used in demonstrating P6. (c) X̃ ′

1 ¹ X̃ ′
2,

where X̃ ′
1 = X̃1 + X̃ ′

3 is the solid curve and X̃ ′
2 = X̃2 + X̃ ′

3 is the dashed curve. (d)
X̃ ′′

1 ¹ X̃ ′′
2 , where X̃ ′′

1 = X̃1X̃
′′
3 is the solid curve and X̃ ′′

2 = X̃2X̃
′′
3 is the dashed curve.

49



3.3.4 Comparative Study

In this section, the performances of the two IT2 FS ranking methods are compared using

the 32 word FOUs.

The ranking of the 32 word FOUs using this centroid-based method has already been

presented in Fig. 2.12. Observe that:

1. The six smallest terms are left shoulders, the six largest terms are right shoulders,

and the terms in-between have interior FOUs.

2. Visual examination shows that the ranking is reasonable; it also coincides with the

meanings of the words.

Because it is computationally prohibitive to rank all 32 words in one pass using

Mitchell’s method, only the first eight words in Fig. 2.12 were used to evaluate Mitchell’s

method. To be consistent, the T1 FS ranking method used in Mitchell’s method is a

special case of the centroid-based ranking method for IT2 FSs, i.e., the centroids of the

T1 FSs were computed and then were used to rank the corresponding T1 FSs. Rank-

ing results with H = 2 and H = 3 are shown in Fig. 3.4(a) and Fig. 3.4(b), respectively.

Words which have a different rank than that in Fig. 2.12 are shaded more darkly. Observe

that:

1. The ranking is different from that obtained from the centroid-based ranking method.

2. The rankings from H = 2 and H = 3 do not agree.
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In summary, the centroid-based ranking method for IT2 FSs seems to be a good choice

for the decoder in CWW decoder; however, note that it violates the guideline proposed at

the end of Section 3.1, i.e., it first converts each FOU to a crisp number and then ranks

them. To-date, an IT2 FS ranking method that can propagate FOU uncertainties does

not exist; hence, the centroid-based ranking method is used in this dissertation.

    Teeny−weeny    None to very little      A smidgen            Tiny        

    Very small         Very little           A bit              Little      

(a)

    Teeny−weeny    None to very little        Tiny             A smidgen     

    Very little        Very small            A bit              Little      

(b)

Fig. 3.4: Ranking of the first eight word FOUs using Mitchell’s method. (a) H = 2; (b)
H = 3.
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3.4 Classifier Used As a Decoder

Let X̃1 be the output of the CWW engine. An average subsethood based classifier can

be used to map X̃1 into a class, according to the following procedure:

1. Construct class-FOUs, i.e., find an IT2 FS to represent each class.

2. Compute the average subsethood of X̃1 in each class.

3. Map X̃1 into the class with the maximum average subsethood.

How to construct class-FOUs and how to compute average subsethood are explained next.

3.4.1 Construct Class-FOUs

To construct class-FOUs, a decoding vocabulary must first be established, one that con-

sists of the class names. Then, there are two ways to obtain FOUs for this vocabulary:

1. Construct class-FOUs from a survey : The Interval Approach introduced in Sec-

tion 2.3 can be used to map the interval survey data into IT2 FSs.

2. Construct class-FOUs from training : A training pair is {CWW engine output X̃i,

corresponding class Ci}. Assume that NT such training pairs are available, and

for an arbitrary set of class-FOUs, the outputs of the average subsethood based

classifier are C ′
i, i = 1, ..., NT . Genetic algorithms [35] can be used to optimize the

parameters of the class-FOUs so that the number of mismatches between Ci and

C ′
i is minimized. Assume there are M classes. Because each IT2 FS word model
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is defined by nine parameters (see Fig. 2.13), a total of 9M parameters need to be

found during training.

Example 6 Here the journal publication judgment advisor developed in [87, 88] is used

as an example to illustrate the two methods. X̃1 is the overall quality of a paper, and it

must be mapped into one of the three recommendation classes: accept, rewrite and reject.

1. Construct class-FOUs from a survey: Associate Editors and reviewers can be sur-

veyed to provide data intervals (on a 0–10 scale) for the three classes, after which

FOUs can be obtained from them.

2. Construct class-FOUs from training: Each paper in the training dataset would have

the following pair associated with it: {overall quality X̃i, publication recommenda-

tion}. The class-FOUs for accept, rewrite and reject can be found from the training

examples so that the number of misclassified X̃i by the journal publication judgment

advisor is minimized. ¥

3.4.2 Average Subsethood of IT2 FSs

Subsethood of FSs was first introduced by Zadeh [177] and then extended by Kosko [66],

who defined the subsethood of a T1 FS X1 in another T1 FS X2 as

ss(X1, X2) =
∑N

i=1 min(µX1(xi), µX2(xi))∑N
i=1 µX1(xi)

(3.13)
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Observe that ss(X1, X2) 6= ss(X2, X1), and ss(X1, X2) = 1 if and only if µX1(xi) ≤

µX2(xi) for ∀xi. Note also that ss(X1, X2) in (3.13) and sJ (X1, X2) in (3.3) have the

same numerator but different denominators.

Rickard et al. [110] extended Kosko’s definition of subsethood to IT2 FSs based on

the Representation Theorem in Section 2.2.2.

Definition 18 Let X̃1 and X̃2 be two IT2 FSs, and X1
e and X2

e be their embedded T1

FSs. Then, the subsethood of X̃1 in X̃2, SS(X̃1, X̃2), is defined as

SS(X̃1, X̃2) =
⋃

∀X1
e ,X2

e

ss(X1
e , X2

e )

=
⋃

∀X1
e ,X2

e

∑N
i=1 min(µX1

e
(xi), µX2

e
(xi))∑N

i=1 µX1
e
(xi)

≡ [ssl(X̃1, X̃2), ssr(X̃1, X̃2)] (3.14)

where

ssl(X̃1, X̃2) = min
∀X1

e ,X2
e

∑N
i=1 min(µX1

e
(xi), µX2

e
(xi))∑N

i=1 µX1
e
(xi)

= min
∀X1

e

∑N
i=1 min(µX1

e
(xi), µX2

(xi))∑N
i=1 µX1

e
(xi)

(3.15)

ssr(X̃1, X̃2) = max
∀X1

e ,X2
e

∑N
i=1 min(µX1

e
(xi), µX2

e
(xi))∑N

i=1 µX1
e
(xi)

= max
∀X1

e

∑N
i=1 min(µX1

e
(xi), µX2

(xi))∑N
i=1 µX1

e
(xi)

¥

(3.16)

The second parts of (3.15) and (3.16) are obvious because µX2
e
(xi) only appear in the

numerators.
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Definition 19 The average subsethood of X̃1 in X̃2, ss(X̃1, X̃2), is the center of SS(X̃1,

X̃2), i.e.,

ss(X̃1, X̃2) =
ssl(X̃1, X̃2) + ssr(X̃1, X̃2)

2
. ¥ (3.17)

To compute ss(X̃1, X̃2), ssl(X̃1, X̃2) and ssr(X̃1, X̃2) must first be obtained. Define

µXl
(xi) =



µX1
(xi), µX2

(xi) ≤ µX1
(xi)

µX1
(xi), µX2

(xi) ≥ µX1
(xi)

{µX1
(xi), µX1

(xi)}, µX1
(xi) < µX2

(xi) < µX1
(xi)

(3.18)

µXr(xi) =



µX1
(xi), µX2

(xi) ≤ µX1
(xi)

µX1
(xi), µX2

(xi) ≥ µX1
(xi)

µX2
(xi), µX1

(xi) < µX2
(xi) < µX1

(xi)

(3.19)

Then, (3.15) and (3.16) can be computed as [110,151]:

ssl(X̃1, X̃2) = min
µXl

(xi) in (3.18)

[∑N
i=1 min

(
µXl

(xi), µX2
(xi)

)∑N
i=1 µXl

(xi)

]
(3.20)

ssr(X̃1, X̃2) =

∑N
i=1 min

(
µXr(xi), µX2

(xi)
)

∑N
i=1 µXr(xi)

(3.21)

The derivations of (3.20) and (3.21) are given in Appendix B.

Note that ssr(X̃1, X̃2) has a closed-form solution; however, because for each xi ∈ Il =

{xi|µX1
(xi) < µX2

(xi) < µX1
(xi)}, µXl

(xi) can have two possible values, to compute
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ssl(X̃1, X̃2), 2L evaluations of the bracketed terms in (3.20) have to be performed, where

L is the number of elements in Il, and this can be a rather large number depending

upon L. Note, also, that even though only the third line of µXl
(xi) in (3.18) is used to

established Il, all three lines are used to compute ssl(X̃1, X̃2) because the summations

in both the numerator and denominator of the bracketed function use all N values of

µXl
(xi).

Example 7 Consider X̃1 and X̃2 shown in Fig. 3.5, where µX1
(xi), µX1

(xi), µX2
(xi),

µX2
(xi), µXl

(xi) and µXr(xi) are summarized in Table 3.2. Observe (see the i = 5 and

6 columns in Table 3.2) that Il = {x5, x6}, µXl
(x5) = {µX1

(x5), µX1
(x5)} = {0, 1} and

µXl
(x6) = {µX1

(x6), µX1
(x6)} = {0, 1}. Because L = 2, 2L = 4 evaluations of the

bracketed terms in (3.20) have to be performed before ssl(X̃1, X̃2) can be obtained:

• When µXl
(x5) = 0 and µXl

(x6) = 0,

∑10
i=1 min

(
µXl

(xi), µX2
(xi)

)∑10
i=1 µXl

(xi)
=

0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0
0 + 0.5 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0

= 0

• When µXl
(x5) = 0 and µXl

(x6) = 1,

∑10
i=1 min

(
µXl

(xi), µX2
(xi)

)∑10
i=1 µXl

(xi)
=

0 + 0 + 0 + 0 + 0 + 0.4 + 0 + 0 + 0 + 0
0 + 0.5 + 1 + 1 + 0 + 1 + 0 + 0 + 0 + 0

= 0.11

56



• When µXl
(x5) = 1 and µXl

(x6) = 0,

∑10
i=1 min

(
µXl

(xi), µX2
(xi)

)∑10
i=1 µXl

(xi)
=

0 + 0 + 0 + 0 + 0.2 + 0 + 0 + 0 + 0 + 0
0 + 0.5 + 1 + 1 + 1 + 0 + 0 + 0 + 0 + 0

= 0.06

• When µXl
(x5) = 1 and µXl

(x6) = 1,

∑10
i=1 min

(
µXl

(xi), µX2
(xi)

)∑10
i=1 µXl

(xi)
=

0 + 0 + 0 + 0 + 0.2 + 0.4 + 0 + 0 + 0 + 0
0 + 0.5 + 1 + 1 + 1 + 1 + 0 + 0 + 0 + 0

= 0.13

It follows that ssl(X̃1, X̃2) = min{0, 0.11, 0.06, 0.13} = 0. ssr(X̃1, X̃2) has a closed-form

solution, i.e.,

ssr(X̃1, X̃2) =
0 + 0 + 0 + 0.2 + 0.4 + 0.6 + 0.5 + 0 + 0 + 0

0 + 0 + 0.3 + 0.6 + 0.4 + 0.6 + 0.5 + 0 + 0 + 0
= 0.71

and hence ss(X̃1, X̃2) = (0 + 0.71)/2 = 0.36. ¥

0 1 2 3 4 5 6 7 8 9 10
0

0.6
0.8

1

x

u
X̃1 X̃2

Fig. 3.5: X̃1 and X̃2 used to compute ss(X̃1, X̃2).
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Table 3.2: µX1
(xi), µX1

(xi), µX2
(xi), µX2

(xi), µXl
(xi) and µXr(xi) for X̃1 and X̃2 shown

in Fig. 3.5.
i 1 2 3 4 5 6 7 8 9 10
xi 1 2 3 4 5 6 7 8 9 10

µX1
(xi) 0 0 0.3 0.6 0 0 0 0 0 0

µX1
(xi) 0 0.5 1 1 1 1 0.5 0 0 0

µX2
(xi) 0 0 0 0 0.2 0.4 0.6 0.8 0 0

µX2
(xi) 0 0 0 0.2 0.4 0.6 0.8 1 1 0

µXl
(xi) 0 0.5 1 1 {0, 1} {0, 1} 0 0 0 0

µXr(xi) 0 0 0.3 0.6 0.4 0.6 0.5 0 0 0

3.4.3 An Efficient Algorithm for Computing ssl(X̃1, X̃2)

An efficient algorithm for computing ssl(X̃1, X̃2) is proposed in [151] and given on the next

page. Its idea is similar to [28,75]. The efficient algorithm can reduce the computational

cost significantly, especially when L is large [151].

Extensive simulations have been performed to compare the performances of the ex-

haustive computation approach in [110] [i.e., compute all possible 2L combinations of

the bracketed term in (3.20) and then choose the minimum] and the efficient algorithm

for computing ssl(X̃1, X̃2). The platform was an IBM T43 notebook computer running

Windows XP X32 Edition and Matlab 7.4.0 with Intel Pentium M 2GHz processors and

1GB RAM.

In the simulations, N , the number of samples in the x domain, were chosen to be

{10, 20, 50, 100, 1000, 10000}. For each N , 1,000 Monte Carlo simulations were used to

compute ssl(X̃1, X̃2), i.e., for each N , 1,000 µX2
(xi) were generated using Matlab func-

tion rand(1000,1), and 1,000 pairs of {µX1
(xi), µX1

(xi)} were generated by using Matlab

function rand(1000,2). All µX2
(xi), µX1

(xi) and µX1
(xi) were constrained in [0, 1], and
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Algorithm 1 Efficient Algorithm for Computing ssl(X̃1, X̃2)
Initialization:
Find Il = {xi|µX1

(xi) < µX2
(xi) < µX1

(xi)}, µXl
(xi)

µXl
(xi) =


µX1

(xi), µX2
(xi) ≤ µX1

(xi)
µX1

(xi), µX2
(xi) ≥ µX1

(xi)
µX1

(xi), xi ∈ Il

num =
∑N

i=1
min(µXl

(xi), µX2
(xi))

den =
∑N

i=1
µXl

(xi)
ssl(X̃1, X̃2) = num/den
ssl0 = 1
Iteration:
while ssl0 > ssl(X̃1, X̃2)

set ssl0 = ssl(X̃1, X̃2)
for each xj ∈ Il

if µX1
(xj) is used in the current ssl(X̃1, X̃2)

replace µX1
(xj) by µX1

(xj) and keep all other items in ssl(X̃1, X̃2) the same, i.e.,

num′ = num − min(µX1
(xj), µX2

(xj)) + min(µX1
(xj), µX2

(xj))

den′ = den − µX1
(xj) + µX1

(xj)

else
replace µX1

(xj) by µX1
(xj) and keep all other items in ssl(X̃1, X̃2) the same, i.e.,

num′ = num − min(µX1
(xj), µX2

(xj)) + min(µX1
(xj), µX2

(xj))

den′ = den − µX1
(xj) + µX1

(xj)

end if
ss′l(X̃1, X̃2) = num′/den′

if ss′l(X̃1, X̃2) < ssl(X̃1, X̃2)
ssl(X̃1, X̃2) = ss′l(X̃1, X̃2)
num = num′

den = den′

end if
end for

end while
return ssl(X̃1, X̃2)
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µX2
(xi) were independent of µX1

(xi) and µX1
(xi). To make sure µX1

(xi) ≤ µX1
(xi), each

pair of {µX1
(xi), µX1

(xi)} was checked and the smaller value was assigned to µX1
(xi) and

the larger value was assigned to µX1
(xi).

The computation time and average number of iterations6 for the two algorithms are

shown in Table 3.3 for different N . Observe that the efficient algorithm outperforms

the exhaustive computation approach significantly, and it needs only a few iterations to

converge.

Table 3.3: Computation time and average number of iterations for the two algorithms
used to compute ssl(X̃1, X̃2). The results for N ≥ 100 in the exhaustive computation
approach are not shown because 2L was too large for the computations to be performed.

Exhaustive Computation Approach Efficient Algorithm
N

Avg. Time (sec) Avg. 2L Avg. Time (sec) Avg. No. of Iterations
10 0.0016 10 0.0001 1.8322
20 0.0331 97 0.0001 2.0451
50 17.8280 53,232 0.0001 2.2173
100 — — 0.0001 2.3937

1,000 — — 0.0004 2.9998
10,000 — — 0.0040 3.0460

3.4.4 Properties of the Average Subsethood

The Jaccard similarity measure and the average subsethood bare a strong resemblance,

hence it is interesting to check ss(X̃1, X̃2) against the four properties of sJ (X̃1, X̃2) (Sec-

tion 3.2.2) — reflexivity, symmetry, transitivity and overlapping. First, several definitions

that are used in the average subsethood properties are introduced.
6The number of iterations is defined as the number of times the while loop in the Efficient Algorithm

is executed before ssl(X̃1, X̃2) is found.
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The following theorem describes four properties for average subsethood, and the proof

is given in the Appendix.

Theorem 6 ss(X̃1, X̃2) defined in (3.17) has the following properties:

1. Reflexivity: ss(X̃1, X̃2) = 1 ⇒ X̃1 ≤ X̃2.

2. Asymmetry: Generally ss(X̃1, X̃2) 6= ss(X̃2, X̃1).

3. Transitivity: If X̃1 ≤ X̃2, then ss(X̃3, X̃1) ≤ ss(X̃3, X̃2) for any X̃3.

4. Overlapping: If X̃1 ∩ X̃2 6= ∅, then ss(X̃1, X̃2) > 0; otherwise, ss(X̃1, X̃2) = 0. ¥

Proof: The four properties in Theorem 6 are considered separately.

1. Reflexivity: ss(X̃1, X̃2) = 1 means ss(Xe
1 , Xe

2) = 1 for every pair of embedded

T1 FSs Xe
1 and Xe

2 , because otherwise ssl(X̃1, X̃2) = min
∀Xe

1 ,Xe
2

ss(Xe
1 , Xe

2) < 1 and

hence ss(X̃1, X̃2) < 1. Choose Xe
1 = X1 and Xe

2 = X2; hence, it follows, from

ss(Xe
1 , Xe

2) = 1, that ss(X1, X2) = 1, i.e., µX1
(xi) ≤ µX2

(xi) for ∀xi [see (3.13)

and the comments under it]. This means that X̃1 is completely below or touching

X̃2 [see Fig. 3.2(a)]. Consequently, X̃1 ≤ X̃2.

Note that X̃1 ≤ X̃2 does not necessarily mean ss(X̃1, X̃2) = 1, as illustrated by

Example 8.

2. Asymmetry: From (3.14), it is true that

SS(X̃1, X̃2) =
⋃

∀Xe
1 ,Xe

2

∑N
i=1 min(µXe

1
(xi), µXe

2
(xi))∑N

i=1 µXe
1
(xi)

(3.22)
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and

SS(X̃2, X̃1) =
⋃

∀Xe
1 ,Xe

2

∑N
i=1 min(µXe

1
(xi), µXe

2
(xi))∑N

i=1 µXe
2
(xi)

(3.23)

i.e., ss(X̃1, X̃2) and ss(X̃2, X̃1) have the same numerators but different denomina-

tors. Generally, SS(X̃1, X̃2) 6= SS(X̃2, X̃1); hence, ss(X̃1, X̃2) 6= ss(X̃2, X̃1), as

illustrated by Example 9.

3. Transitivity: According to Definition 15, X̃1 ≤ X̃2 means µX1
(xi) ≤ µX2

(xi) and

µX1
(xi) ≤ µX2

(xi) for ∀xi; hence, for an arbitrary IT2 FS X̃3, it follows from (3.15)

and (3.16), that:

ssl(X̃3, X̃1) = min
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX1

(xi))∑N
i=1 µXe

3
(xi)

≤ min
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX2

(xi))∑N
i=1 µXe

3
(xi)

= ssl(X̃3, X̃2) (3.24)

ssr(X̃3, X̃1) = max
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX1

(xi))∑N
i=1 µXe

3
(xi)

≤ max
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX2

(xi))∑N
i=1 µXe

3
(xi)

= ssr(X̃3, X̃2) (3.25)

Consequently, ss(X̃3, X̃1) ≤ ss(X̃3, X̃2). The equality holds when X̃1 and X̃2 are

the same, or X̃3 ≤ X̃1 (and hence X̃3 ≤ X̃2), as illustrated by Example 10.
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4. Overlapping: According to Definition 16, X̃1 and X̃2 overlap if min(µX1
(xi), µX2

(xi))

> 0 for at least one xi; hence, if X̃1 ∩ X̃2 6= ∅, then

ssr(X̃1, X̃2) = max
∀Xe

1

∑N
i=1 min(µXe

1
(xi), µX2

(xi))∑N
i=1 µXe

1
(xi)

= max

{∑N
i=1 min(µX1

(xi), µX2
(xi))∑N

i=1 µX1
(xi)

,

max
∀Xe

1 6=X1

∑N
i=1 min(µXe

1
(xi), µX2

(xi))∑N
i=1 µXe

1
(xi)

}

≥
∑N

i=1 min(µX1
(xi), µX2

(xi))∑N
i=1 µX1

(xi)

> 0 (3.26)

Consequently, ss(X̃1, X̃2) > 0.

On the other hand, according to Lemma 3, when X̃1∩X̃2 = ∅,
∑N

i=1 min(µXe
1
(xi),

µX2
(xi)) = 0 for all embedded T1 FSs Xe

1 ; hence, from (3.15) it follows that

ssl(X̃1, X̃2) = 0. Similarly, when X̃1 ∩ X̃2 = ∅,
∑N

i=1 min(µXe
1
(xi), µX2

(xi)) = 0

for all embedded T1 FSs Xe
1 ; hence, from (3.16) it follows that ssr(X̃1, X̃2) = 0. As

a result, ss(X̃1, X̃2) = 0. ¥

Example 8 For X̃1 and X̃2 in Fig. 3.2(a), because µX2
(xi) ≥ µX1

(xi) for ∀xi, it follows

that µXl
(xi) = µX1

(xi) [see (3.18)], and hence (3.20) becomes ssl(X̃1, X̃2) =
∑N

i=1 µX1
(xi)

/
∑N

i=1 µX1
(xi) = 1. Similarly, because µX2

(xi) ≥ µX1
(xi) for ∀xi, it follows that

µXr(xi) = µX1
(xi) [see (3.19)], and hence (3.21) becomes ssr(X̃1, X̃2) =

∑N
i=1 µX1

(xi)

/
∑N

i=1 µX1
(xi) = 1. Consequently, the average subsethood is ss(X̃1, X̃2) = 1.
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For X̃1 and X̃2 in Fig. 3.2(b), because µX1
(xi) ≤ µX2

(xi) ≤ µX1
(xi) for ∀xi, the

efficient algorithm is needed to compute ssl(X̃1, X̃2) and the result is ssl(X̃1, X̃2) = 0.72.

Because µX2
(xi) ≥ µX1

(xi) for ∀xi, it follows that µXr(xi) = µX1
(xi), and hence (3.21)

becomes ssr(X̃1, X̃2) =
∑N

i=1 µX1
(xi)/

∑N
i=1 µX1

(xi) = 1. Consequently, the average sub-

sethood is ss(X̃1, X̃2) = 0.86, i.e., X̃1 ≤ X̃2 does not necessarily mean ss(X̃1, X̃2) = 1.

¥

Example 9 Consider again X̃1 and X̃2 in Fig. 3.2(a). Example 8 has shown that

ss(X̃1, X̃2) = 1. This example shows ss(X̃2, X̃1) < 1, and hence ss(X̃1, X̃2) 6= ss(X̃2, X̃1).

Let X ′
l be the embedded T1 FS of X̃2 from which ssl(X̃2, X̃1) is computed, and its MF

be µX′
l
(xi). Then, by analogy to Xl in (3.18),

µX′
l
(xi) =



µX2
(xi), µX1

(xi) ≤ µX2
(xi)

µX2
(xi), µX1

(xi) ≥ µX2
(xi)

µX2
(xi) or µX2

(xi), xi ∈ I ′l

(3.27)

where I ′l ≡ {xi|µX2
(xi) < µX1

(xi) < µX2
(xi)}. Because in Fig. 3.2(a) µX1

(xi) ≤ µX2
(xi)

for ∀xi, it follows that µX′
l
(xi) = µX2

(xi) for ∀xi. Consequently,

ssl(X̃2, X̃1) = min
X′

l in (3.27)

∑N
i=1 min(µX′

l
(xi), µX1

(xi))∑N
i=1 µX′

l
(xi)

=

∑N
i=1 min(µX2

(xi), µX1
(xi))∑N

i=1 µX2
(xi)

=
∑N

i=1 µX1
(xi)∑N

i=1 µX2
(xi)

< 1 (3.28)
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Similarly, it can be shown that ssr(X̃2, X̃1) < 1; hence, ss(X̃2, X̃1) < 1. ¥

Example 10 Consider again X̃1 and X̃2 in Fig. 3.2(a), which are also depicted in

Fig. 3.6. This example shows that when X̃1 ≤ X̃2, ss(X̃3, X̃1) ≤ ss(X̃3, X̃2) for an

arbitrary X̃3.

2
X 

1
X 

x
0  1  2  3  4  5  6  7  8  9

1
3
X u

(a)

2
X 

1
X 

x
0  1  2  3  4  5  6  7  8  9

1
3
X u

(b)

Fig. 3.6: (a) X̃1 ≤ X̃2 and ss(X̃3, X̃1) < ss(X̃3, X̃2); (b) X̃1 ≤ X̃2 and ss(X̃3, X̃1) =
ss(X̃3, X̃2) = 1. In both figures, X̃1 is represented by the solid curves, X̃2 is represented
by the dashed curves, and X̃3 is represented by the dash-dotted curves.

For X̃3 shown in Fig. 3.6(a),

ssl(X̃3, X̃1) = min
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX1

(xi))∑N
i=1 µXe

3
(xi)

=
∑N

i=1 µX1
(xi)∑N

i=1 µX3
(xi)

< 1 (3.29)

ssr(X̃3, X̃1) = max
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX1

(xi))∑N
i=1 µXe

3
(xi)

=

∑N
i=1 µX1

(xi)∑N
i=1 µX3

(xi)
< 1 (3.30)

and hence ss(X̃3, X̃1) < 1. On the other hand,

ssl(X̃3, X̃2) = min
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX2

(xi))∑N
i=1 µXe

3
(xi)

= min
∀Xe

3

∑N
i=1 µXe

3
(xi)∑N

i=1 µXe
3
(xi)

= 1 (3.31)

ssr(X̃3, X̃2) = max
∀Xe

3

∑N
i=1 min(µXe

3
(xi), µX2

(xi))∑N
i=1 µXe

3
(xi)

= max
∀Xe

3

∑N
i=1 µXe

3
(xi)∑N

i=1 µXe
3
(xi)

= 1 (3.32)
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and hence ss(X̃3, X̃2) = 1, i.e., ss(X̃3, X̃1) < ss(X̃3, X̃2).

Similarly, it is easy to show that for X̃1, X̃2 and X̃3 in Fig. 3.6(b), ss(X̃3, X̃1) =

ss(X̃3, X̃2) = 1. In summary, ss(X̃3, X̃1) ≤ ss(X̃3, X̃2) when X̃1 ≤ X̃2. ¥

3.4.5 Why Average Subsethood Instead of Similarity

Subsethood and similarity are closely related. A natural question then, is: Why should

subsethood be used instead of similarity in classification?

Firstly, subsethood is conceptually more appropriate for a classifier, because it defines

the degree that X̃1 is contained in a class. It is not reasonable to compare the similarity

between X̃1 and the class-FOUs because they belong to different domains, e.g., X̃1 repre-

sents the overall quality of a paper, whereas a class-FOU represents a recommendation.

Secondly, subsethood as a classifier gives more reasonable results, as illustrated by the

following:

Example 11 Consider again the journal publication judgment advisor developed in [153].

The overall paper quality, X̃1, and the three class-FOUs are shown in Fig. 3.7. It is

visually clear that X̃1 should be mapped to “Accept.”

In this example, X̃2 ≡ Accept. Instead of computing ssl(X̃1, X̃2) and ssr(X̃1, X̃2) from

(3.20) and (3.21), they can be easily computed directly from (3.15) and (3.16), because,

for ∀X1
e (see Fig. 3.7)

min(µX1
e
(xi), µX2

(xi)) = µX1
e
(xi) (3.33)
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min(µX1
e
(xi), µX2

(xi)) = µX1
e
(xi) (3.34)

hence,

ssl(X̃1, X̃2) = min
∀X1

e

∑N
i=1 µX1

e
(xi)∑N

i=1 µX1
e
(xi)

= 1 (3.35)

ssr(X̃1, X̃2) = max
∀X1

e

∑N
i=1 µX1

e
(xi)∑N

i=1 µX1
e
(xi)

= 1 (3.36)

so that the average subsethood of X̃1 in “Accept” is 1. This indicates that this paper

should be mapped unequivocally into class “Accept”, which is consistent with our visual

recommendation.

Next, let us compute sJ (X̃1, X̃2) by using (3.4). Because (see Fig. 3.7)

∫
X

min(µX1
(x), µX2

(x))dx +
∫

X
min(µX1

(x), µX2
(x))dx

=
∫

X
µX1

(x)dx +
∫

X
µX1

(x)dx (3.37)

and

∫
X

max(µX1
(x), µX2

(x))dx +
∫

X
max(µX1

(x), µX2
(x))dx

=
∫

X
µX2

(x))dx +
∫

X
µX2

(x))dx (3.38)
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it follows that

sJ (X̃1, X̃2) =

∫
X µX1

(x)dx +
∫
X µX1

(x)dx∫
X µX2

(x))dx +
∫
X µX2

(x))dx
. (3.39)

For X̃1 in Fig. 3.7, one can compute the similarity between X̃1 and “Accept” as 0.43.

Moreover, as X̃1 moves towards the right end of the domain, i.e., the overall quality of

the paper gets better, the numerator of sJ (X̃1, X̃2) decreases whereas the denominator

remains the same; hence, the similarity between X̃1 and “Accept” decreases, which is

counter-intuitive.

Consequently, subsethood as a classifier gives much more reasonable results than sim-

ilarity for this example. ¥

0 2 4 6 8 10
0

1
Reject Rewrite Accept

y

u
X̃1

Fig. 3.7: Classifier as a decoder for the journal publication judgment advisor. X̃1 is the
overall quality of a paper.
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Chapter 4

Novel Weighted Averages As a

CWW Engine for MADM

Recall the Per-C depicted in Fig. 1.2, which consists of three components: encoder, de-

coder and CWW engine. The encoder transforms words into IT2 FSs that activate a

CWW engine, as has been discussed in Section 2.3. The decoder maps the output of

the CWW engine into a word and some accompanying data, as has been discussed in

Chapter 3. The CWW engine maps IT2 FSs to IT2 FSs. There can be different kinds

of CWW engines, e.g., novel weighted averages (NWAs) and perceptual reasoning. The

NWAs are introduced in this chapter.
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4.1 Novel Weighted Averages (NWAs)

The weighted average (WA) is arguably the earliest and still most widely used form of

aggregation or fusion. We remind the reader of the well-known formula for the WA, i.e.,

y =
∑n

i=1 xiwi∑n
i=1 wi

, (4.1)

in which wi are the weights (real numbers) that act upon the sub-criteria xi (real num-

bers). In many situations, however, providing crisp numbers for either the sub-criteria

or the weights is problematic (there could be uncertainties about them), and it is more

meaningful to provide intervals, T1 FSs, IT2 FSs, or a mixture of all of these, for the

sub-criteria and weights.

Definition 20 An NWA is a WA in which at least one sub-criterion or weight is not a

single real number, but is instead an interval, T1 FS or an IT2 FS, in which case such

sub-criteria, weights, and the WA are called novel models. ¥

How to compute (4.1) for these novel models is the main subject of this chapter.

What makes the computations challenging is the appearance of novel weights in both the

numerator and denominator of (4.1). So, returning to the issue about normalized versus

un-normalized weights, while everyone knows how to normalize a set of n numerical

weights (just divide each weight by the sum of all of the weights) it is not known how to

normalize a set of n novel weights.
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Because there can be four possible models for sub-criteria or weights, there can be 16

different WAs, as summarized in Fig. 4.1.
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Fig. 4.1: Matrix of possibilities for a WA.

Definition 21 When at least one sub-criterion or weight is modeled as an interval, and

all other sub-criteria or weights are modeled by no more than such a model, the resulting

WA is called an Interval WA (IWA). ¥

Definition 22 When at least one sub-criterion or weight is modeled as a T1 FS, and all

other sub-criteria or weights are modeled by no more than such a model, the resulting WA

is called a Fuzzy WA (FWA). ¥

Definition 23 When at least one sub-criterion or weight is modeled as an IT2 FS, the

resulting WA is called a Linguistic WA (LWA). ¥

Definition 20 (Continued): By a NWA is meant an IWA, FWA or LWA. ¥
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From Fig. 4.1 it should be obvious that contained within the LWA are all of the other

NWAs, suggesting that one should focus on the LWA and then view the other NWAs as

its special cases (a top-down approach). Although this is possible, our approach will be

to study NWAs from the bottom up, i.e. from the IWA to the FWA to the LWA, because

(this is proved in Sections 4.3 and 4.4) the computation of a FWA uses a collection of

IWAs, and the computation of a LWA uses two FWAs.

In order to reduce the number of possible derivations from 15 (the AWA is excluded)

to three, it is assumed that: for the IWA all sub-criteria and weights are modeled as

intervals, for the FWA all sub-criteria and weights are modeled as T1 FSs, and for the

LWA all sub-criteria and weights are modeled as IT2 FSs.

4.2 Interval Weighted Average (IWA)

In (4.1) let

xi ∈ [ai, bi] i = 1, ..., n (4.2)

wi ∈ [ci, di] i = 1, ..., n (4.3)

We associate interval sets Xi and Wi with (4.2) and (4.3), respectively, and refer to them

as intervals.

The WA in (4.1) is now evaluated over the Cartesian product space

DX1 × DX2 × · · · × DXn × DW1 × DW2 × · · · × DWn .
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Regardless of the fact that this requires an uncountable number of evaluations1, the result-

ing IWA, YIWA, will be a closed interval of non-negative real numbers, and is completely

defined by its two end-points, yL and yR, i.e.,

YIWA = [yL, yR] (4.4)

Because xi (i = 1, ..., n) appear only in the numerator of (4.1), the smallest (largest) value

of each xi is used to find yL (yR), i.e.,

yL = min
∀wi∈[ci,di]

∑n
i=1 aiwi∑n
i=1 wi

(4.5)

yR = max
∀wi∈[ci,di]

∑n
i=1 biwi∑n
i=1 wi

(4.6)

where the notations under min and max in (4.5) and (4.6) mean that i ranges from 1 to

n, and each wi ranges from ci to di.

It has been shown [83] that that yL and yR can be represented as

yL =

∑L∗(α)
i=1 aidi +

∑n
i=L∗(α)+1 aici∑L∗(α)

i=1 di +
∑n

i=L∗(α)+1 ci

(4.7)

yR =

∑R∗(α)
i=1 bici +

∑n
i=R∗(α)+1 bidi∑R∗(α)

i=1 ci +
∑n

i=R∗(α)+1 di

(4.8)

1Unless all of the DXi and DWi are first discretized, in which case there could still be an astronomically
large but countable number of evaluations of (4.1), depending upon the number of terms in (4.1) (i.e., n)
and the discretization size.
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in which L∗(α) and R∗(α) are switch points that are found by using either KM or EKM

Algorithms. In order to use these algorithms, {a1, ..., an} and {b1, ..., bn} must be sorted

in increasing order, respectively; hence, in the sequel, it is always assumed that

a1 ≤ a2 ≤ · · · ≤ an (4.9)

b1 ≤ b2 ≤ · · · ≤ bn (4.10)

Example 12 Suppose for n = 5, {xi}|i=1,...,5 = {8, 7, 5, 4, 1} and {wi}|i=1,...,5 = {2, 1, 8, 4,

6}, so that the arithmetic WA yAWA = 4.14. Let λ denote any of these crisp numbers. In

this example, for the IWA, λ → [λ − δ, λ + δ], where δ may be different for different λ,

i.e.,

{xi}|i=1,...,5 → {[8.2, 9.8], [5.8, 8.2], [2.0, 8.0], [3.0, 5.0], [0.5, 1.5]}

{wi}|i=1,...,5 → {[1.0, 3.0], [0.6, 1.4], [7.1, 8.9], [2.4, 5.6], [5.0, 7.0]}

It follows that YIWA = [2.02, 6.36]. Note that the average of YIWA is 4.19, which is very

close to the value of yAWA . The important difference between yAWA and YIWA is that the

uncertainties about the sub-criteria and weights have led to an uncertainty band for the

IWA, and such a band may play a useful role in subsequent decision-making. ¥

Finally, the following is a useful expressive way to summarize the IWA:

YIWA ≡
∑n

i=1 XiWi∑n
i=1 Wi

(4.11)
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where Xi and Wi are intervals whose elements are defined in (4.2) and (4.3), respectively,

and YIWA is also an interval. Of course, in order to explain the right-hand side of this

expressive equation, one needs (4.4)-(4.6) and their accompanying discussions.

4.3 Fuzzy Weighted Average (FWA)

As for the IWA, let

xi ∈ [ai, bi] i = 1, ..., n (4.12)

wi ∈ [ci, di] i = 1, ..., n (4.13)

but, unlike the IWA, where the membership grade for each xi and wi is 1, now the

membership grade for each xi = x′
i and wi = w′

i is µXi
(x′

i) and µWi
(w′

i), respectively. So,

now, T1 FSs Xi and Wi and their MFs µXi
(xi) and µWi

(wi) are associated with (4.12)

and (4.13), respectively.

Again, the WA in (4.1) is evaluated over the Cartesian product space

DX1 × DX2 × · · · × DXn × DW1 × DW2 × · · · × DWn ,

making use of µX1
(x1), µX2

(x2), ..., µXn
(xn) and µW1

(w1), µW2
(w2), ..., µWn

(wn), the result

being a specific numerical value, y, as well as a degree of membership, µYFWA
(y). How
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to compute the latter will be explained in Section 4.3.3 below. The result of each pair of

computations is the pair (y, µYFWA
(y)), i.e.,

{
(x1, µX1

(x1)), ..., (xn, µXn
(xn)), (w1, µW1

(w1)), ..., (wn, µWn
(wn))

}
→

(
y =

∑n
i=1 xiwi∑n
i=1 wi

, µYFWA
(y)

)
(4.14)

When this is done for all elements in the Cartesian product space, the FWA, YFWA, is

obtained. By this explanation, observe that YFWA is itself a T1 FS that is characterized

by its MF µYFWA
(y).

The FWA is a function of T1 FSs. The theory for computing any function of T1 FSs

is introduced next. It uses Zadeh’s Extension Principle [179].

4.3.1 Extension Principle

The Extension Principle was introduced by Zadeh in 1975 [179] and is an important tool

in FS theory. It lets one extend mathematical relationships between non-fuzzy variables

to fuzzy variables. Suppose, for example, one is given MFs for the FSs small and light and

wants to determine the MF for the FS obtained by multiplying these FSs, i.e., small ×

light. The Extension Principle tells us how to determine the MF for small × light by

making use of the non-fuzzy mathematical relationship y = x1x2 in which the FS small

plays the role of x1 and the FS light plays the role of x2.

Consider first a function of a single variable, y = f(x), where x ∈ DX and y ∈ DY .

A T1 FS X is given, whose universe of discourse is also DX , and whose MF is µX (x),
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∀x ∈ DX . The Extension Principle [49, 141] states the image of X under the mapping

f(x) can be expressed as another T1 FS Y , where

µY (y) =


max

∀x|y=f(x)
µX (x)

0 otherwise

(4.15)

The condition in (4.15) that “µY (y) = 0 otherwise” means that if there are no values

of x for which a specific value of y can be reached then the MF for that specific value of

y is set equal to zero. Only those values of y that satisfy y = f(x) can be reached.

So far, the Extension Principle has been stated just for a mapping of a single variable.

Next, consider a function of more than one variable. Suppose that y = f(x1, x2, ..., xr),

where xi ∈ DXi (i = 1, ..., r). Let X1, X2, ..., Xr be T1 FSs in DX1 , DX2 , ..., DXr . Then,

the Extension Principle lets us induce from these r T1 FSs a T1 FS Y on DY , through

f , i.e. Y = f(X1, X2, ..., Xr), such that

µY (y) =


sup

∀(x1,x2,...,xr)|y=f(x1,x2,...,xr)
min {µX1(x1), µX2(x2), ..., µXr(xr)}

0 otherwise

(4.16)

In order to implement (4.16), one must first find the values of x1, x2, ..., xr for which

y = f(x1, x2, ..., xr), after which µX1(x1), . . . , µXr(xr) are computed at those values, and

then min {µX1(x1), µX2(x2), ..., µXr(xr)} is computed. If more than one set of x1, x2, ..., xr

satisfy y = f(x1, x2, ..., xr), then this is repeated for all of them and the largest of the

minima is chosen as µY (y). Usually, the evaluation of (4.16) is very difficult, and the
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challenge is to find easier ways to do it than just described. The Function Decomposition

Theorem that is given in Theorem 7 below is one such way.

Note, finally, that when it is necessary to extend an operation of the form f(X1, X2,

..., Xr), where Xi are T1 FSs, the individual operations like addition, multiplication,

division, etc. that are involved in f are not extended. Instead, the following is used [as

derived from (4.16)]:

f(X1, X2, ..., Xr) =
∫

x1∈DX1

∫
x2∈DX2

· · ·
∫

xr∈DXr

µY (y)/f(x1, x2, ..., xr) (4.17)

where µY (y) is defined in (4.16).

For example, if y = f(x1, x2) ≡ (c1x1 + c2x2)/(x1 + x2), we write the extension of f

to T1 FSs X1 and X2 as

Y = f(X1, X2) =
∫

x1∈DX1

∫
x2∈DX2

µY (y)
/

c1x1 + c2x2

x1 + x2
(4.18)

where

µY (y) =


sup

∀(x1,x2)|y=f(x1,x2)
min {µX1(x1), µX2(x2)}

0 otherwise

(4.19)

If we write it as Y = f(X1, X2) ≡ (c1X1 + c2X2)/(X1 + X2), this does not mean that

f(X1, X2) is computed by adding and dividing the T1 FSs. It is merely an expressive

equation computed by (4.18).
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4.3.2 Computing a Function of T1 FSs Using α-cuts

The ultimate objective of this section is to show that a function of T1 FSs can be expressed

as the union (over all values of α) of that function applied to the α-cuts of the T1 FSs. The

original idea, stated as the α-cut Decomposition Theorem, is explained in [64]. Though

that theorem does not require the T1 FSs to be normal, it does not point out explicitly

how sub-normal T1 FSs should be handled. Because this theorem is so important, it is

proved here for the convenience of the readers. Although the proof is very similar to that

in [64], it emphasizes sub-normal cases as it is useful in Section 4.4.2.

We have just seen that the Extension Principle states that when the function y =

f(x1, . . . , xr) is applied to T1 FSs Xi (i = 1, . . . , r), the result is another T1 FS, Y , whose

membership function is given by (4.16). Because µY (y) is a T1 FS, it can therefore be

expressed in terms of its α-cuts as follows:

Y (α) = {y |µY (y) ≥ α} (4.20)

IY (α)(y) =


1, ∀ y ∈ Y (α)

0, ∀ y /∈ Y (α)
(4.21)

µY (y|α) = αIY (α)(y) (4.22)
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µY (y) =
⋃

α∈[0,1]

µY (y|α) (4.23)

In order to implement (4.21)-(4.23), a method is needed to compute Y (α), and this is

provided in the following:

Theorem 7 (Function Decomposition Theorem [64]) Let Y = f(X1, . . . , Xr) be an

arbitrary (crisp) function, where Xi (i = 1, . . . , r) is a T1 FS whose domain is DXi and

α-cut is Xi(α). Then under the Extension Principle:

Y (α) = f(X1(α), . . . , Xr(α)) (4.24)

and the height of Y equals the minimum height of all Xi. ¥

Proof : For all y ∈ DY , from (4.20) it follows that2

y ∈ Y (α) ⇔ µY (y) ≥ α (4.25)

Under the Extension Principle in (4.16),

µY (y) ≥ α ⇔ sup
(x1,...,xr)|y=f(x1,...,xr)

min{µX1(x1), . . . , µXr(xr)} ≥ α (4.26)

2The results in Theorem 7 are adapted from [64], Theorem 2.9, where they are stated and proved only
for a function of a single variable. Even so, our proof of Theorem 7 follows the proof of their Theorem 2.9
very closely.
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It follows that:

sup
(x1,...,xr)|y=f(x1,...,xr)

min{µX1(x1), . . . , µXr(xr)} ≥ α

⇔ (∃ x10 ∈ DX1 and · · · and xr0 ∈ DXr)

� (y = f(x10, . . . , xr0) and min{µX1(x10), . . . , µXr(xr0)} ≥ α)

⇔ (∃ x10 ∈ DX1 and · · · and xr0 ∈ DXr)

� (y = f(x10, . . . , xr0) and [µX1(x10) ≥ α and · · · and µXr(xr0) ≥ α])

⇔ (∃ x10 ∈ DX1 and · · · and xr0 ∈ DXr)

� (y = f(x10, . . . , xr0) and [x10 ∈ X1(α) and · · · and xr0 ∈ Xr(α)])

⇔ y ∈ f (X1(α), . . . , Xr(α)) (4.27)

Hence, from the last line of (4.27) and (4.26),

µY (y) ≥ α ⇔ y ∈ f(X1(α), . . . , Xr(α)) (4.28)

which means that

Y (α) = f(X1(α), . . . , Xr(α)). (4.29)

Because the right-hand-side of (4.26) (read from right to the left) indicates that α cannot

exceed the minimum height of all µXi(xi) (otherwise there is no α-cut on one or more

Xi), the height of Y must equal the minimum height of all Xi. ¥
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In summary, the Function Decomposition Theorem states that

The MF for a function of T1 FSs equals the union (over all values of α) of the MFs

for the same function applied to the α-cuts of the T1 FSs.

The importance of this decomposition is that it reduces all computations to interval

computations because all α-cuts are intervals.

4.3.3 FWA Algorithms

The FWA is computed by using the Function Decomposition Theorem. There are three

steps:

1. For each α ∈ [0, 1], the corresponding α-cuts of the T1 FSs Xi and Wi must first be

computed, i.e. compute

Xi(α) = [ai(α), bi(α)] i = 1, ..., n (4.30)

Wi(α) = [ci(α), di(α)] i = 1, ..., n (4.31)

2. For each α ∈ [0, 1], compute the α-cut of the FWA by recognizing that it is an IWA,

i.e. YFWA(α) = YIWA(α), where

YIWA(α) = [yL(α), yR(α)] (4.32)
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in which [see (4.5) and (4.6)]

yL(α) = min
∀wi(α)∈[ci(α),di(α)]

∑n
i=1 ai(α)wi(α)∑n

i=1 wi(α)
(4.33)

yR(α) = max
∀wi(α)∈[ci(α),di(α)]

∑n
i=1 bi(α)wi(α)∑n

i=1 wi(α)
(4.34)

where the notations under min and max in (4.33) and (4.34) mean i ranges from 1

to n, and each wi(α) ranges from ci(α) to di(α). From (4.7)-(4.10):

yL(α) =

∑L∗(α)
i=1 ai(α)di(α) +

∑n
i=L∗(α)+1 ai(α)ci(α)∑L∗(α)

i=1 di(α) +
∑n

i=L∗(α)+1 ci(α)
(4.35)

yR(α) =

∑R∗(α)
i=1 bi(α)ci(α) +

∑n
i=R∗(α)+1 bi(α)di(α)∑R∗(α)

i=1 ci(α) +
∑n

i=R∗(α)+1 di(α)
(4.36)

a1(α) ≤ a2(α) ≤ · · · ≤ an(α) (4.37)

b1(α) ≤ b2(α) ≤ · · · ≤ bn(α) (4.38)

The KM or EKM Algorithms can be used to compute switch points L∗(α) and R∗(α).

In practice, a finite number of α-cuts are used, so that α ∈ [0, 1] → {α1, α2, ..., αm}.

If parallel processors are available, then all computations of this step can be done

in parallel using 2m processors.

3. Connect all left-coordinates (yL(α), α) and all right-coordinates (yR(α), α) to form

the T1 FS YFWA.
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Example 13 This is a continuation of Example 12 in which each interval is assigned a

symmetric triangular distribution that is centered at the mid-point (λ) of the interval, has

distribution value equal to one at that point, and is zero at the interval end-points (λ − δ

and λ + δ) (see Fig. 4.2). The FWA is depicted in Fig. 4.3(c). Although YFWA appears

to be triangular, its sides are actually slightly curved.

[

� �[P
�

OG G

Fig. 4.2: Illustration of a T1 FS used in Example 13.

The support of YFWA is [2.02, 6.36], which is the same as YIWA (see Example 12).

This will always occur because the support of YFWA is the α = 0 α-cut, and this is YIWA.

The center of gravities of YFWA and YIWA are 4.15 and 4.19, respectively, and while

close are not the same. The almost triangular distribution for YFWA indicates that more

emphasis should be given to values of variable y that are closer to 4.15, whereas the

uniform distribution for YIWA indicates that equal emphasis should be given to all values

of variable y in its interval. The former reflects the propagation of the non-uniform

uncertainties through the FWA, and can be used in future decisions. ¥

Finally, the following is a very useful expressive way to summarize the FWA:

YFWA ≡
∑n

i=1 XiWi∑n
i=1 Wi

(4.39)
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Fig. 4.3: Example 13: (a) sub-criteria, (b) weights, and, (c) YFWA.
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where Xi and Wi are T1 FSs that are characterized by µXi
(xi) and µWi

(wi), respectively,

and YFWA is also a T1 FS. Of course, in order to explain the right-hand side of this

expressive equation, (4.14), (4.30)-(4.38), and their accompanying discussions are needed.

Although the right-hand sides of (4.39) and (4.11) look the same, it is the accompanying

models for Xi and Wi that distinguish one from the other.

4.4 Linguistic Weighted Average (LWA)

In the FWA, sub-criteria and weights are modeled as T1 FSs. In some situations it may be

more appropriate to model sub-criteria and weights as IT2 FSs. When (4.1) is computed

using IT2 FSs for sub-criteria and weights, then the result is the LWA, ỸLWA [145,148].

4.4.1 Introduction

As for the FWA, let

xi ∈ [ai, bi] i = 1, ..., n (4.40)

wi ∈ [ci, di] i = 1, ..., n (4.41)

but, unlike the FWA, where the degree of membership for each xi = x′
i and wi = w′

i

is µXi
(x′

i) and µWi
(w′

i), now the primary membership for each xi = x′
i and wi = w′

i is

an interval Jx′
i

and Jw′
i
, respectively. So, now, IT2 FSs X̃i and W̃i and their primary

memberships Jxi and Jwi are associated with (4.40) and (4.41), respectively.
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Now the WA in (4.1) is evaluated, but over the Cartesian product space

DX̃1
× DX̃2

× · · · × DX̃n
× DW̃1

× DW̃2
× · · · × DW̃n

,

making use of Jx1 , Jx2 , ..., Jxn and Jw1 , Jw2 , ..., Jwn , the result being a specific numeri-

cal value, y, as well as the primary membership, Jy. Recall, from (2.14), that Jxi =

[µ
X̃i

(xi), µX̃i
(xi)] and Jwi = [µW i

(wi), µW i
(wi)]; consequently, Jy = [µY LWA

(y), µY LWA
(y)].

How to compute the latter interval of non-negative real numbers will be explained below3.

The result of each pair of computations is the pair (y, Jy), i.e.

{(x1, Jx1), ..., (xn, Jxn), (w1, Jw1), ..., (wn, Jwn)}

→
(

y =
∑n

i=1 xiwi∑n
i=1 wi

, Jy =
[
µY LWA

(y), µY LWA
(y)

])
(4.42)

When this is done for all elements in the Cartesian product space ỸLWA is obtained.

By this explanation, observe that ỸLWA is itself an IT2 FS that is characterized by its

primary MF Jy, or equivalently by its FOU, FOU(ỸLWA), i.e.,

FOU(ỸLWA) =
⋃

∀y∈DỸLWA

Jy =
[
Y LWA, Y LWA

]
(4.43)

where DỸLWA
is the domain of the primary variable, and Y LWA and Y LWA are the LMF

and UMF of ỸLWA, respectively, as shown in Fig. 4.4.
3A different derivation, which uses the Wavy Slice Representation Theorem (Section 2.2.2) for an IT2

FS, is given in [145,148]; however, the results are the same as those presented in this chapter.
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Fig. 4.4: ỸLWA and associated quantities. The dashed curve is an embedded T1 FS of
ỸLWA.

Similar to (4.39), the following is a very useful expressive way to summarize the LWA:

ỸLWA ≡
∑n

i=1 X̃iW̃i∑n
i=1 W̃i

(4.44)

where X̃i and W̃i are IT2 FSs that are characterized by their FOUs, and, ỸLWA is also

an IT2 FS.

Recall from the Wavy Slice Representation Theorem [(2.17) and (2.27)] that

X̃i = 1/FOU(X̃i) = 1/[Xi, X i] (4.45)

W̃i = 1/FOU(W̃i) = 1/[W i, W i] (4.46)

as shown in Figs. 4.5 and 4.6. Because in (4.44) X̃i only appears in the numerator of

ỸLWA, it follows that

YLWA = min
∀Wi∈[W i,W i]

∑n
i=1 XiWi∑n

i=1 Wi
(4.47)

Y LWA = max
∀Wi∈[W i,W i]

∑n
i=1 X iWi∑n

i=1 Wi
(4.48)
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By this preliminary approach to computing the LWA, it has been shown that it is only

necessary to compute Y LWA and Y LWA, as depicted in Fig. 4.4. One method is to

compute the totality of all FWAs that can be formed from all of the embedded T1 FSs

Wi; however, this is impractical because there can be infinite many Wi. An α-cut based

approach is proposed next. It eliminates the need to enumerate and evaluate all embedded

T1 FSs.

D

�
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Fig. 4.5: X̃i and an α-cut. The dashed curve is an embedded T1 FS of X̃i.
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Fig. 4.6: W̃i and an α-cut. The dashed curve is an embedded T1 FS of W̃i.
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4.4.2 Computing the LWA

Before Y LWA and Y LWA can be computed, their heights need to be determined. Because

all UMFs are normal T1 FSs, hY LWA
= 1. Denote the height of X i as hXi

and the height

of W i as hW i
. Let

hmin = min{min
∀i

hXi
, min

∀i
hW i

} (4.49)

hmin is the smallest height of all FWAs computed from embedded T1 FSs of X̃i and W̃i.

Because FOU(ỸLWA) is the combination of all such FWAs, and Y LWA is the lower bound

of FOU(ỸLWA), it must hold that hY LWA
= hmin.

Let [ai(α), bi(α)] be an α-cut on an embedded T1 FS of X̃i, and [ci(α), di(α)] be an α-

cut on an embedded T1 FS of W̃i. Observe in Fig. 4.5, if the α-cut on X i exists, then the

interval [ail(α), bir(α)] is divided into three sub-intervals: [ail(α), air(α)], (air(α), bil(α))

and [bil(α), bir(α)]. In this case, ai(α) ∈ [ail(α), air(α)] and ai(α) cannot assume a value

larger than air(α). Similarly, bi(α) ∈ [bil(α), bir(α)] and bi(α) cannot assume a value

smaller than bil(α). However, if the α-cut on X i does not exist (e.g., α > hXi
), then both

ai(α) and bi(α) can assume values freely in the entire interval [ail(α), bir(α)], i.e.,

ai(α) ∈
{

[ail(α), air(α)], α ∈ [0, hXi
]

[ail(α), bir(α)], α ∈ (hXi
, 1]

(4.50)

bi(α) ∈
{

[bil(α), bir(α)], α ∈ [0, hXi
]

[ail(α), bir(α)], α ∈ (hXi
, 1]

(4.51)
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Similarly, observe from Fig. 4.6 that

ci(α) ∈
{

[cil(α), cir(α)], α ∈ [0, hW i
]

[cil(α), dir(α)], α ∈ (hW i
, 1]

(4.52)

di(α) ∈
{

[dil(α), dir(α)], α ∈ [0, hW i
]

[cil(α), dir(α)], α ∈ (hW i
, 1]

(4.53)

In (4.50)-(4.53) subscript i is the sub-criterion or weight index, l means left and r means

right.

Using (4.50)-(4.53), let:

air(α) ,
{

air(α), α ≤ hXi

bir(α), α > hXi

(4.54)

bil(α) ,
{

bil(α), α ≤ hXi

ail(α), α > hXi

(4.55)

cir(α) ,
{

cir(α), α ≤ hW i

dir(α), α > hW i

(4.56)

dil(α) ,
{

dil(α), α ≤ hW i

cil(α), α > hW i

(4.57)

Then

ai(α) ∈ [ail(α), air(α)], ∀α ∈ [0, 1] (4.58)

bi(α) ∈ [bil(α), bir(α)], ∀α ∈ [0, 1] (4.59)

ci(α) ∈ [cil(α), cir(α)], ∀α ∈ [0, 1] (4.60)

di(α) ∈ [dil(α), dir(α)], ∀α ∈ [0, 1] (4.61)
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Note that in (4.33) and (4.34) for the FWA, ai(α), bi(α), ci(α) and di(α) are crisp

numbers; consequently, yL(α) and yR(α) computed from them are also crisp numbers;

however, in the LWA, ai(α), bi(α), ci(α) and di(α) can assume values continuously in their

corresponding α-cut intervals. Numerous different combinations of ai(α), bi(α), ci(α) and

di(α) can be formed. yL(α) and yR(α) need to be computed for all the combinations. By

collecting all yL(α) a continuous interval [yLl(α), yLr(α)] is obtained, and, by collecting

all yR(α) a continuous interval [yRl(α), yRr(α)] is also obtained (see Fig. 4.4), i.e.

YLWA(α) = [yLr(α), yRl(α)], α ∈ [0, hmin] (4.62)

and

Y LWA(α) = [yLl(α), yRr(α)], α ∈ [0, 1] (4.63)

where yLr(α), yRl(α), yLl(α) and yRr(α) are illustrated in Fig. 4.4. Clearly, to find YLWA(α)

and Y LWA(α), yLl(α), yLr(α), yRl(α) and yRr(α) need to be found.

Consider yLl(α) first. Note that it lies on Y LWA, and is the minimum of yL(α) but

now ai(α) ∈ [ail(α), air(α)], ci(α) ∈ [cil(α), cir(α)], and di(α) ∈ [dil(α), dir(α)], i.e.

yLl(α) = min
∀ai(α)∈[ail(α), air(α)]

∀ci(α)∈[cil(α), cir(α)],∀di(α)∈[dil(α), dir(α)]

yL(α) (4.64)
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Substituting yL(α) from (4.35) into (4.64), it follows that

yLl(α) ≡ min
∀ai(α)∈[ail(α), air(α)]

∀ci(α)∈[cil(α), cir(α)],∀di(α)∈[dil(α), dir(α)]

∑L1(α)
i=1 ai(α)di(α) +

∑n
i=L1(α)+1 ai(α)ci(α)∑L1(α)

i=1 di(α) +
∑n

i=L1(α)+1 ci(α)

(4.65)

Observe that ai(α) only appears in the numerator of (4.65); thus, ail(α) should be used

to calculate yLl(α), i.e.

yLl(α) = min
∀ci(α)∈[cil(α),cir(α)]

∀di(α)∈[dil(α),dir(α)]

∑L1(α)
i=1 ail(α)di(α) +

∑n
i=L1(α)+1 ail(α)ci(α)∑L1(α)

i=1 di(α) +
∑n

i=L1(α)+1 ci(α)
(4.66)

Following a similar line of reasoning, yLr(α), yRl(α) and yRr(α) can also be expressed as:

yLr(α) = max
∀ci(α)∈[cil(α),cir(α)]

∀di(α)∈[dil(α),dir(α)]

∑L2(α)
i=1 air(α)di(α) +

∑n
i=L2(α)+1 air(α)ci(α)∑L2(α)

i=1 di(α) +
∑n

i=L2(α)+1 ci(α)
(4.67)

yRl(α) = min
∀ci(α)∈[cil(α),cir(α)]

∀di(α)∈[dil(α),dir(α)]

∑R1(α)
i=1 bil(α)ci(α) +

∑n
i=R1(α)+1 b′il(α)di(α)∑R1(α)

i=1 ci(α) +
∑n

i=R1(α)+1 di(α)
(4.68)

yRr(α) = max
∀ci(α)∈[cil(α),cir(α)]

∀di(α)∈[dil(α),dir(α)]

∑R2(α)
i=1 bir(α)ci(α) +

∑n
i=R2(α)+1 bir(α)di(α)∑R2(α)

i=1 ci(α) +
∑n

i=R2(α)+1 di(α)
(4.69)

So far, only ai(α) are fixed for yLl(α) and yLr(α), and bi(α) are fixed for yRl(α) and

yRr(α). As will be shown, it is also possible to fix ci(α) and di(α) for yLl(α), yLr(α),

yRl(α) and yRr(α); thus, there will be no need to enumerate and evaluate all of W̃i’s

embedded T1 FSs to find Y LWA and Y LWA.

Theorem 8 It is true that:
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(a) yLl(α) in (4.66) can be specified as

yLl(α) =

∑L∗
l (α)

i=1 ail(α)dir(α) +
∑n

i=L∗
l (α)+1 ail(α)cil(α)∑L∗

l (α)
i=1 dir(α) +

∑n
i=L∗

l (α)+1 cil(α)
, α ∈ [0, 1] (4.70)

(b) yLr(α) in (4.67) can be specified as

yLr(α) =

∑L∗
r(α)

i=1 air(α)dil(α) +
∑n

i=L∗
r(α)+1 air(α)cir(α)∑L∗

r(α)
i=1 dil(α) +

∑n
i=L∗

r(α)+1 cir(α)
, α ∈ [0, hmin] (4.71)

(c) yRl(α) in (4.68) can be specified as

yRl(α) =

∑R∗
l (α)

i=1 bil(α)cir(α) +
∑n

i=R∗
l (α)+1 bil(α)dil(α)∑R∗

l (α)
i=1 cir(α) +

∑n
i=R∗

l (α)+1 dil(α)
, α ∈ [0, hmin] (4.72)

(d) yRr(α) in (4.69) can be specified as

yRr(α) =

∑R∗
r(α)

i=1 bir(α)cil(α) +
∑n

i=R∗
r(α)+1 bir(α)dir(α)∑R∗

r(α)
i=1 cil(α) +

∑n
i=R∗

r(α)+1 dir(α)
, α ∈ [0, 1] (4.73)

In these equation L∗
l (α), L∗

r(α), R∗
l (α) and R∗

r(α) are switch points that are computed

using KM or EKM Algorithms. ¥

Proof: Because the proofs of Parts (b)-(d) of Theorem 8 are quite similar to the proof

of Part (a), only the proof of Part (a) is given here.
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Let

gLl(c(αj),d(αj)) ≡
∑L1(αj)

i=1 ail(αj)di(αj) +
∑n

i=L1(αj)+1 ail(αj)ci(αj)∑L1(αj)
i=1 di(αj) +

∑n
i=L1(αj)+1 ci(αj)

(4.74)

where c(αj) ≡ [cL1(αj)+1(αj), cL1(αj)+2(αj), . . . , cn(αj)]T , d(αj) ≡ [d1(αj), d2(αj), . . . ,

dL1(αj)(αj)]T , ci(αj) ∈ [cil(αj), cir(αj)] and di(αj) ∈ [dil(αj), dir(αj)]. Then yLl(αj) in

(4.89) can be found by:

(1) Enumerating all possible combinations of (cL1(αj)+1(αj), . . . , cn(αj), d1(αj), . . . ,

dL1(αj)(αj)) for ci(αj) ∈ [cil(αj), cir(αj)] and di(αj) ∈ [dil(αj), dir(αj)];

(2) Computing gLl(c(αj),d(αj)) in (4.74) for each combination; and,

(3) Setting yLl(αj) to the smallest gLl(c(αj),d(αj)).

Note that L1(αj), corresponding to the smallest gLl(c(αj),d(αj)) in Step (3), is L∗
l (αj)

in Theorem 8. In the following proof, the fact that there always exists such a L∗
l (αj) is

used.

(4.89) can be expressed as

yLl(αj) = min
∀ci(αj)∈[cil(αj),cir(αj)]

∀di(αj)∈[dil(αj),dir(αj)]

gLl(c(αj),d(αj)) (4.75)

95



In [69] it is proved that yLl(αj) has a value in the interval [aL∗
l (αj), l(αj), aL∗

l (αj)+1, l(αj)];

hence, at least one gLl(c(αj),d(αj)) must assume a value in this interval. In general there

can be numerous gLl(c(αj),d(αj)) satisfying

aL∗
l (αj), l(αj) ≤ gLl(c(αj),d(αj)) ≤ aL∗

l (αj)+1, l(αj) (4.76)

The remaining gLl(c(αj),d(αj)) must be larger than aL∗
l (αj)+1, l(αj), i.e. they must

assume values in one of the intervals (aL∗
l (αj)+1, l(αj), aL∗

l (αj)+2, l(αj)], (aL∗
l (αj)+2, l(αj),

aL∗
l (αj)+3, l(αj)], etc. Because the minimum of gLl(c(αj),d(αj)) is of interest, only those

gLl(c(αj),d(αj)) satisfying (4.76) will be considered in this proof.

Next it is shown that when gLl(c(αj),d(αj)) achieves its minimum, (i) di(αj) = dir(αj)

for i ≤ L∗
l (αj), and (ii) ci(αj) = cil(αj) for i ≥ L∗

l (αj) + 1.

i. When i ≤ L∗
l (αj), it is straightforward to show that the derivative of gLl(c(αj),d(αj))

with respect to di(αj), computed from (4.74), is

∂gLl(c(αj),d(αj))
∂di(αj)

=
ail(αj) − gLl(c(αj),d(αj))∑L∗

l (αj)
i=1 di(αj) +

∑n
i=L∗

l (αj)+1 ci(αj)
(4.77)

Using the left-hand side of (4.76), it follows that

−gLl(c(αj),d(αj)) ≤ −aL∗
l (αj), l(αj); (4.78)
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hence, in the numerator of (4.77),

ail(αj) − gLl(c(αj),d(αj)) ≤ ail(αj) − aL∗
l (αj), l(αj) ≤ 0 (4.79)

In obtaining the last inequality in (4.79) the fact that ail(αj) ≤ aL∗
l (αj), l(αj) when i ≤

L∗
l (αj) [due to the a priori increased-ordering of the ail(αj)] was used. Consequently,

using (4.79) in (4.77), it follows that

∂gLl(c(αj),d(αj))
∂di(αj)

≤
ail(αj) − aL∗

l (αj), l(αj)∑L∗
l (αj)

i=1 di(αj) +
∑n

i=L∗
l (αj)+1 ci(αj)

≤ 0 (4.80)

(4.80) indicates that the first derivative of gLl(c(αj),d(αj)) with respect to di(αj) (i ≤

L∗
l (αj)) is negative; thus, gLl(c(αj),d(αj)) decreases when di(αj) (i ≤ L∗

l (αj)) increases.

Consequently, the minimum of gLl(c(αj),d(αj)) must use the maximum possible di(αj)

for i ≤ L∗
l (αj), i.e. di(αj) = dir(αj) for i ≤ L∗

l (αj), as stated in (4.70).

ii. When i ≥ L∗
l (αj)+1, it is straightforward to show that the derivative of gLl(c(αj),

d(αj)) with respect to ci(αj), computed from (4.74), is

∂gLl(c(αj),d(αj))
∂ci(αj)

=
ail(αj) − gLl(c(αj),d(αj))∑L∗

l (αj)
i=1 di(αj) +

∑n
i=L∗

l (αj)+1 ci(αj)
(4.81)

Using the right-hand side of (4.76), it follows that

−gLl(c(αj),d(αj)) ≥ −aL∗
l (αj)+1, l(αj) (4.82)
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Hence, in the numerator of (4.81),

ail(αj) − gLl(c(αj),d(αj)) ≥ ail(αj) − aL∗
l (αj)+1, l(αj) ≥ 0 (4.83)

In obtaining the last inequality in (4.83) the fact that ail(αj) ≥ aL∗
l (αj)+1, l(αj) when i ≥

L∗
l (αj) + 1 [due to the a priori increased-ordering of the ail(αj)] was used. Consequently,

using (4.83) in (4.81), it follows that

∂gLl(c(αj),d(αj))
∂ci(αj)

≥
ail(αj) − aL∗

l (αj)+1, l(αj)∑L∗
l (αj)

i=1 di(αj) +
∑n

i=L∗
l (αj)+1 ci(αj)

≥ 0 (4.84)

(4.84) indicates that the first derivative of gLl(c(αj),d(αj)) with respect to ci(αj) (i ≥

L∗
l (αj) + 1) is positive; thus, gLl(c(αj),d(αj)) decreases when ci(αj) (i ≥ L∗

l (αj) + 1) de-

creases. Consequently, the minimum of gLl(c(αj),d(αj)) must use the minimum possible

ci(αj) for i ≥ L∗
l (αj) + 1, i.e. ci(αj) = cil(αj) for i ≥ L∗

l (αj) + 1, as stated in (4.70). ¥

Observe from (4.70), (4.73), and Figs. 4.5 and 4.6 that yLl(α) and yRr(α) only depend

on the UMFs of X̃i and W̃i, i.e., they are only computed from the corresponding α-cuts

on the UMFs of X̃i and W̃i; so (this is an expressive equation),

Y LWA =
∑n

i=1 XiW i∑n
i=1 W i

. (4.85)

Because all X i and W i are normal T1 FSs, according to Theorem 5.3, Y LWA is also

normal.
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Similarly, observe from (4.71), (4.72), and Figs. 4.5 and 4.6 that yLr(α) and yRl(α)

only depend on the LMFs of X̃i and W̃i; hence (this is an expressive equation),

Y LWA =
∑n

i=1 X iW i∑n
i=1 W i

. (4.86)

Unlike Y LWA, which is a normal T1 FS, the height of Y LWA is hmin, the minimum height

of all X i and W i.

4.4.3 LWA Algorithms

It has been shown in the previous subsection that computing ỸLWA is equivalent to

computing two FWAs, Y LWA and Y LWA. To compute Y LWA:

1. Select appropriate m α-cuts for Y LWA (e.g., divide [0, 1] into m − 1 intervals and

set αj = (j − 1)/(m − 1), j = 1, 2, ...,m).

2. For each αj , find the corresponding α-cuts [ail(αj), bir(αj)] and [cil(αj), dir(αj)] on

X i and W i (i = 1, ..., n). Use a KM or EKM algorithm to find yLl(αj) in (4.70) and

yRr(αj) in (4.73).

3. Connect all left-coordinates (yLl(αj), αj) and all right-coordinates (yRr(αj), αj) to

form the T1 FS Y LWA.

To compute Y LWA:

1. Determine hXi
and hW i

, i = 1, . . . , n, and hmin in (4.49).
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2. Select appropriate p α-cuts for Y LWA (e.g., divide [0, hmin] into p − 1 intervals and

set αj = hmin(j − 1)/(p − 1), j = 1, 2, ..., p).

3. For each αj , find the corresponding α-cuts [air(αj), bil(αj)] and [cir(αj), dil(αj)] on

X i and W i. Use a KM or EKM algorithm to find yLr(αj) in (4.71) and yRl(αj) in

(4.72).

4. Connect all left-coordinates (yLr(αj), αj) and all right-coordinates (yRl(αj), αj) to

form the T1 FS Y LWA.

A flowchart for computing Y LWA and Y LWA is given in Fig. 4.7. For triangular or

trapezoidal IT2 FSs, it is possible to reduce the number of α-cuts for both Y LWA and

Y LWA by choosing them only at turning points, i.e., points on the LMFs and UMFs of

Xi and Wi (i = 1, 2, ..., n) at which the slope of these functions changes.

Example 14 This is a continuation of Example 13 where each sub-criterion and weight

is now assigned an FOU that is a 50% blurring of the T1 MF depicted in Fig. 4.2. The

left half of each FOU (Fig. 4.8) has support on the x (w)-axis given by the interval of real

numbers [(λ− δ)− .5δ, (λ− δ) + .5δ] and the right-half FOU (Fig. 4.8) has support on the

x-axis given by the interval of real numbers [(λ + δ) − .5δ, (λ + δ) + .5δ]. The UMF is a

triangle defined by the three points (λ− δ − .5δ, 0), (λ, 1), (λ + δ + .5δ, 0), and the LMF is

a triangle defined by the three points (λ − δ + .5δ, 0), (λ, 1), (λ + δ − .5δ, 0). The resulting

sub-criterion and weight FOUs are depicted in Figs. 4.9(a) and 4.9(b), respectively, and

ỸLWA is depicted in Fig. 4.9(c). Although ỸLWA appears to be symmetrical, it is not.
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Fig. 4.7: A flowchart for computing the LWA [148].

The support of the left-hand side of ỸLWA is [0.85, 3.10] and the support of the right-

hand side of ỸLWA is [5.22, 7.56]; hence, the length of the support of the left-hand side of

ỸLWA is 2.25, whereas the length of the support of the right-hand side of ỸLWA is 2.34.

In addition, the centroid of ỸLWA is computed using the EKM algorithms in Appendix A,

and is C(ỸLWA) = [3.38, 4.96], so that c(ỸLWA) = 4.17.

Comparing Figs. 4.9(c) and 4.3(c), observe that ỸLWA is spread out over a larger

range of values than is YFWA, reflecting the additional uncertainties in the LWA due to

the blurring of sub-criteria and weights. This information can be used in future decisions.

Another way to interpret ỸLWA is to associate values of y that have the largest vertical

intervals (i.e., primary memberships) with values of greatest uncertainty; hence, there is
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Fig. 4.8: Illustration of an IT2 FS used in Example 14. The dashed lines indicate corre-
sponding T1 FS used in Example 13.

no uncertainty at the three vertices of the UMF, and, e.g. for the right-half of ỸLWA

uncertainty increases from the apex of the UMF reaching its largest value at the right

vertex of the LMF and then decreases to zero at the right vertex of the UMF. ¥

4.5 A Special Case of the LWA

As shown in Fig. 4.1, there are many special cases of the general LWA introduced in

the previous section, e.g., the weights and/or sub-criteria can be mixtures of numbers,

intervals, T1 FSs, and IT2 FSs. The special case, where all weights are numbers and

all sub-criteria are IT2 FSs, is of particular interest in this section because it is used in

Chapter 8 for perceptual reasoning. Great simplifications of the LWA computations occur

in this special case.
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Fig. 4.9: Example 14: (a) X̃i, (b) W̃i, and, (c) ỸLWA.
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Denote the crisp weights as wi, i = 1, . . . , n. Each wi can still be interpreted as an

IT2 FS W̃i, where

µW i
(w) = µW i

(w) =


1, w = wi

0, w 6= wi

(4.87)

i.e.,

cil(α) = cir(α) = dil(α) = dir(α) = wi, α ∈ [0, 1] (4.88)

Substituting (4.88) into Theorem 8, (4.70)-(4.73) are simplified to

yLl(α) =
∑n

i=1 ail(α)wi∑n
i=1 wi

, α ∈ [0, 1] (4.89)

yRr(α) =
∑n

i=1 bir(α)wi∑n
i=1 wi

, α ∈ [0, 1] (4.90)

yLr(α) =
∑n

i=1 air(α)wi∑n
i=1 wi

, α ∈ [0, hmin] (4.91)

yRl(α) =
∑n

i=1 bil(α)wi∑n
i=1 wi

, α ∈ [0, hmin] (4.92)

where

hmin = min
∀i

hXi
(4.93)

Note that (4.89)-(4.92) are arithmetic weighted averages, so they are computed directly

without using KM or EKM algorithms.
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Example 15 This is a continuation of Example 14, where the sub-criteria are the same

as those shown in Fig. 4.9(a) and weights are crisp numbers {wi}|i=1,...,5 = {2, 1, 8, 4, 6},

i.e., they are the values of w that occur at the apexes of W̃i shown in Fig. 4.9(b). The

resulting ỸLWA is depicted in Fig. 4.10. Observe that it is more compact than ỸLWA in

Fig. 4.9(c), which is intuitive, because in this example the weights have less uncertainties

than those in Example 14. In addition, unlike the unsymmetrical ỸLWA in Fig. 4.9(c),

ỸLWA in Fig. 4.10 is symmetrical4. C(ỸLWA) = [3.59, 4.69], which is inside the centroid

of ỸLWA in Fig. 4.9(c). ¥

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
ỸLWA

y

u

Fig. 4.10: ỸLWA for Example 15.

4.6 Fuzzy Extensions of Ordered Weighted Averages (OWAs)

The ordered weighted average (OWA) operator [32,71,73,131,166,172,189–191] was pro-

posed by Yager to aggregate experts’ opinions in decision making.
4It can be shown that when all weights are crisp numbers, the resulting LWA from symmetrical X̃i is

always symmetrical.
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Definition 24 An OWA operator of dimension n is a mapping yOWA : Rn → R, which

has an associated set of weights w = {w1, . . . , wn} for which wi ∈ [0, 1] and
∑n

i=1 wi = 1,

i.e.,

yOWA =
n∑

i=1

wixσ(i) (4.94)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation function such that {xσ(1), xσ(2), . . . ,

xσ(n)} are in descending order. ¥

Note that yOWA is a nonlinear operator due to the permutation of xi. The most attractive

feature of the OWA operator is that it can implement different aggregation operators by

choosing the weights differently [32], e.g., by choosing wi = 1/n it implements the mean

operator, by choosing w1 = 1 and wi = 0 (i = 2, . . . , n) it implements the maximum

operator, and by choosing wi = 0 (i = 1, . . . , n − 1) and wn = 1 it implements the

minimum operator.

Yager’s original OWA operator [166] considers only crisp numbers; however, experts

may prefer to express their opinions in linguistic terms, which are modeled by FSs. Fuzzy

extensions of OWAs [155,189–191] are considered in this section.

4.6.1 Ordered Fuzzy Weighted Averages (OFWAs)

The ordered fuzzy weighted average (OFWA) was introduced by the authors in [155].
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Definition 25 An OFWA is defined as

YOFWA =

∑n
i=1 WiXσ(i)∑n

i=1 Wi
(4.95)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation function such that {Xσ(1), Xσ(2), . . . ,

Xσ(n)} are in descending order. ¥

Definition 26 A group of T1 FSs {Xi}n
i=1 are in descending order if Xi º Xj for ∀i < j

by a ranking method. ¥

Any T1 FS ranking method can be used to find σ. In this book, Yager’s first method

(see Section 3.3), which is a special case of the centroid-based ranking method, is used.

Once Xi are rank-ordered, YOFWA is computed by an FWA.

4.6.2 Fuzzy Ordered Weighted Averages (FOWAs)

Zhou, et al. [190,191] introduced a fuzzy ordered weighed average (FOWA) operator which

is different from the OFWA:

Definition 27 Given T1 FSs {Wi}n
i=1 and {Xi}n

i=1, an associated FOWA operator of

dimension n is a mapping:

YFOWA : DX1 × · · · × DXn → DY (4.96)
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where

µYFOWA
(y) = sup

n∑
i=1

w′
ixσ(i) = y

min(µW1(w1), · · · , µWn(wn), µX1(x1), · · · , µXn(xn)) (4.97)

in which w′
i = wi

Pn
j=1 wj

, and σ : {1, . . . , n} → {1, . . . , n} is a permutation function such

that {xσ(1), xσ(2), . . . , xσ(n)} are in descending order. ¥

µYFOWA
(y) can be understood from the Extension Principle (Section 4.3.1), i.e., first all

combinations of wi and xi whose OWA is y are found, and for the jth combination, the

resulting yj has a membership grade µ(yj) which is the minimum of the corresponding

µXi(xi) and µWi(wi). Then, µYFOWA
(y) is the maximum of all these µ(yj).

YFOWA can be computed efficiently using α-cuts [189], similar to the way they are used

in computing the FWA. Denote YFOWA(α) = [y′L(α), y′R(α)] and use the same notations

for α-cuts on Xi and Wi as those in (4.30) and (4.31). Then,

y′L(α) = min
∀wi(α)∈[ci(α),di(α)]

∑n
i=1 aσ(i)(α)wi(α)∑n

i=1 wi(α)
(4.98)

y′R(α) = max
∀wi(α)∈[ci(α),di(α)]

∑n
i=1 bσ(i)(α)wi(α)∑n

i=1 wi(α)
(4.99)

y′L(α) and y′R(α) can be computed using KM or EKM algorithms. Generally σ is different

for different α in (4.98) and (4.99), because for each α the ai(α) or bi(α) are ranked

separately.
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4.6.3 Comparison of OFWA and FOWA

Because YOFWA uses the same σ for all α ∈ [0, 1] whereas YFOWA computes the permuta-

tion function σ for each α separately, generally the two approaches give different results,

as illustrated in the following example.

Example 16 Xi and Wi shown in Figs. 4.11(a) and 4.11(b) are used in this example to

illustrate the difference between YFOWA and YOFWA. The former is shown as the dashed

curve in Fig. 4.11(c). Because by the centroid-based ranking method, X1 Â X2 Â X3 Â

X4 Â X5, no reordering of Xi is needed, and hence YOFWA is computed as

YOFWA =
∑5

i=1 WiXi∑5
i=1 Wi

(4.100)

YOFWA is shown as the solid curve in Fig. 4.11(c). Note that it is quite different from

YFOWA. The difference is caused by the fact that the legs of X2 cross the legs of X1, X3

and X4, which causes the permutation function σ to change as α increases. There will be

no differences between YOFWA and YFOWA if Xi do not have such kinds of intersections.

¥

4.6.4 Ordered Linguistic Weighted Averages (OLWAs)

An ordered linguistic weighed average (OLWA) was also proposed by the authors in [155].
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Fig. 4.11: Illustration of the difference between FOWA and OFWA for Example 16. (a)
Xi, (b) Wi, and (c) YFOWA (dashed curve) and YOFWA (solid curve).
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Definition 28 An OLWA is defined as

ỸOLWA =

∑n
i=1 W̃iX̃σ(i)∑n

i=1 W̃i

(4.101)

where σ : {1, . . . , n} → {1, . . . , n} is a permutation function such that {X̃σ(1), X̃σ(2), . . . ,

X̃σ(n)} are in descending order. ¥

Definition 29 A group of IT2 FSs {X̃i}n
i=1 are in descending order if X̃i º X̃j for

∀i < j by a ranking method. ¥

The LWA algorithm can also be used to compute the OLWA, except that the centroid-

based ranking method must first be used to sort X̃i in descending order.

4.6.5 Linguistic Ordered Weighted Averages (LOWAs)

Zhou et al. [191] defined the IT2 fuzzy OWA, which is called a linguistic ordered weighted

average (LOWA) in this dissertation, as:

Definition 30 Given IT2 FSs {W̃i}n
i=1 and {X̃i}n

i=1, an associated LOWA operator of

dimension n is a mapping:

ỸLOWA : DX̃1
× · · · × DX̃n

→ DỸ (4.102)
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where

µỸLOWA
(y) =

⋃
∀W e

i ,Xe
i

 sup
n∑

i=1

w′
ixσ(i) = y

min(µW e
1
(w1), · · · , µW e

n
(wn), µXe

1
(x1), · · · , µXe

n
(xn))


(4.103)

in which W e
i and Xe

i are embedded T1 FSs of W̃i and X̃i, respectively, w′
i = wi

Pn
j=1 wj

, and

σ : {1, . . . , n} → {1, . . . , n} is a permutation function such that {xσ(1), xσ(2), . . . , xσ(n)}

are in descending order. ¥

Comparing (4.103) with (4.97), observe that the bracketed term in (4.103) is an FOWA,

and the LOWA is the union of all possible FOWAs computed from the embedded T1

FSs of X̃i and W̃i. The Wavy Slice Representation Theorem is used implicitly in this

definition.

ỸLOWA can be computed efficiently using α-cuts, similar to the way they were used in

computing the LWA. Denote the α-cut on the UMF of ỸLOWA as Y LOWA(α) = [y′Ll(α),

y′Rr(α)] for ∀α ∈ [0, 1], the α-cut on the LMF of ỸLOWA as Y LOWA(α) = [y′Lr(α), y′Rl(α)]

for ∀α ∈ [0, hmin], where hmin is defined in (4.49). Using the same notations for α-cuts on

X̃i and W̃i as in Section 4.4, it is easy to show that

y′Ll(α) = min
∀wi(α)∈[cil(α),dir(α)]

∑n
i=1 aσ(i),l(α)wi(α)∑n

i=1 wi(α)
, ∀α ∈ [0, 1] (4.104)

y′Rr(α) = max
∀wi(α)∈[cil(α),dir(α)]

∑n
i=1 bσ(i),r(α)wi(α)∑n

i=1 wi(α)
, ∀α ∈ [0, 1] (4.105)
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y′Lr(α) = min
∀wi(α)∈[cir(α),dil(α)]

∑n
i=1 aσ(i),r(α)wi(α)∑n

i=1 wi(α)
, ∀α ∈ [0, hmin] (4.106)

y′Rl(α) = max
∀wi(α)∈[cir(α),dil(α)]

∑n
i=1 bσ(i),l(α)wi(α)∑n

i=1 wi(α)
, ∀α ∈ [0, hmin] (4.107)

y′Ll(α), y′Rr(α), y′Lr(α) and y′Rl(α) can be computed using KM or EKM algorithms. Be-

cause ỸLOWA computes the permutation function σ for each α separately, generally σ is

different for different α.

4.6.6 Comparison of OLWA and LOWA

Again, because ỸOLWA uses the same σ for all α ∈ [0, 1] whereas ỸLOWA computes the

permutation function σ for each α separately, generally the two approaches give different

results, as illustrated in the following example.

Example 17 X̃i and W̃i shown in Figs. 4.12(a) and 4.12(b) are used in this example to

illustrate the difference between ỸLOWA and ỸOLWA. The former is shown as the dashed

curve in Fig. 4.12(c). Because by the centroid-based ranking method, X̃1 Â X̃2 Â X̃3 Â

X̃4 Â X̃5, no reordering of X̃i is needed, and hence ỸOLWA is computed as

ỸOLWA =
∑5

i=1 W̃iX̃i∑5
i=1 W̃i

(4.108)

ỸOLWA is shown as the solid curve in Fig. 4.12(c). Note that it is quite different from

ỸLOWA. The difference is caused by the fact that the legs of X̃2 cross the legs of X̃1,
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X̃3 and X̃4, since the permutation function σ changes as α increases. There will be no

differences between ỸOLWA and ỸLOWA if X̃i do not have such kinds of intersections. ¥
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Fig. 4.12: Illustration of the difference between LOWA and OLWA for Example 17. (a)
X̃i, (b) W̃i, and (c) ỸLOWA (dashed curve) and ỸOLWA (solid curve).

4.6.7 Comments

The FOWA and LOWA have been derived by considering each α-cut separately, whereas

the OFWA and OLWA have been derived by considering each sub-criterion as a whole.
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Sometimes the two approaches give different results. Then, a natural question is: which

approach should be used in practice?

We believe that it is more intuitive to consider an FS in its entirety during ranking

of FSs. To the best of our knowledge, all ranking methods based on α-cuts deduce a

single number to represent each FS and then sort these numbers to obtain the ranks of

the FSs. Each of these numbers is computed based only on the FS under consideration,

i.e., no α-cuts on other FSs to be ranked are considered. Because in OFWA and OLWA

the FSs are first ranked and then the WAs are computed, they coincide with our “FS in

its entirety” intuition, and hence they are preferred in this dissertation. Interestingly, this

“FS in its entirety” intuition was also used implicitly in developing the linguistic ordered

weighted averaging [43] and the uncertain linguistic ordered weighted averaging [163].

Finally, note that the OFWA can be viewed as a special case of the FWA, and the

OLWA can be viewed as a special case of the LWA.
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Chapter 5

Perceptual Computer for MADM:

The Missile Evaluation

Application

5.1 Introduction

The missile evaluation application, an MADM problem introduced in Example 1, is com-

pleted in this chapter. It was used because it has already appeared in several publica-

tions [14–16,93] and also because the evaluations range from numbers to words.

As has been introduced in Example 1, a contractor has to decide which of three

companies (A, B or C) is going to get the final mass production contract for a missile

116



system based on the criteria, sub-criteria, weights and inputs given in Table 1.1. Observe

that:

1. The major criteria are not equally weighted, but instead are weighted using fuzzy

numbers1 (T1 FSs2, as depicted in Fig. 5.1 and Table 5.1) in the following order

of importance: tactics, advancement, economy, technology and maintenance. These

weightings were established ahead of time by the contractor and not by the compa-

nies.

� �Q [P �

[

�

�[ �[�[

Q�

Fig. 5.1: Membership function for a fuzzy number ñ (see Table 5.1).

2. Tactics has seven sub-criteria, technology and maintenance each have five sub-

criteria, and, economy and advancement each have three sub-criteria; hence, there

are 23 sub-criteria all of which were established ahead of time by the contractor and

not by the companies.
1It is common practice to use a tilde over-mark to denote a fuzzy number that is modeled using a T1

FS. Even though it is also common practice to use such a tilde over-mark to denote an IT2 FS, we shall
not change this common practice for a fuzzy number in this chapter. Instead, we shall indicate in the text
when the fuzzy number ñ is modeled either as a T1 or as an IT2 FS.

2Even though, in Table 5.1, these fuzzy numbers are called triangular fuzzy numbers, observe that 1̃ is
a left-shoulder MF and 9̃ is a right-shoulder MF.
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Table 5.1: Triangular fuzzy numbers and their corresponding MFs [14].
Triangular fuzzy numbers (x1, x2, x3)

1̃ (1, 1, 2)
2̃ (1, 2, 3)
3̃ (2, 3, 4)
4̃ (3, 4, 5)
5̃ (4, 5, 6)
6̃ (5, 6, 7)
7̃ (6, 7, 8)
8̃ (7, 8, 9)
9̃ (8, 9, 9)

3. All of the sub-criteria are weighted using fuzzy numbers. These weightings have also

been established ahead of time by the contractor and not by the companies, and have

been established separately within each of the five criteria and not simultaneously

across all of the 23 sub-criteria.

4. The performance evaluations for all 23 sub-criteria are shown for the three compa-

nies, and are either numbers or words. It is assumed that each company designed,

built and tested a small number of its missiles after which they were able to fill in

the numerical performance scores. It is not clear how the linguistic scores were ob-

tained, so it is speculated that the contractor provided them based on other evidence

and perhaps on some subjective rules.

5. How to aggregate all of this data seems like a daunting task, especially since it

involves numbers, fuzzy numbers for the weights, and words.

6. Finally, we believe there should be an uncertainty band for each numerical score

because the numbers correspond to measurements of physical properties obtained
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from an ensemble of test missiles. Those bands have not been provided, but will be

assumed in this chapter to inject some additional realism into this application.

The missile evaluation problem can also be summarized by Fig. 5.2. It is very clear

from this figure that this is a multi-criteria and two-level decision making problem. At

the first level each of the three companies3 is evaluated for its performance on five criteria:

tactics, technology, maintenance, economy and advancement. The lines emanating from

each of the companies to these criteria indicate these evaluations, each of which involves

a number of important (but not shown) sub-criteria and their weighted aggregations

that are described below. The second level in this hierarchical decision making problem

involves a weighted aggregation of the five criteria for each of the three companies.

2YHUDOO�*RDO
2SWLPDO�7DFWLFDO�0LVVLOH�6\VWHP

&ULWHULRQ��
7DFWLFV

&ULWHULRQ��
(FRQRP\

&ULWHULRQ��
0DLQWHQDQFH

&ULWHULRQ��
7HFKQRORJ\

&ULWHULRQ��
$GYDQFHPHQW

&RPSDQ\�$ &RPSDQ\�% &RPSDQ\�&

Fig. 5.2: Structure of evaluating competing tactical missile systems from three companies
[93].

3The terms company and system are used interchangeably in this chapter.
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5.2 A Per-C Approach for Missile Evaluation

Recall that the Per-C has three components: encoder, CWW engine and decoder. When

Per-C is used for the missile evaluation problem each of these components must be con-

sidered.

5.2.1 Encoder

In this application, mixed data are used — crisp numbers, T1 fuzzy numbers and words.

The codebook contains the crisp numbers, the T1 fuzzy numbers with their associated

T1 FS models (Fig. 5.1 and Table 5.1), and the words and their IT2 FS models.

To ensure that LWAs would not be unduly-influenced by large numbers, all of the

Table 1.1 numbers were mapped into [0, 10]. Let x1, x2 and x3 denote the raw numbers

for Companies A, B and C, respectively. For the 13 sub-criteria whose inputs are numbers,

those raw numbers were transformed into:

xi → x′
i =

10xi

max(x1, x2, x3)
. (5.1)

Examining Table 1.1, observe that the words used for the remaining 10 sub-criteria

are: poor, low, average, good, very good and high. Because this application is being used

merely to illustrate how a Per-C can be used for missile system evaluation, and we do

not have access to domain experts, interval-point data were not collected for these words

in the context of this application. Instead, the codebook shown in Fig. 2.12 is used.

Unfortunately, none of the six words that are actually used in this application appear in
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that codebook. So, each word was mapped into a word that was felt to be a synonym for

it. The mappings are:

Poor → Small

Low → Low Amount

Average → Medium

Good → Large

V ery Good → V ery Large

High → High Amount



(5.2)

The IT2 FS models of the six words are shown in Fig. 5.3.

   Poor     Low    Average 

   Good  Very Good    High  

Fig. 5.3: IT2 FS models for the six words used in missile evaluation.

Observe from Table 1.1 that some sub-criteria may have a positive connotation and

others may have a negative connotation. The following six sub-criteria have a negative

connotation: flight height4, missile scale5, reaction time, operation condition requirement,

system cost and material limitation. The first three sub-criteria have numbers as their
4The lower the flight height the better, because it is then more difficult for a missile to be detected by

radar.

5A smaller missile is also harder to detect by radar.
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inputs. For them, in addition to (5.1), a further step is needed to covert a large x′ into a

low score and a small x′ into a high score:

x′
i → x′′

i = 10 − x′. (5.3)

Example 18 Suppose that x1 = 3, x2 = 4 and x3 = 5. Then when these numbers are

mapped into [0, 10] using (5.1), they become: x′
1 = 10(3/5) = 6, x′

2 = 10(4/5) = 8 and

x′
3 = 10(5/5) = 10. On the other hand, for a sub-criterion with negative connotation,

these numbers become: x′′
1 = 10 − x′

1 = 4, x′′
2 = 10 − x′

2 = 2 and x′′
3 = 10 − x′

3 = 0. ¥

For the other three sub-criteria with a negative connotation (operation condition re-

quirement, system cost, and material limitation), antonyms [61,102,126,184] are used for

the words in (5.2), i.e.,

µ10−A(x) = µA(10 − x), ∀x (5.4)

where 10 − A is the antonym of a T1 FS A, and 10 is the right end of the domain of all

FSs used in this chapter. The definition in (5.4) can easily be extended to IT2 FSs, i.e.,

µ10−Ã(x) = µÃ(10 − x), ∀x (5.5)
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where 10 − Ã is the antonym of an IT2 FS Ã. Because an IT2 FS is completely charac-

terized by its LMF and UMF, each of which is a T1 FS, µ10−Ã(x) in (5.5) is obtained by

applying (5.4) to both A and A.

Comment: Using these mappings, the highest score for the 17 sub-criteria that have

a positive connotation is always assigned the value 10, and the lowest score for the six

sub-criteria that have a negative connotation is also always assigned the value 10. What

if such scores are not actually “good” scores? Assigning it our highest value does not then

seem to be correct.

In this type of procurement competition the contractor often sets specifications on

numerical performance sub-criteria. Unfortunately, such specifications do not appear in

any of the published articles about this application, so we have had to do the best we

can without them. If, for example, the contractor had set a specification for reliability

as 85%, then no company should get a 10. A different kind of normalization would then

have to be used. ¥

5.2.2 CWW Engine

NWAs are used as our CWW engine. Each of the major criteria had an NWA computed

for it. Examining Table 1.1, observe that the NWA for Tactics (Ỹ1) is a FWA (because

the weights are T1 FSs and the sub-criteria evaluations are numbers), whereas the NWAs

for Technology (Ỹ2), Maintenance (Ỹ3), Economy (Ỹ4) and Advancement (Ỹ5) are LWAs
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(because at least one sub-criterion evaluation is a word modeled by an IT2 FS). More

specifically:

Ỹ1 =
∑7

i=1 XiWi∑7
i=1 Wi

(5.6)

Ỹ2 =
∑12

i=8 X̃iW̃i∑12
i=8 W̃i

(5.7)

Ỹ3 =
∑17

i=13 X̃iW̃i∑17
i=13 W̃i

(5.8)

Ỹ4 =
∑20

i=18 X̃iW̃i∑20
i=18 W̃i

(5.9)

Ỹ5 =
∑23

i=21 X̃iW̃i∑23
i=21 W̃i

(5.10)

These six NWAs are then aggregated by another NWA to obtain the overall performance,

Ỹ , as follows:

Ỹ =
9̃Ỹ1 + 3̃Ỹ2 + 1̃Ỹ3 + 5̃Ỹ4 + 7̃Ỹ5

9̃ + 3̃ + 1̃ + 5̃ + 7̃
(5.11)

As a reminder to the reader, when i = 2, 8, 9, 13, 18, 20, (5.3) or the antonyms of the

corresponding IT2 FSs must be used.

5.2.3 Decoder

The decoder computes ranking, similarity and centroid. Rankings of the three compa-

nies are obtained for the six LWA FOUs in (5.6)-(5.11) using the centroid-based ranking
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method [144]. The average centroids for Companies A, B and C are represented in all

figures in Section 5.3 by ∗, ¦ and ◦, respectively.

Similarity is computed only for the three companies’ overall performances Ỹ so that

one can observe how similar the overall performances are for them.

Centroids are also computed for the three companies’ Ỹ , and provide a measure of

uncertainty for each company’s overall ranking, since Ỹ has propagated both numerical

and linguistic uncertainties through their calculations.

5.3 Examples

This section contains examples that illustrate the missile evaluation results for different

scenarios. Example 19 uses the data that are in Table 1.1 as is. Examples 21-23 use

intervals for all numerical values, i.e., in Example 21 each numerical value x is changed to

the interval [x − 10%x, x + 10%x] for all three companies, in Example 22 each numerical

value x is changed to the interval [x − 20%x, x + 20%x] for all three companies, and in

Example 23 x is changed to [x− 30%x, x + 30%x] for Company B but is only changed to

[x − 5%x, x + 5%x] for Companies A and C. Using more realistic data intervals instead

of numbers is something that was mentioned earlier at the end of Section 5.1 in Item 6.

Example 19 As just mentioned, this example uses the data that are in Table 1.1 as is.

In all figures, System A is represented by the solid curve, System B is represented by the

dashed curve, and System C is represented by the dotted curve. In order to simplify the

notation in the figures, the notations ỸAj, ỸBj and ỸCj are used for aggregated results
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for Criterion j and for Companies A, B and C, respectively. The caption of each figure

indicates the name of Criterion j (j = 1, 2, . . . , 5) and the numbering of the criteria

corresponds to their numbering in Table 1.1.

FOUs for Tactics, Technology, Maintenance, Economy and Advancement are de-

picted in Figs. 5.4(a)-5.4(e), respectively. FOUs for Overall Performance are depicted

in Fig. 5.4(f). Observe from Fig. 5.4(f) that System B is the best. This is because System

B ranks first in Maintenance, Economy and Advancement and by significant amounts.

Although it ranks last for Tactics and Technology its FOUs for these two criteria are very

close to those of System’s A and C. Not only is FOU(ỸB) visually well to the right of the

other two FOUs in Fig. 5.4(f), but its center of centroid (which is on the horizontal axis)

is also well to the right of those for Companies A and C. So, based on ranking alone,

Company B would be declared the winner.

Table 5.2 summarizes the similarities between ỸA, ỸB and ỸC . Observe that ỸB is

not very similar to either ỸA or ỸC , so choosing Company B as the winner is further

reinforced, i.e. it is not a close call.

Table 5.2: Similarities of Ỹ in Example 19 for the three companies.
Company ỸA ỸB ỸC

ỸA 1 0.072 0.209
ỸB 0.072 1 0.407
ỸC 0.209 0.407 1

Finally, the centroids of ỸA, ỸB and ỸC (Table 5.3) are CA = [5.889, 6.648], CB =

[7.586, 8.148] and CC = [6.966, 7.651]; the numerical rankings (computed from these cen-

troids) are cA = 6.268, cB = 7.867 and cC = 7.308; and, the half-lengths of each centroid
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Fig. 5.4: Example 19: Aggregation results for (a) Criterion 1: Tactics; (b) Criterion 2:
Technology ; (c) Criterion 3: Maintenance; (d) Criterion 4: Economy ; (e) Criterion 5:
Advancement ; and, (f) Overall performances of the three systems. The average centroids
for Companies A, B and C are shown in all figures by ∗, ¦ and ◦, respectively. The FOUs
in (b)-(f) are not filled in so that the three IT2 FSs can be distinguished more easily.
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are lA/2 = 0.380, lB/2 = 0.281 and lC/2 = 0.342. One way to use these half-lengths is to

summarize the rankings as: rA = 6.268±0.380, rB = 7.867±0.281 and rC = 7.308±0.342.

Note that the centroids can also be interpreted as ranking-bands and that there is very little

overlap of these bands in this example, and it is only between Systems B and C. All these

results are summarized in Table 5.3.

Table 5.3: Centroids, centers of centroid and ranking bands of Ỹ for various uncertainties.
0% for all ±10% for all ±20% for all ±30% for Company B

three three three and ±5% for
Company companies companies companies Companies A and C

Example 19 Example 21 Example 22 Example 23
CA [5.889, 6.648] [5.763, 6.698] [5.553, 6.651] [5.843, 6.697]

A cA 6.268 6.230 6.102 6.270
rA 6.268±0.380 6.230±0.467 6.102±0.549 6.270±0.427
CB [7.586, 8.148] [7.356, 8.067] [7.141, 8.014] [6.898, 7.928]

B cB 7.867 7.712 7.578 7.413
rB 7.867±0.281 7.712±0.356 7.578±0.437 7.413±0.515
CC [6.966, 7.651] [6.828, 7.708] [6.621, 7.659] [6.902, 7.687]

C cC 7.308 7.268 7.140 7.294
rC 7.308±0.342 7.268±0.440 7.140±0.519 7.294±0.393

Not only does Company B have the largest ranking but it also has the smallest uncer-

tainty band about that ranking and ỸB is not very similar to either ỸA or ỸC . Choosing

Company B as the winner seems the right thing to do. ¥

In reality though there are uncertainties about each of the numbers in Table 1.1,

as noted in Harvard Business Essentials ( [23], pp. 80): “... point estimates are almost

always wrong. Worse, point estimates give the impression of certainty when there is none.

What the decision maker needs is a range of possible outcomes for each uncertainty, as

determined by experienced and knowledgeable informants.”
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In the remaining examples uncertainty intervals are assigned to each of these numbers,

i.e.,

xi → [xi − v%xi, min(xi + v%xi,max(x1, x2, x3))], i = 1, 2, 3 (5.12)

so that the effects of such uncertainties on the overall performances of the three companies

can be studied. Note that max(x1, x2, x3) is used as an upper limit so that the converted

number is not larger than 10 [see (5.14)]. The specific choice(s) made for v are explained

in the examples.

For the 10 sub-criteria that have a positive connotation, (5.1) is used for the two

end-points in (5.12), i.e.,

xi − v%xi →
10(xi − v%xi)
max(x1, x2, x3)

(5.13)

min(xi + v%xi, max(x1, x2, x3)) →
10min(xi + v%xi, max(x1, x2, x3))

max(x1, x2, x3)
(5.14)

and for the three sub-criteria that have a negative connotation, the mappings are

[xi − v%xi, min(xi + v%xi, max(x1, x2, x3))]

→
[
10 − 10min(xi + v%xi, max(x1, x2, x3))

max(x1, x2, x3)
, 10 − 10(xi − v%xi)

max(x1, x2, x3)

]
(5.15)
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Example 20 As in Example 18, suppose that x1 = 3, x2 = 4 and x3 = 5. Let v = 10,

so that x1 → [2.7, 3.3], x2 → [3.6, 4.4] and x3 → [4.5, 5]. For a sub-criterion with positive

connotation, using (5.12)-(5.14), one finds that

[2.7, 3.3] → [10(2.7/5), 10(3.3/5)] = [5.4, 6.6]

[3.6, 4.4] → [10(3.6/5), 10(4.4/5)] = [7.2, 8.8]

[4.5, 5] → [10(4.5/5), 10(5/5)] = [9, 10];

and, for a sub-criteria with negative connotation, using (5.12) and (5.15), one finds that

[2.7, 3.3] → [10 − 6.6, 10 − 5.4] = [3.4, 4.6]

[3.6, 4.4] → [10 − 8.8, 10 − 7.2] = [1.2, 2.8]

[4.5, 5] → [10 − 10, 10 − 9] = [0, 1]. ¥

Example 21 In this example each numerical value x in Table 1.1 is changed by the same

percentage amount to the interval [x − 10%x, x + 10%x]. We are interested to learn if

such uncertainty intervals change the rankings of the three companies. FOUs for Tactics,

Technology, Maintenance, Economy and Advancement are depicted in Figs. 5.5(a)-5.5(e),

respectively. The overall performances of the three systems are depicted in Fig. 5.5(f).

System B still appears to be the winning system.

Comparing the results in Fig. 5.5 with their counterparts in Fig. 5.4, observe that

generally the FOUs have larger support. Particularly, the T1 FSs in Fig. 5.4(a) are
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Fig. 5.5: Example 21: Aggregation results for (a) Criterion 1: Tactics; (b) Criterion 2:
Technology ; (c) Criterion 3: Maintenance; (d) Criterion 4: Economy ; (e) Criterion 5:
Advancement ; and, (f) Overall performances of the three systems. The average centroids
for Companies A, B and C are shown in all figures by ∗, ¦ and ◦, respectively.
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triangular whereas the T1 FSs in Fig. 5.5(a) are trapezoidal. This is because in Fig. 5.4(a)

the inputs to the sub-criteria are numbers and the weights are triangular T1 FSs, and hence

the α = 1 α-cut on ỸA1 (ỸB1, or ỸC1) is an AWA, whereas in Fig. 5.5(a) the inputs to

the sub-criteria are intervals and the weights are triangular T1 FSs, and hence the α = 1

α-cut on ỸA1 (ỸB1, or ỸC1) is an IWA.

Table 5.4 summarizes the similarities between ỸA, ỸB and ỸC . Observe that ỸC is

much more similar to ỸB in this example than it was in Example 19. Consequently,

one may be less certain about choosing Company B as the winner when there is ±10%

uncertainty on all of the numbers in Table 1.1 than when there is no uncertainty on those

numbers.

Table 5.4: Similarities of Ỹ in Example 21 for the three companies.
Company ỸA ỸB ỸC

ỸA 1 0.189 0.371
ỸB 0.189 1 0.637
ỸC 0.371 0.637 1

The centroids, centers of centroids and the ranking bands of ỸA, ỸB and ỸC are shown

in Table 5.3. Observe that not only does Company B still have the largest ranking but it

still has the smallest uncertainty band about that ranking. However, when there is ±10%

uncertainty on all of the numbers in Table 1.1, not only do the numerical rankings for

the three companies shift to the left (to lower values) but the uncertainty bands about

those rankings increase. The overlap between the ranking bands of Systems B and C also

increases.
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In short, even though Company B could still be declared the winner, one is less certain

about doing this when there is ±10% uncertainty on all of the numbers in Table 1.1. ¥

Example 22 In this example each numerical value x in Table 1.1 is changed by the same

percentage amount to the interval [x−20%x, x+20%x]. This is twice as much uncertainty

as in Example 21. We are again interested to learn if such uncertainty intervals change

the rankings of the three companies.

FOUs for Tactics, Technology, Maintenance, Economy and Advancement are depicted

in Figs. 5.6(a)-5.6(e), respectively. The overall performances of the three systems are

depicted in Fig. 5.6(f). System B still appears to be the winning system, but declaring

Company B the winner is now more problematic as is demonstrated next.

Table 5.5 summarizes the similarities between ỸA, ỸB and ỸC . Observe that ỸC is

even more similar to ỸB in this example than in Example 21, so one may be even less

certain about choosing Company B as the winner when there is ±20% uncertainty on all

of the numbers in Table 1.1 than when there is no uncertainty on those numbers.

Table 5.5: Similarities of Ỹ in Example 22 for the three companies.
Company ỸA ỸB ỸC

ỸA 1 0.295 0.466
ỸB 0.295 1 0.707
ỸC 0.466 0.707 1

The centroids, centers of centroids and the ranking bands of ỸA, ỸB and ỸC are shown

in Table 5.3. Observe that not only does Company B still have the largest ranking, but

it still has the smallest uncertainty band about that ranking. Notice however that when
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W̃2 = 3̃
y

u

(b)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
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W̃3 = 1̃
y

u

(c)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1
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Fig. 5.6: Example 22: Aggregation results for (a) Criterion 1: Tactics; (b) Criterion 2:
Technology ; (c) Criterion 3: Maintenance; (d) Criterion 4: Economy ; (e) Criterion 5:
Advancement ; and, (f) Overall performances of the three systems. The average centroids
for Companies A, B and C are shown in all figures by ∗, ¦ and ◦, respectively.
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there is ±20% uncertainty on all of the numbers in Table 1.1, not only do the numerical

rankings for the three companies shift further to the left (to even lower values) than in the

±10% case, but the uncertainty bands about those rankings also increase, and in addition

to Systems B and C, the ranking-bands of Systems A and C also have some overlap.

In short, even though Company B still could be declared the winner, one is even less

certain about this when there is ±20% uncertainty on all of the numbers in Table 1.1. The

rankings are getting uncomfortably close to each other for the three companies, making a

declaration of a clear winner problematic. ¥

Example 23 In our previous examples, Company B always seems to be ahead of Com-

panies A and C. In this example each numerical value x in Table 1.1 is changed by the

same percentage amount to the interval [x− 30%x, x +30%x] for Company B, but is only

changed by [x − 5%x, x + 5%x] for Companies A and C. Perhaps the tighter uncertainty

bands for Companies A and C will change the results.

FOUs for Tactics, Technology, Maintenance, Economy and Advancement are depicted

in Figs. 5.7(a)-5.7(e), respectively. The overall performances of the three systems are

depicted in Fig. 5.7(f). Observe that the FOU of ỸC is completely inside the FOU of ỸB;

so, it is difficult to declare System B the winner.

Table 5.6 summarizes the similarities between ỸA, ỸB and ỸC . Observe that ỸC is

again more similar to ỸB in this example than in Example 19, so one may be less certain

about choosing Company B as the winner when there is ±30% uncertainty on all of the
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numbers about Company B whereas there is only ±5% uncertainty on all of the numbers

about Companies A and C.
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Fig. 5.7: Example 23: Aggregation results for (a) Criterion 1: Tactics; (b) Criterion 2:
Technology ; (c) Criterion 3: Maintenance; (d) Criterion 4: Economy ; (e) Criterion 5:
Advancement ; and, (f) Overall performances of the three systems. The average centroids
for Companies A, B and C are shown in all figures by ∗, ¦ and ◦, respectively.

The centroids, centers of centroids and the ranking bands of ỸA, ỸB and ỸC are shown

in Table 5.3. Now the ranking bands for Systems B and C overlap a lot, and even the

ranking bands for Systems A and B overlap significantly, which is why it is difficult to

declare System B the winner.
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Table 5.6: Similarities of Ỹ in Example 23 for the three companies.
Company ỸA ỸB ỸC

ỸA 1 0.380 0.303
ỸB 0.380 1 0.567
ỸC 0.303 0.567 1

This example clearly demonstrates that providing only average values for the sub-

criteria in Table 1.1 can lead to misleading conclusions. Uncertainty bands about those

average values can change conclusions dramatically. ¥

5.4 Comparisons with Previous Approaches

In this section the results from our Per-C approach are compared with results from four

previous approaches on the missile evaluation problem.

5.4.1 Comparison with Mon et al.’s Approach

Mon et al. [93] appear to be the first to work on “performance evaluation and optimal

design of weapon systems [as] multiple criteria decision making problems” using FSs.

They use fuzzy numbers to indicate the relative strength of the elements in the hierarchy,

and build a fuzzy judgment matrix through comparison of performance scores. They begin

with numerical scores for all of the sub-criteria (no words are used by them), after which

they:

1. Aggregate the sub-criteria scores by first converting each number into either 1 if

some (contractor’s) sub-criterion is satisfied or 0.5 if the sub-criterion is not satisfied,
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after which all these crisp numbers are added (implying that they are given the same

weight), and the sum is then treated as a fuzzy number. This is done for each of

the five criteria and for each of the three companies. These fuzzy numbers are put

into a 3 × 5 fuzzy judgment matrix.

2. Assign fuzzy importance weights to each of the five criteria.

3. Compute a total fuzzy judgment matrix by multiplying each fuzzy number in the

fuzzy judgment matrix by its respective fuzzy importance weight using α-cuts. For

each value of α ∈ [0, 1] the result is an interval of numbers [al(α), ar(α)]. The result

for each value of α is a 3 × 5 α-cut judgment matrix Aα.

4. Estimate a degree of satisfaction, â(α), for each element of Aα by taking a linear

combination of al(α) and ar(α), i. e. â(α) = λal(α)+(1−λ)ar(α) in which λ ∈ [0, 1]

is an index of optimism. The resulting matrix Âα is called a crisp judgment matrix.

5. Normalize each row of Âα by dividing all of the row’s elements by its largest element.

6. Compute an entropy number for each row (company).

7. Normalize the three entropies by dividing each entropy number by the sum of the

three entropy numbers, leading to three entropy weights, one for each company.

This is done for sampled values of α ∈ [0, 1] and specified values of λ.

8. Choose the winning company as the one whose entropy weight is the largest.
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When λ = 0 or 1/2 or 1 the decision maker is called pessimistic, moderate or optimistic,

respectively. The pessimistic decision maker uses worst values for â(α), namely al(α); the

optimistic decision maker uses best values for â(α), namely ar(α); and, the moderate

decision maker uses the arithmetic average [al(α) + ar(α)]/2.

The shortcomings of Mon et al.’s approach are: 1) when a sub-criterion is not satisfied,

a company is assigned a score 0.5 no matter how far away it is from that sub-criterion, i.e.,

useful information is lost; 2) each sub-criterion is weighted the same in order to compute a

sum for each criterion, which is counter-intuitive; and, 3) the crisp sum for each criterion is

fuzzified to a fuzzy number to incorporate uncertainty, whereas the uncertainties should

be considered at the beginning of the aggregation and be propagated. All these three

short-comings are overcome in our Per-C approach, i.e., the numerical score for each

sub-criterion is computed based on how far away a system’s performance is from the

best performance, the FOUs for the words are modeled a priori from a survey, and the

sub-criteria are weighted.

5.4.2 Comparison with Chen’s Approaches

Chen [14] uses a different approach in which he begins with tables of numerical or linguistic

scores for the sub-criteria, after which he:

1. Ranks the three companies (1, 2 or 3) for each sub-criterion,

2. Adds the rankings for all of a criterion’s sub-criteria6.
6Note that it is possible to rank linguistic scores (which may be why ranking is used by Chen [14]),

e.g., higher cost is worse than average cost, and good range is better than average range.
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3. Treats the aggregated crisp ranking as a fuzzy number, leading to a 3×5 fuzzy rank

score matrix (FRSM).

4. Assigns fuzzy importance weights to each of the five criteria.

5. Multiplies each element of the FRSM by its associated criterion’s fuzzy importance

weight leading to another fuzzy number.

6. Adds each company’s five fuzzy numbers, the result being a fuzzy ranking number.

7. Defuzzifies each of the company’s fuzzy ranking number by computing its centroid.

8. The winning company is the one with the smallest defuzzified value7.

In a different chapter, Chen [15] further modifies Mon et al’s method, i.e. he:

1. Assigns a fuzzy importance number to each of the sub-criteria, thereby not only

overcoming the objection to Mon et al.’s method that every sub-criterion is weighted

the same, but also introducing some uncertainty into the importance of each sub-

criterion.

2. Ranks the sub-criteria using fuzzy ranking (1̃, 2̃ or 3̃), where again there can be ties

in which two or all of the companies receive the same ranking, but this can only

occur when either numerical or linguistic scores are the same.

3. Computes a fuzzy score for each company by multiplying each sub-criterion’s fuzzy

importance weight by its fuzzy ranking, using α-cuts.
7The smallest value is the winner because 1 is of higher rank than is 2 or 3.
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4. Uses Mon et al.’s [93] index of optimism idea to reach a final decision. The result

(for each α-cut) is an index of optimism for each of the three companies that is

normalized by dividing it by the sum of the three indexes of optimism.

5. The winning company is the one with the largest normalized index of optimism.

Stepping back from the details of [14, 15], it is observed that Chen is also losing

information by first ranking the sub-criteria and by then processing the ranked sub-criteria

by using each criterion’s fuzzy importance weight. Additionally, the fuzzy scores are not

normalized, so that each score may be unduly influenced by one large fuzzy-number,

something that was first pointed out in [16]. Both short-comings are overcome in our

Per-C approach, e.g., the numerical score for each sub-criterion is computed based on

how far away a system’s performance is from the best performance, and a novel weighted

average is used in the aggregation.

5.4.3 Comparison with Cheng’s Approach

Cheng [16] proposes to overcome the normalization deficiency in [15] by using fuzzy ratio

scales to indicate the relative importance of the five criteria and the three missile systems’

scores for them (the scales are 1̃, 3̃, 5̃, 7̃, 9̃, where 1̃ denotes almost equal importance, 3̃

denotes moderate importance of one over another, 5̃ denotes strong importance, 7̃ denotes

very strong importance, and 9̃ denotes extreme importance); however, he does not explain

how each missile system’s scores for the criteria are obtained. And, because he is still

performing ranking before the other processing, he is also losing information.
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In summary, the short-comings of the four previous approaches are: loss of information

by pre-processing, inability to process a broad range of mixed data from numbers to

words, and, inability to provide uncertainty information about the final results. All of

these shortcomings are overcome in our use of a Per-C for the missile evaluation problem,

as demonstrated in Section 5.2.

5.5 Conclusions

In this chapter it has been shown how the Per-C can be applied to a missile evaluation

problem, which is a hierarchical MADM problem, and is representative of procurement

judgment applications. Distinguishing features of our approach are:

1. No pre-processing of the sub-criteria scores (e.g., by ranking) is done and therefore

no information is lost.

2. A wide range of mixed data can be used, from numbers to words. By not having to

convert words into a pre-processed rank, information is again not lost.

3. Uncertainties about the sub-criteria scores as well as their weights flow through

all NWA calculations, so that our final company performance FOUs not only con-

tain ranking and similarity information but also uncertainty information. No other

existing method contains such uncertainty information.
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Although we have explained how the Per-C can be applied to a hierarchical MADM

problem in the context of a specific application, the methodology of this Per-C is quite

general and it can be applied to similar procurement applications.
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Chapter 6

Extract Rules from Data:

Linguistic Summarization

6.1 Introduction

The rapid progress of information technology has made huge amounts of data accessible to

people, e.g., a single seismic survey of the BP Valhall field generates 7 TB of data [29], and

the 2nd Palomar Observatory Sky Survey (POSS-II) conducted by the California Institute

of Technology resulted in about 3,000 digital images of 23, 040×23, 040 16-bit pixels each,

totalling over 3 terabytes of data [31]. Unfortunately, the raw data alone are often hardly

understandable and do not provide knowledge, i.e., frequently people face the “data rich,

information poor” dilemma. Data mining approaches to automatically summarize the

data and output human-friendly information are highly desirable. According to Mani and
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Maybury [74], “summarization is the process of distilling the most important information

from a source (or sources) to produce an abridged version for a particular user (or users)

and task (or tasks).” Particularly, data summarization in this dissertation means to [95]

“grasp and briefly describe trends and characteristics appearing in a dataset, without doing

(explicit) manual ‘record-by-record’ analysis.”

Statistics can be used to compute the mean, median, variance, etc, of a dataset and

hence can be viewed as a simple form of summarization; however, as pointed out by

Yager [165], “summarization would be especially practicable if it could provide us with

summaries that are not as terse as the mean, as well as treating the summarization of

nonnumeric data.” This suggests that linguistic summarization of databases, which out-

puts rules/patterns like “most wells with high oil production also have high water produc-

tion” or “IF oil production in a well is high, THEN water production of the well is also

high,” is more favorable, because it can provide richer and more easily understandable

information, and it also copes well with nonnumeric data.

There are many approaches for linguistic summarization of databases [25,27,107,108]

and time series [17, 54]. In this chapter we will follow the FS based approach introduced

by Yager [165, 167–169] and advanced by many others [34, 54, 55, 95, 107, 123]. Most

of these authors focus on T1 FSs. Niewiadomski et al. [95, 96, 98–100] are to date the

only ones working on linguistic summarization using IT2 FSs; however, their results have

limitations, and some of them are incorrect, as shown in Sections 6.2 and 6.3. So, a new

IT2 FSs based linguistic summarization approach is proposed in this chapter.
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6.2 Linguistic Summarization Using T1 FSs: Traditional

Approach

Yager [165, 167–169] was the first to study linguistic summarization of databases using

T1 FSs and proposed two canonical forms; however, he only considers the case where one

summarizer is used. George and Srikanth [34] extended Yager’s approach to more than

one summarizer, and their approach is briefly reviewed in this section. For easy reference,

our most frequently used symbols are collected in Table 6.1.

146



T
ab

le
6.

1:
E

xp
la

na
ti

on
s

of
th

e
sy

m
bo

ls
us

ed
in

th
is

ch
ap

te
r.

n
=

1,
2,

..
.,

N
an

d
m

=
1,

2,
..

.,
M

.
Sy

m
bo

l
M

ea
ni

ng
E

xa
m

pl
e

D
T

he
co

m
pl

et
e

da
ta

ba
se

T
he

fr
ac

tu
re

op
ti

m
iz

at
io

n
da

ta
se

t
Y

T
he

se
t

of
al

l
ob

je
ct

s
in

th
e

da
ta

ba
se

A
ll

w
el

ls
in

th
e

fr
ac

tu
re

op
ti

m
iz

at
io

n
da

ta
se

t
M

N
um

be
r

of
ob

je
ct

s
in

Y
85

(w
el

ls
)

fo
r

th
e

fr
ac

tu
re

op
ti

m
iz

at
io

n
da

ta
se

t
y m

T
he

m
th

ob
je

ct
in

th
e

da
ta

ba
se

T
he

m
th

w
el

l
in

th
e

fr
ac

tu
re

op
ti

m
iz

at
io

n
da

ta
se

t
v n

N
am

e
of

th
e

n
th

at
tr

ib
ut

e
#

St
ag

es
X

n
T

he
do

m
ai

n
of

v n
[3

,
17

]
fo

r
#

St
ag

es
V

A
se

t
of

al
l
at

tr
ib

ut
e

na
m

es
<

#
St

ag
es

,
le

ng
th

P
er

f,
#

H
ol

es
,
Sa

nd
,
Sl

ur
ry

,
P
ad

,
O

il>
v

m n
V

al
ue

of
th

e
n

th
at

tr
ib

ut
e

fo
r

y m
#

St
ag

es
of

th
e

m
th

w
el

l
d

m
A

co
m

pl
et

e
re

co
rd

re
la

te
d

to
y m

w
it

h
<

4,
23

2,
29

0,
16

10
00

,
57

15
,
11

83
,
52

78
>

va
lu

es
as

si
gn

ed
to

al
l
at

tr
ib

ut
es

in
V

fo
r

th
e

fir
st

w
el

l
in

th
e

da
ta

se
t

S
n

Su
m

m
ar

iz
er

H
ig

h
oi

l
pr

od
uc

ti
on

,
lo

w
w

at
er

pr
od

uc
ti

on
,
et

c
Q

Q
ua

nt
ifi

er
M

os
t,

ab
ou

t
ha

lf,
m

or
e

th
an

10
0,

et
c

w
g

Q
ua

lifi
er

H
ig

h
oi

l
pr

od
uc

ti
on

,
lo

w
w

at
er

pr
od

uc
ti

on
,
et

c
T

T
ru

th
le

ve
l

A
ny

va
lu

e
in

[0
,1

]
T

3
D

eg
re

e
of

co
ve

ri
ng

A
ny

va
lu

e
in

[0
,1

]
T

4
D

eg
re

e
of

ap
pr

op
ri

at
en

es
s

A
ny

va
lu

e
in

[0
,1

]
T

c
D

eg
re

e
of

su
ffi

ci
en

t
co

ve
ra

ge
A

ny
va

lu
e

in
[0

,1
]

T
u

D
eg

re
e

of
us

ef
ul

ne
ss

A
ny

va
lu

e
in

[0
,1

]
T

o
D

eg
re

e
of

ou
tl

ie
r

A
ny

va
lu

e
in

[0
,1

]

147



6.2.1 Two Canonical Forms

Define a set of M objects Y = {y1, y2, . . . , yM} and a set of N attribute names V =

{v1, v2, . . . , vN}. Let Xn (n = 1, 2, . . . , N) be the domain of vn. Then, vn(ym) ≡ vm
n ∈ Xn

is the value of the nth attribute for the mth object (m = 1, 2, . . . ,M). Hence, the database

D, which collects information about elements from Y, is in the form of

D = {< v1
1, v

1
2, . . . , v

1
N >, < v2

1, v
2
2, . . . , v

2
N >, · · · , < vM

1 , vM
2 , . . . , vM

N >}

≡ {d1,d2, . . . ,dM} (6.1)

where dm =< vm
1 , vm

2 , . . . , vm
N > is a complete record about object ym.

For example, for the fracture dataset used in Section 6.6, there are 85 wells (M = 85),

and hence Y={Well1, Well2, ...,Well85}. Each well has seven attributes (N = 7), and

V=<#Stages, lengthPerf, #Holes, Sand, Slurry, Pad, Oil>. For #Stages, its value ranges

from three to 17; so, its domain X1 = [3, 17]. Well1 has four stages, 232 feet of perforation

and 290 holes in completion, and 161,000 barrels of sand, 5,715 barrels of slurry and 1,183

barrels of pad were injected in fracturing, and it produced 5,278 barrels of oil during the

first 180 days after fracturing; so, the complete record for Well1 is d1=<4, 232, 290,

161,000, 5,715, 1,183, 5,278>.

Let Sn be a label associated with a T1 FS in Xn. Define

S = {S1, S2, . . . , SN} (6.2)
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where

µS(dm) ≡ min{µS1(v
m
1 ), · · · , µSN

(vm
N )}, m = 1, 2, . . . ,M (6.3)

The two canonical forms of T1 FS linguistic summarization considered by George and

Srikanth [34] are:

1. Q objects from Y are/have {S1, S2, . . . , SN} [T ], where Q is a linguistic quantifier

modeled by a T1 FS, e.g., about half, most, etc; Sn (n = 1, 2, . . . , N) is a summa-

rizer, e.g., high oil production, low water production, etc; T ∈ [0, 1] is a quality

measure for the summary called the truth level. It describes how well the dataset

fits the summary. Generally, T increases as more data support the summary. T is

computed as

T = µQ

( r

R

)
(6.4)

in which

r =
M∑

m=1

µS(dm) (6.5)

R =


M, Q is a relative quantifier (e.g., most)

1, Q is an absolute quantifier (e.g., more than 100)
(6.6)
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i.e., we first compute r/R as the portion (when a relative Q is used) or the number

(when an absolute Q is used) of Y that have properties {S1, S2, . . . , SN}, and then

map it to a truth level in [0, 1] according to the quantifier Q. Note that FS operations

are used in the calculation, i.e., a well can partially fit the summary. This is different

from the crisp case, where a well must either fit the summary completely (i.e., with

degree 1) or not fit the summary at all (i.e., with degree 0).

An example of such a summary is:

Most︸ ︷︷ ︸ wells︸ ︷︷ ︸ have high oil production︸ ︷︷ ︸ and high water production︸ ︷︷ ︸ [ 0.6︸︷︷︸]
Q Y S1 S2 T

In this example Q is a relative quantifier.

2. Q objects from Y being/with wg are/have {S1, . . . , Sg−1, Sg+1, . . . , SN} [T ], where

wg = Sg is a pre-selected qualifier from {S1, S2, . . . , SN}. The truth level T is

computed as

T = µQ

(
r∑M

m=1 µwg(vm
g )

)
(6.7)
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Note that for this canonical form only relative Q can be used1. An example of such

a summary is:

Most︸ ︷︷ ︸ wells︸ ︷︷ ︸ with high water production︸ ︷︷ ︸ have high oil production︸ ︷︷ ︸ [ 0.7︸︷︷︸]
Q Y wg S1 T

(6.8)

6.2.2 Additional Quality Measures

According to Hirota and Pedrycz [44], the following five features are essential to measure

the quality of a summary:

1. Validity : The summaries must be derived from data with high confidence.

2. Generality : This describes how many data support a summary.

3. Usefulness: This relates the summaries to the goals of the user, especially in terms

of the impact that these summaries may have on decision-making. Usefulness is

strongly related to the concept of interestingness, which is [125] “one of the central

problems in the field of knowledge discovery.”

4. Novelty : This describes the degree to which the summaries deviate from our expec-

tations, i.e., how unexpected the summaries are.
1This means that summaries with absolute Q like “more than 100 wells with high water production

have high oil production” cannot be generated; however, because this kind of summary can be converted
to the first canonical form, e.g., “more than 100 wells have high water production and high oil production,”
only relative Q being used in the second canonical form does not limit the application of linguistic sum-
marization. Also note that when relative Q is used, a summary in the second canonical form cannot be
converted to the first canonical form, e.g., “most wells with high water production have high oil production”
is different from “most wells have high water production and high oil production.”
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5. Simplicity : This measure concerns the syntactic complexity of the summaries. Gen-

erally simpler summaries are easier to understand and hence are preferred.

The validity can be understood as the truth level T introduced in the previous sub-

section. Several other quality measures for linguistic summaries have also been intro-

duced [53,55]. For example, the degree of covering (T3) is related to generality, the degree

of appropriateness (T4) is related to novelty, the length of summary (T5) is related to

simplicity, etc2. T3 and T4 are introduced next, and some problems with them are also

pointed out.

The degree of covering, T3 ∈ [0, 1], describes how many objects (in terms of portion)

in the dataset satisfying wg are “covered” by a summary, and is defined in [53] as

T3 =
∑M

m=1 tm∑M
m=1 hm

(6.9)

where

tm =


1, µS(dm) > 0

0, otherwise
(6.10)

hm =


1, µwg(vm

g ) > 0

0, otherwise
(6.11)

According to our experiments, T3 defined in (6.9) does not provide much extra infor-

mation beyond T , because the correlation between T and T3 is usually very large, e.g.,
2There is no quality measure related to usefulness.
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larger than 0.9. So, a different quality measure that can indicate whether a rule has

sufficient coverage and is more independent of T is desired. Such a measure, called the

degree of sufficient coverage, has been proposed in Section 6.4.3.

Next consider the degree of appropriateness defined in [53]. Suppose a summary

containing summarizers S is partitioned into N partial summaries, each of which consists

of only one summarizer, e.g., “Q objects from Y being/with wg are/have S1 and S2” can

be partitioned into two partial summaries, “Q objects from Y being/with wg are/have S1”

and “Q objects from Y being/with wg are/have S2.” Denote

rn =
∑M

m=1 tn,m

M
, n = 1, . . . , N (6.12)

where

tn,m =


1, µSn(vm

n ) > 0

0, otherwise
(6.13)

Then, the degree of appropriateness, T4, is defined as [53]

T4 =

∣∣∣∣∣
N∏

n=1

rn − T3

∣∣∣∣∣ . (6.14)

Note the mismatch between the two components of T4 in (6.14): rn is actually the

degree of covering of the summary “Q objects from Y are/have Sn,” whereas T3 com-

putes the degree of covering of the summary “Q objects from Y being/with wg are/have
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{S1, . . . , Sg−1, Sg+1, . . . , SN}.” Since the first term does not consider the qualifier wg

whereas the second does, the meaning of T4 is unclear.

The following example, quoted from [55], was used to illustrate the meaning of the

degree of appropriateness:

For a database concerning the employees, if 50% of them are less than 25 years

old and 50% are highly qualified, then we may expect that 25% of the employees

would be less than 25 years old and highly qualified; this would correspond to a

typical, fully expected situation. However, if the degree of appropriateness is,

e.g., 0.39 (i.e. 39% are less than 25 years old and highly qualified), then the

summary found reflects an interesting, not fully expected relation in our data.

This degree describes therefore how characteristic for the particular database

the summary found is. T4 is very important because, for instance, a trivial

summary like “100% of sale is of any articles” has full validity (truth) if we

use the traditional degree of truth but its degree of appropriateness is equal 0

which is correct.

The above example is interesting; however, because it does not use a qualifier wg

whereas T4 is supposed to be applied only to summaries involving wg, it cannot be used

to illustrate T4.

According to our understanding, the idea of T4 is to test the independency of the

summarizers. We first assume all summarizers are independent and decompose them into

several sub-summaries each with only one summarizer. Then we compute the “expected”
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degree of covering by assuming the sub-summarizers are independent. Finally, the differ-

ence between the “expected” degree of covering and true degree of covering is computed.

If the difference is significant, then the summary reflects something unexpected and hence

interesting (note that an unexpected summary does not necessary have high T ). So, a

more reasonable way to compute T4 is to re-define rn as

rn =

∑M
m=1 t′n,m∑M
m=1 hm

, n = 1, . . . , N (6.15)

where

t′n,m =


1, µSn(vm

n ) > 0 and µwg(vm
g ) > 0

0, otherwise
(6.16)

and then to compute T4 by (6.14).

T4 is not used in this chapter because we are more interested in finding outlier rules

and data instead of studying the independency of summarizers. A degree of outlier will

be introduced in Section 6.4.3.

6.3 Linguistic Summarization Using IT2 FSs: Niewiadom-

ski’s Approach

Though linguistic summarization of a database by T1 FSs has been studied extensively,

as pointed out by Niewiadomski [95],
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Type-1 membership functions are frequently constructed based on preferences
of one expert. However, it may look arbitrary, since it seems more natural
when two or more opinions are given to illustrate, e.g., a linguistic term, to
model it as objectively as possible. Traditional fuzzy sets dispose no methods
of handling these, usually different, opinions. The average or median of sev-
eral membership degrees keep no information about those natural differences.
For instance, the question What is the compatibility level of the 36.5◦C with
“temperature of a healthy human body” can be answered 0.5, 1.0, and 1.0
by three doctors, respectively, but the average 0.866 does not show that one of
them remains unconvinced.

So, Niewiadomski proposed to use interval or general T2 FSs in linguistic summariza-

tion [95,96,98–100]. The IT2 FS approach is considered in this chapter because we want

to obtain the word models from a survey instead of arbitrarily, whereas presently there is

no method to obtain general T2 FS word models.

According to Niewiadomski, to qualify as an IT2 FS linguistic summarization, at

least one of Q and Sn must be modeled by an IT2 FS, and T̃ ⊆ [0, 1] becomes a truth

interval. Presently, his approach cannot handle the case when both the quantifier Q and

the summarizers Sn are IT2 FSs; so, he considers the following two cases separately:

1. Q̃ is an IT2 FS and Sn are T1 FSs.

2. Q is a T1 FS and S̃n are IT2 FSs.

6.3.1 Summaries with IT2 FS Quantifier Q̃ and T1 FS Summarizers Sn

When Q̃ is an IT2 FS and Sn are T1 FSs, the two canonical forms introduced in Sec-

tion 6.2.1 become:
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1. Q̃ objects from Y are/have {S1, S2, . . . , SN} [T̃ ]. The truth interval T̃ is computed

as [recall from (2.15) that the membership of a number on an IT2 FS Q̃ is an interval

determined by its LMF Q and UMF Q]:

T̃ =
[
µQ

( r

R

)
, µQ

( r

R

)]
(6.17)

where r and R have been defined in (6.5) and (6.6), respectively.

2. Q̃ objects from Y being/with wg are/have {S1, . . . , Sg−1, Sg+1, . . . , SN} [T̃ ], where

wg = Sg is a pre-selected T1 FS qualifier. The truth interval T̃ is computed as

T̃ =

[
µQ

(
r∑M

m=1 µwg(vm
g )

)
, µQ

(
r∑M

m=1 µwg(vm
g )

)]
(6.18)

Again, only relative Q̃ can be used in the second canonical form.

6.3.2 Summaries with T1 FS Quantifier Q and IT2 FS Summarizers S̃n

When Q is a T1 FS and S̃n are IT2 FSs, the two canonical forms introduced in Section 6.2.1

become:

1. Q objects from Y are/have {S̃1, S̃2, . . . , S̃N} [T̃ ]. The truth interval T̃ is computed

as

T̃ =

[
inf

r∈[r,r]
µQ

( r

R

)
, sup
r∈[r,r]

µQ

( r

R

)]
(6.19)

157



where

r =
M∑

m=1

min{µS1
(vm

1 ), · · · , µSN
(vm

N )} (6.20)

r =
M∑

m=1

min{µS1
(vm

1 ), · · · , µSN
(vm

N )} (6.21)

2. Q objects from Y being/with wg are/have {S̃1, . . . , S̃g−1, S̃g+1, . . . , S̃N} [T̃ ], where

wg = Sg is a T1 FS qualifier. The truth interval T̃ is computed as

T̃ =

[
inf

r∈[r′,r′]
µQ

(
r∑M

m=1 µwg(vm
g )

)
, sup
r∈[r′,r′]

µQ

(
r∑M

m=1 µwg(vm
g )

)]
(6.22)

where

r′ =
M∑

m=1

min{µS1
(vm

1 ), · · · , µSN
(vm

N )} (6.23)

r′ =
M∑

m=1

min{µS1
(vm

1 ), · · · , µSN
(vm

N )} (6.24)

Note that (6.22) cannot handle the case when wg is modeled by an IT2 FS, which

may be favorable in practice, as we will see in Section 6.5.
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6.3.3 Additionally Quality Measures

Niewiadomski [95, 97] extended all other quality measures for T1 FS linguistic summa-

rization to IT2 FS linguistic summarization, e.g., degree of covering (T̃3), degree of ap-

propriateness (T̃4), etc. However, since they are based on Kacprzyk’s definition of T3 and

T4, they are problematic, as explained below.

The problem with T̃3 in Niewiadomski’s approach is similar to that with T3 in the T1

FS case: it has high correlation with the truth level T̃ .

When Q̃ is an IT2 FS and wg and Sn are T1 FSs, the degree of appropriateness is a

crisp number computed by (6.14). T4 becomes an interval when Q and wg are T1 FSs

and S̃n are IT2 FSs, and it is computed as [97]:

T̃4 =

[∣∣∣∣∣
N∏

n=1

rn −
∑M

m=1 Tm∑M
m=1 hm

∣∣∣∣∣ ,

∣∣∣∣∣
N∏

n=1

rn −
∑M

m=1 Tm∑M
m=1 hm

∣∣∣∣∣
]

(6.25)

where

Tm =


1, µSn

(vm
n ) > 0,∀n 6= g, and µwg(vm

g ) > 0

0, otherwise
(6.26)

Tm =


1, µSn

(vm
n ) > 0,∀n 6= g, and µwg(vm

g ) > 0

0, otherwise
(6.27)

rn =

∑M
m=1 tn,m

M
(6.28)

rn =
∑M

m=1 tn,m

M
(6.29)
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in which

tn,m =


1, if µSn

(vm
n ) > 0

0, otherwise
(6.30)

tn,m =


1, if µSn

(vm
n ) > 0

0, otherwise
(6.31)

and hm is defined in (6.11).

Niewiadomski’s definitions of the degree of appropriateness are based on Kacprzyk

and Strykowski’s [53] definition of T4, so we question their rationale (see Appendix 6.2.2).

Additionally, in (6.25) Niewiadomski does not consider the dependence between the in-

ternal variables, e.g., for |
∏N

n=1 rn −
PM

m=1 T m
PM

m=1 hm
|, Sn are used to compute

∏N
n=1 rn whereas

Sn are used to compute
PM

m=1 T m
PM

m=1 hm
.

6.4 Linguistic Summarization Using T1 FSs: Our Approach

The main purpose of this chapter is to propose a linguistic summarization approach using

IT2 FSs. For ease in understanding, we start with linguistic summarization using T1

FSs; however, this does not mean we advocate that T1 FSs should be used in linguis-

tic summarization. In fact, we always argue that IT2 FSs should be used in linguistic

summarization.
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6.4.1 The Canonical Form

Because we are interested in generating IF-THEN rules from a dataset, our canonical

form for linguistic summarization using T1 FSs is:

IF X1 are/have S1, THEN X2 are/have S2 [T ] (6.32)

where T is a truth level. One example of such a rule is:

IF the total length of perforations in a well︸ ︷︷ ︸ is small︸ ︷︷ ︸,
X1 S1

THEN the 180-day cumulative oil production of the well︸ ︷︷ ︸ is tiny︸︷︷︸ [ 0.9︸︷︷︸]
X2 S2 T

(6.33)

Only single-antecedent3 single-consequent4 rules are considered in this section. Multi-

antecedent multi-consequent rules are considered in Section 6.5.3.

Our canonical form in (6.32) can be re-expressed as:

All Y with S1 are/have S2 [T ] (6.34)

It is analogous to Yager’s second canonical form (see Appendix 6.2.1), which is

Q objects from Y with wg are/have S [T ] (6.35)

3Antecedents are the attributes in the IF part of a rule.

4Consequents are the attributes in the THEN part of a rule.
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i.e., our IF-THEN rule is equivalent to Yager’s second canonical form by viewing the word

All as the quantifier Q and X1 are/have S1 as the qualifier wg. For example, (6.33) can

be understood as:

All︸︷︷︸ wells︸ ︷︷ ︸ with small total feet of perforations︸ ︷︷ ︸
Q Y wg

have tiny 180-day cumulative oil production︸ ︷︷ ︸ [ 0.9︸︷︷︸]
S2 T

(6.36)

The truth level T for (6.32) is hence computed by using (6.7):

T = µAll

(∑M
m=1 min(µS1(v

m
1 ), µS2(v

m
2 ))∑M

m=1 µS1(vm
i )

)
(6.37)

There can be different models for the quantifier All, as shown in Fig. 6.1. When All is

modeled as a T1 FS, T is a crisp number. When All is modeled as an IT2 FS, T becomes

an interval. When we model the quantifier All as the proportional function shown in

Fig. 6.1(a), µAll(x) = x, so that (6.37) becomes

T =
∑M

m=1 min(µS1(v
m
1 ), µS2(v

m
2 ))∑M

m=1 µS1(vm
1 )

(6.38)
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Fig. 6.1: Three possible models for the quantifier All. (a) and (b) are T1 FS models, and
(c) is an IT2 FS model.
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6.4.2 Another Representation of T

A different representation of the truth level T defined in (6.38) is introduced in this

subsection. It will lead easily to the computation of T for linguistic summarization using

IT2 FSs, as will be shown in Section 6.5.1. But first, two related definitions are introduced.

Definition 31 The cardinality of a T1 FS S1 on database D is defined as

cD(S1) =
M∑

m=1

µS1(v
m
1 ). ¥ (6.39)

Definition 32 The joint cardinality of T1 FSs {S1, ..., SN} on database D is defined as

cD(S1, ..., SN ) =
M∑

m=1

min{µS1(v
m
1 ), ..., µSN

(vm
N )}. ¥ (6.40)

Using the cardinality cD(S1) and joint cardinality cD(S1, S2), (6.38) can be re-expressed

as:

T =
cD(S1, S2)

cD(S1)
. (6.41)

It is worthwhile to mention the analogy between (6.41) and conditional probability in

probability theory. Consider S1 and S2 in (6.32) as two events. Then, the conditional

probability of S2 given S1, P (S2|S1), is computed as:

P (S2|S1) =
P (S1, S2)

P (S1)
(6.42)
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where P (S1, S2) is the joint probability of S1 and S2, and P (S1) is the probability of S1.

In (6.41) the numerator can be viewed as the total degree that S1 and S2 are satisfied

simultaneously [analogous to P (S1, S2)], and the denominator can be viewed as the total

degree that only the pre-requisite S1 is satisfied [analogous to P (S1)].

6.4.3 Additional Quality Measures

As has been mentioned in Section 6.2.2, the truth level T is related to the validity of a

summary. Three additional quality measures for T1 FS linguistic summarization, cor-

responding to generality, usefulness and novelty, are proposed in this section. The fifth

measure, simplicity, is not used in our approach because we require a user to specify the

length of the summaries, e.g., how many antecedents and consequents he or she wants to

see.

Generality is related to the degree of sufficient coverage, Tc, which describes whether

a rule is supported by enough data. It is independent of the truth level T because a rule

with high Tc may have low T , i.e., there are many data supporting this rule, but also

many data do not support this rule. To compute Tc, we first compute the coverage ratio,

which is

r =
∑M

m=1 tm
M

(6.43)
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where

tm =


1, µS1(v

m
1 ) > 0 and µS2(v

m
2 ) > 0

0, otherwise
(6.44)

i.e., r is the percentage of data which fit both the antecedent and the consequent of the

rule. The coverage ratio cannot be used directly because usually its value is very small

(e.g., mostly smaller than 0.1), so r = 0.15 may be considered sufficient coverage with

degree 1. The following mapping converts the coverage ratio into the appropriate degree

of sufficient coverage, and agrees with our feeling:

Tc = f(r) (6.45)

where f is a function that maps r into Tc. The S-shape function f(r) used in this chapter

is shown in Fig. 6.2. It is determined by two parameters r1 and r2 (0 ≤ r1 < r2), i.e.,

f(r) =



0, r ≤ r1

2(r−r1)
(r2−r1)2

, r1 < r < r1+r2
2

1 − 2(r2−r)
(r2−r1)2

, r1+r2
2 ≤ r < r2

1, r ≥ r2

(6.46)

and r1 = 0.02 and r2 = 0.15 are used in this chapter. f(r) can be modified according to

the user’s requirement on sufficient coverage.
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Fig. 6.2: The S-shape function f(r) used in this chapter.

The degree of usefulness Tu, as its name suggests, describes how useful a summary is.

A rule is useful if and only if:

1. It has high truth level, i.e., most of the data satisfying the rule’s antecedents also

have the behavior described by its consequent; and,

2. It has sufficient coverage, i.e., enough data are described by it.

Hence, Tu is computed as

Tu = min(T, Tc) (6.47)

Novelty means unexpectedness. There are different understandings of unexpectedness,

e.g., the degree of appropriateness defined by Kacprzyk and Strykowski [53] considers the

independency of the summarizers (see Appendix 6.2.2). In this chapter unexpectedness

is related to the degree of outlier, To, which indicates the possibility that a rule describes

only outliers instead of a useful pattern. Clearly, the degree of sufficient coverage Tc for

an outlier rule must be very small, i.e., it only describes very few data; however, small

Tc alone is not enough to identify outliers rules, and the truth level T should also be
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considered. When Tc is small, T can be small (close to 0), medium (around 0.5) or large

(close to 1), as shown in Fig. 6.3, where the rule “IF x is Low, THEN y is High” is

illustrated for different cases:

1. For the rule illustrated by the shaded region in Fig. 6.3(a), the truth level T is large

because all data satisfying the antecedent (x is Low) also satisfy the consequent (y

is High). Visual inspection suggests that this rule should be considered as an outlier

because the data described by it are isolated from the rest.

2. For the rule illustrated by the shaded region in Fig. 6.3(b), the truth level T is small

because most data satisfying the antecedent (x is Low) do not satisfy the consequent

(y is High). Visual inspection suggests that this rule should be considered as an

outlier because the data described by it are isolated from the rest.

3. For the rule illustrated by the shaded region in Fig. 6.3(c), the truth level T is

medium because the data satisfying the antecedent (x is Low) are distributed some-

what uniformly in the y domain. By visual inspection, this rule should not be

considered as an outlier (although it is not a good rule as Tu would be small) be-

cause its data are not so isolated from the rest.

In summary, an outlier rule must satisfy: 1) The degree of sufficient coverage, Tc, is

very small; and 2) The truth level, T , must be very small or very large. Finally, note

that the purpose of finding an outlier rule is to help people identify possible outlier data

and then to further investigate them. So, we need to exclude a rule with T = 0 from
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Fig. 6.3: Three cases for the rule “IF x is Low, THEN y is High,” whose Tc is small. (a)
T is large, (b) T is small, and (c) T is medium.
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being identified as an outlier because in this case the rule does not describe any data.

The following formulas are used in this chapter to compute the degree of outlier To:

To =


min(max(T, 1 − T ), 1 − Tc), T > 0

0, T = 0
(6.48)

The term max(T, 1− T ) convert a small T (close to 0) or a large T (close to 1) to a large

number in [0, 1], and min(max(T, 1 − T ), 1 − Tc) further imposes the constraint that Tc

must be small for an outlier rule.

A graph illustrating the location of useful rules (high Tu) and outlier rules (high To)

in the domain formed by T and Tc is shown in Fig. 6.4.

A summary of the correspondences between the quality measures proposed by Hirota

and Pedrycz [44] and us is given in Table 6.2.

� �

�

7

F7

8VHIXO
5XOHV

2XWOLHU
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2XWOLHU
5XOHV

Fig. 6.4: Illustration of useful rules and outlier rules determined by T and Tc. The small
gap at T = 0 means that rules with T = 0 are excluded from being considered as outliers.
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Table 6.2: Correspondences between the quality measures proposed by Hirota and Pedrycz
[44] and us.

Hirota and Pedrycz’s Quality Measure Our Quality Measure
Validity Truth level (T )
Generality Degree of sufficient coverage (Tc)
Usefulness Degree of usefulness (Tu)
Novelty Degree of outlier (To)
Simplicity Not used in our method

6.5 Linguistic Summarization Using IT2 FSs: Our Approach

The canonical form of linguistic summarization using IT2 FSs and the associated quality

measures are proposed in this section. They are extended from the previous section’s

results on linguistic summarization using T1 FSs.

6.5.1 The Canonical Form

When IT2 FSs are used in linguistic summarization to generate IF-THEN rules, our

canonical form becomes:

IF X1 are/have S̃1, THEN X2 are/have S̃2 [T ] (6.49)

(6.49) can be re-expressed as:

All Y with S̃1 are/have S̃2 [T ] (6.50)

171



It is analogous to Niewiadomski’s second canonical form (see Section 6.3.1), which is

Q objects from Y with wg are/have S̃ [T ] (6.51)

i.e., our IF-THEN rule is equivalent to Niewiadomski’s second canonical form by viewing

the word All as the quantifier Q and X1 are/have S̃1 as the qualifier wg, except a small

difference that in Niewiadomski’s approach wg must be a T1 FS whereas we use an IT2

FS.

Recall from (6.41) that the truth level for linguistic summarization using T1 FSs is

computed based on the cardinalities of T1 FSs on a database D. To extend that result to

IT2 FSs, the following definitions are needed.

Definition 33 The cardinality of an IT2 FS S̃1 on dataset D is defined as

CD(S̃1) ≡ [cD(S1), cD(S1)] =

[
M∑

m=1

µS1
(vm

1 ),
M∑

m=1

µS1
(vm

1 )

]
(6.52)

and the average cardinality is

cD(S̃1) =
cD(S1) + cD(S1)

2
. ¥ (6.53)

Definition 34 The joint cardinality of IT2 FSs {S̃1, ..., S̃N} on database D is defined as

CD(S̃1, ..., S̃N ) ≡
[
cD(S1, ..., SN ), cD(S1, ..., SN )

]
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=

[
M∑

m=1

min{µS1
(vm

1 ), ..., µSN
(vm

N )},
M∑

m=1

min{µS1
(vm

1 ), ..., µSN
(vm

N )}

]

(6.54)

and the average joint cardinality is

cD(S̃1, ..., S̃N ) =
cD(S1, ..., SN ) + cD(S1, ..., SN )

2
. ¥ (6.55)

A straight-forward extension of (6.41) to linguistic summarization using IT2 FSs is to

define

T̃ =
CD(S̃1, S̃2)

CD(S̃1)
. (6.56)

Because both CD(S̃1, S̃2) and CD(S̃1) are intervals, T̃ is also an interval. T̃ cannot be

computed using simple interval arithmetics, i.e.,

T̃ =

[∑M
m=1 min{µS1

(vm
1 ), µS2

(vm
2 )}∑M

m=1 µS1
(vm

1 )
,

∑M
m=1 min{µS1

(vm
1 ), µS2

(vm
2 )}∑M

m=1 µS1
(vm

1 )

]
(6.57)

because S̃1 appears in both the numerator and the denominator of (6.56), which means

the same embedded T1 FS of S̃1 must be used in both places in computation, whereas

in each of the two end-points in (6.57), different embedded T1 FSs of S̃1 are used in the

numerator and the denominator. Though it is possible to derive an interval T̃ based on

the Representation Theorem for IT2 FSs [81], the computation is complicated, and as
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explained at the end of this subsection, it is also unnecessary. So, the truth level T is

defined as a number in this chapter based on average cardinalities instead of cardinalities.

By substituting the cardinalities in (6.41) by their respective average cardinalities, the

truth level T of (6.49) is thus computed as

T =
cD(S̃1, S̃2)

cD(S̃1)
. (6.58)

Like its T1 counterpart (see Section 6.4.1), (6.58) is also analogous to the conditional

probability P (S̃2|S̃1), which is computed as

P (S̃2|S̃1) =
P (S̃1, S̃2)

P (S̃1)
(6.59)

i.e., cD(S̃1, S̃2) is the total degree that both S̃1 and S̃2 are satisfied [analogous to P (S̃1, S̃2)],

and cD(S̃1) is the total degree that only the pre-requisite S̃1 is satisfied [analogous to

P (S̃1)].

A reader may argue that information is lost as we describe the truth level of an IT2

FS linguistic summary using a number instead of an interval. Note that two categories

of uncertainties need to be distinguished here: 1) uncertainties about the content of an

IF-THEN rule, which are represented by IT2 FSs S̃1 and S̃2; and, 2) uncertainties about

the validity of the rule, which may be described by an interval instead of a number. We

think the first category of uncertainty is more important because it is the content of a

rule that provides knowledge. The validity is used to rank the rules and hence to find the
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best; however, how should it be used in decision-making is still an open problem. A truth

level is easier to compute and more convenient in ranking rules than a truth interval; so,

it is used in this chapter.

6.5.2 Additional Quality Measures

For linguistic summarization using IT2 FSs, the coverage ratio is still computed by (6.43),

but tm is defined differently:

tm =


1, µS1

(vm
1 ) > 0 and µS2

(vm
2 ) > 0

0, otherwise
(6.60)

i.e., we count all objects with non-zero membership (Jx in (2.15) does not equal [0, 0])

on both antecedent and consequent. Once the coverage ratio r is obtained, the degree of

sufficient coverage Tc is computed by (6.45). Because both T and Tc are crisp numbers,

(6.47) and (6.48) can again be used to compute the degree of usefulness and the degree

of outliers.

6.5.3 Multi-Antecedent Multi-Consequent Rules

The generalization of the results for single-antecedent single-consequent rules to multi-

antecedent multi-consequent (MAMC) rules is straightforward. Consider an MAMC rule:

IF X1 are/have S̃1 and ... and XK are/have S̃K ,

THEN XK+1 are/have S̃K+1 and ... and XN are/have S̃N [T ] (6.61)

175



The truth level T is computed as

T =
cD(S̃1, ..., S̃N )
cD(S̃1, ..., S̃K)

(6.62)

and the degree of sufficient coverage Tc is computed by redefining tm as

tm =


1, µSn

(vm
n ) > 0, ∀n = 1, ..., N

0, otherwise
(6.63)

Once the coverage ratio r is obtained, Tc is computed by (6.45). Because both T and Tc

are crisp numbers, (6.47) and (6.48) can again be used to compute Tu and To.

Comment: In [67] Lee considers MAMC rules in fuzzy logic control. By assuming

the consequents are independent control actions, he proposes to decompose such a rule

into q multi-antecedent single-consequent (MASC) rules (see Page 426 of [67]), where

q is the number of consequents in the original MAMC rule. Although his approach is

appropriate for fuzzy logic control, it may not be applied to knowledge extraction because

by using “and” to connect a group of consequents and computing a single truth level T

we consider explicitly the correlations among the consequents (i.e., Lee’s assumption that

the consequents are independent does not hold here), whereas the correlations are lost

when an MAMC rule is decomposed into MASC rules. For example, the rule in (6.61) is

not equivalent to the combination of the following N − K MASC rules:

IF X1 are/have S̃1 and ... and XK are/have S̃K , THEN XK+1 are/have S̃K+1 [T1]
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IF X1 are/have S̃1 and ... and XK are/have S̃K , THEN XK+2 are/have S̃K+2 [T2]

...

IF X1 are/have S̃1 and ... and XK are/have S̃K , THEN XN are/have S̃N [TN−K ]. ¥

6.6 Example 2 Completed

The fracture stimulation optimization problem has been introduced in Example 2. A

Matlab-based Demo was created to demonstrate how our linguistic summarization tech-

niques can be used to extract rules for the fracture process. Our dataset consists of 85

wells after pre-processing to remove outliers [52]. Linguistic summarization was used to

find the relationship between the following inputs and 180-day cumulative oil production

(Oil for short in all screenshots in this chapter):

• Number of stages (#Stage for short)

• Total number of holes (#Holes for short)

• Total length of perforations (lengthPerf for short)

• Total sand volume (Sand for short)

• Total pad volume (Pad for short)

• Total slurry volume (Slurry for short)

Four functions were implemented in the Demo, as shown in Fig. 6.5:
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• Simple Query : Show wells with certain properties.

• Rule Validation: Given a conjecture in the form of an IF-THEN rule, compute T ,

Tc, Tu and To based on the dataset.

• Global Top 10 Rules: Given the number of antecedents, find the top 10 rules with

the maximum T , Tc, Tu or To.

• Local Top 10 Rules: Given the number of antecedents and the desired consequent,

find the top 10 combinations of the antecedents that have the maximum T , Tc, Tu

or To.

These four functions are described in more details next.

Fig. 6.5: The Command Center where the four functions can be launched.

6.6.1 Simple Query

The Simple Query function is simply a data visualization tool. It does not use any

linguistic summarization techniques. A screenshot is shown in Fig. 6.6. A user can select
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the name and values of the properties he or she wants to query from the popup menus.

Each property has five linguistic terms associated with it: Tiny, Small, Medium, High

and Huge. They are collected from Fig. 2.12. The user can also click on the red and

pushbutton to remove a property, or the blue and button to add a property.

The query results are displayed by a Parallel Coordinates approach [162], where each

coordinate represents an input or output, and the two numbers labeled at the two ends

of each coordinate represent the range of that variable, e.g., observe from Fig. 6.6 that

#Stage has range [3, 17]. Each well is represented in Fig. 6.6 as a curve. The blue curves

represent those wells satisfying the user’s query. The light green region indicates the area

covered by the query.

6.6.2 Rule Validation

A screenshot of the Rule Validation graphical user interface (GUI) is shown in Fig. 6.7.

A user can select the number of antecedents, their names and values, and also the value

for 180-day oil production. Once the rule is specified, linguistic summarization is used

to compute T , Tc, Tu and To for it. The results are displayed similar to the way they

are displayed in the Simple Query GUI, except that now more colors are used. The

blue curves in the bottom axes represent those wells supporting the current rule under

consideration (i.e., those wells satisfying both the antecedents and the consequents of the

rule), and the strength of supporting is indicated by the depth of the blue color. The red

curves represent those wells violating the current rule (i.e., those wells satisfying only the

antecedent part of the rule), and the strength of violating is indicated by the depth of the
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Fig. 6.6: A screenshot of the Simple Query GUI.
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red color. The black curves are wells irrelevant to the current rule (i.e., those wells not

satisfying the antecedent part of the rule). In addition to 180-day oil production, 180-day

water and gas productions are also included in each figure for reference; however, they

are not considered as the consequents of the rules, i.e., they are not used in computing

the quality measures of the rule.

Fig. 6.7: A screenshot of the Rule Validation GUI.
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6.6.3 Global Top 10 Rules

This function is used to automatically find the top 10 rules according to the ranking

criterion a user chooses. Figs. 6.8-6.11 show the top 10 rules when T , Tc, Tu and To are

used as the ranking criterion, respectively. A user first specifies the number of antecedents.

The program then computes T , Tc, Tu and To for all possible combinations of rules with

such number of antecedents. Since there are a total of six antecedents, and each antecedent

and consequent domain consists of five MFs, the total number of all possible k-antecedent

rules is5

(
k

6

)
× 5(k+1), k = 1, ..., 6 (6.64)

By default, the top 10 rules are selected according to Tu; however, a user can change the

ranking criterion by clicking on the four pushbuttons on the top right corner of the GUI.

The rules are then updated accordingly. A user can also click on a certain radiobutton to

select a specific rule. All wells that support and violate that rule are then highlighted in

the bottom axes.

Observe:

1. from Fig. 6.8 that when T is used as the ranking criterion, a rule with high T may

describe only one well, so it is very possible that this rule only describes an outlier
5This is usually a large number and it increases rapidly as the numbers of antecedents and MFs in

each input and output domain increase; so, an efficient algorithm that can eliminate bad rules from the
beginning is favorable.
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Fig. 6.8: The global top 10 rules according to T , the truth level.
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Fig. 6.9: The global top 10 rules according to Tc, the degree of sufficient coverage.
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Fig. 6.10: The global top 10 rules according to Tu, the degree of usefulness.
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Fig. 6.11: The global top 10 rules according to To, the degree of outlier.
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and hence cannot be trusted. This suggests that T alone is not a reliable quality

measure for linguistic summarization.

2. from Fig. 6.9 that when Tc is used as the ranking criterion, a rule with high Tc may

have a low truth level, i.e., many wells support the rule but more violate it. So, Tc

alone is not a good quality measure.

3. from Fig. 6.10 that when Tu is used as the ranking criterion, a rule with high Tu has

both high truth level and sufficient coverage, and hence it describes a useful rule.

So, Tu is a comprehensive and reliable quality measure for linguistic summarization.

4. from Fig. 6.11 that when To is used as the ranking criterion, a rule with high To

usually describe only one well, which should be considered as an outlier. So, To is

useful in finding unexpected data/rules.

In summary, Tu and To proposed in this chapter are better quality measures for lin-

guistic summarization than T used in almost all other linguistic summarization literature:

a high Tu identifies a useful rule with both high truth level and sufficient coverage, whereas

a high To identifies outliers in the dataset that are worthy of further investigation.

6.6.4 Local Top 10 Rules

This function is very similar to the function to find global top 10 rules, except that the

consequent of the rules is specified by the user, e.g., a user may only want to know what

combinations of inputs would give huge oil production. Fig. 6.12 shows the top 10 rules

when Tu is used as the ranking criterion. A user first specifies the number of antecedents.
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The program then computes T , Tc, Tu and To for all possible combinations of rules with

such number of antecedents. The number of evaluations in this function is only 1/5 of

that in finding global top 10 rules because all rules can have only one instead of five

consequents.

Fig. 6.12: The local top 10 rules according to Tu. Observe that there is no satisfactory
combination of two properties that lead to huge 180-day oil production.
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6.7 Discussions

In this section the relationships between linguistic summarization, perceptual reasoning,

granular computing, and the Wang-Mendel (WM) method are discussed. Because cur-

rently granular computing and the WM method mainly focus on T1 FSs, only T1 FSs are

used in the discussion; however, our results can be extended to IT2 FSs without problems.

6.7.1 Linguistic Summarization and Perceptual Reasoning

Perceptual reasoning (PR) will be introduced in Chapter 8. A rulebase is needed before

PR can be carried out. There are two approaches to construct the rules: 1) from experi-

ence, e.g., survey the experts; and, 2) from data, e.g., summarize a database linguistically.

The latter has become very convenient because data is usually readily available in this

information explosion age.

Additionally, the linguistic summarization approach can serve as a preliminary step

for the survey approach, i.e., potential rules can first be extracted from data and then

presented to the experts for validation. This would save the time of the experts, and

may also help us discover inconsistencies between the data and experience. For example,

if from the input-output data of a process we extract a rule which says “IF x is large,

THEN y is medium” whereas the operator thinks y should be small when x is large, then

it is worthwhile to study why the data are not consistent with the operator’s experience.

It is possible that the dynamics of the process has been changing as time elapses; so, this
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inconsistency would suggest that it is necessary to update the operator’s understanding

about the process.

6.7.2 Linguistic Summarization and Granular Computing

Granular Computing (GrC) [44, 56, 173, 176, 186] is a general computation theory for

effectively using granules such as classes, clusters, subsets, groups and intervals to build

an efficient computational model for complex applications with huge amounts of data,

information and knowledge. Though the name was first invented by Zadeh in 1998 [186],

according to Hirota and Pedrycz [44], “the idea of information granulation has existed

for a long time... For instance, an effect of temporal granulation occurs in analog-to-

digital (A/D) conversion equipped with an averaging window: one uniformly granulates

an incoming signal over uniform time series. An effect of spatial granulation occurs quite

evidently in image processing, especially when we are concerned with image compression.”

Linguistic summarization can be viewed as a GrC approach, as demonstrated by the

following example.

Example 24 Consider the example shown in Fig. 6.13, where the training data (x is the

input and y is the output) are shown as squares. There is no simple correlation between x

and y; however, observe that generally as x increases, y first increases and then decreases.

Assume each input and output domain is partitioned by three overlapping T1 FSs Low,
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Medium and High. Linguistic summarization considers these three intervals in the x

domain independently and outputs the following three rules for them:

IF x is Low, THEN y is Low

IF x is Medium, THEN y is Medium

IF x is High, THEN y is Low

which describe the trend correctly. The resolution of the summarization can be improved

by using more MFs in each input/output domain. ¥
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Fig. 6.13: An example to illustrate the idea of granular computing.

6.7.3 Linguistic Summarization and the WM Method

The Wang-Mendel (WM) method [83, 140] is a simple yet effective method to generate

fuzzy rules from training examples (according to Google Scholar, it has been cited 1,119
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times). We use Fig. 6.14, where the 18 training data points are represented by squares6,

to introduce its idea:

1. Each input (x) and output (y) domain is partitioned into 2L + 1 (an odd number)

overlapping intervals, where L can be different for each variable. Then, MFs and

labels are assigned to these intervals. In Fig. 6.14, each of the x and y domain is

partitioned into three overlapping intervals by FSs Low, Medium and High. An

interval in the x domain and an interval in the y domains together determine a

region in the input-output space, e.g., the region determined by High x and Low y

is shown as the shaded region in the lower right corner of Fig. 6.14.

2. Because of overlapping MFs, it frequently happens that a datum is in more than

one region, e.g., the diamond in Fig. 6.14 belongs to the region determined by High

x and Low y, and also the region determined by High x and Medium y. For each

(x, y), we evaluate its degrees of belonging in regions where it occurs, assign it to the

region with maximum degree, and generate a rule from it. For example, the degree

of belonging of the diamond in Fig. 6.14 to the region determined by High x and Low

y (the shaded region in the lower right corner) is µHigh(x)µLow(y) = 1 × 0.1 = 0.1,

and its degree of belonging to the region determined by High x and Medium y is

µHigh(x)µMedium(y) = 1 × 0.8 = 0.8; so, the diamond should be assigned to the

6Three points are represented by different shapes only for easy reference purpose.
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region determined by High x and Medium y. The corresponding rule generated

from this diamond is hence

IF x is High, THEN y is Medium (6.65)

and it is also assigned a degree of 0.8. Similarly, a rule generated from the cross in

Fig. 6.14 is

IF x is High, THEN y is Low (6.66)

and it has a degree of µHigh(x)µLow(y) = 1 × 1 = 1.

3. To resolve conflicting rules, i.e., rules with the same antecedent MFs and different

consequent MFs, we choose the one with the highest degree and discard all others.

For example, Rules (6.65) and (6.66) are conflicting, and Rule (6.66) is chosen

because it has a higher degree.

Finally, the three rules generated by the WM method for the Fig. 6.14 data are:

IF x is Low, THEN y is High

IF x is Medium, THEN y is Medium

IF x is High, THEN y is Low
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The first rule seems counter-intuitive, but it is a true output of the WM method. It

is generated by the circle in Fig. 6.14 with a degree µLow(x)µHigh(y) = 1 × 1 = 1,

i.e., its degree is higher than two other possible rules, IF x is Low, THEN y is Low

and IF x is Low, THEN y is Medium, through these two rules have more data to

support them and hence look more reasonable. However, note that this example

considers an extreme case. In practice the WM method usually generates very

reasonable rules, that’s why it is popular.

Once the rules are generated, the degrees associated with them are discard as

they are no longer useful.
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Fig. 6.14: An example to illustrate the difference between the WM method and linguistic
summarization. When x is Low, the WM method generates a rule “IF x is Low, THEN
y is High” whereas linguistic summarization generates a rule “IF x is Low, THEN y is
Low.”
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Example 25 Fig. 6.14 can also be used to illustrate the difference between the WM

method and linguistic summarization. Consider the shaded region where x is Low. There

are three candidates for a rule in this region:

IF x is Low, THEN y is High (6.67)

IF x is Low, THEN y is Medium (6.68)

IF x is Low, THEN y is Low (6.69)

For Rule (6.67),

cD(Lowx, Highy) =
18∑

m=1

min(µLowx
(xm), µHighy

(ym)) = 1 (6.70)

cD(Lowx) =
18∑

m=1

µLowx
(xm) = 12.8 (6.71)

T =
cD(Lowx, Highy)

cD(Lowx)
= 0.08 (6.72)

Because the dataset consists of 18 points and there is only one datum falls in the region

determined by Low x and High y, the coverage ratio [see (6.43)] and degree of sufficient

coverage [see (6.45)] are

r = 1/18 (6.73)

Tc = f(r) = 0.15 (6.74)
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and hence Tu = min(T, Tc) = 0.08 and To = min(max(T, 1−T ), 1−Tc) = min(max(0.08,

0.92), 1 − 0.15) = 0.85.

Similarly, for Rule (6.68) linguistic summarization gives:

T = 0.31, Tc = 1, Tu = 0.31, To = 0 (6.75)

and for Rule (6.69), linguistic summarization gives:

T = 0.71, Tc = 1, Tu = 0.71, To = 0 (6.76)

By ranking Tu and To, linguistic summarization would select Rule (6.69) as the most

useful rule with Tu = 0.71 and Rule (6.67) as an outlier with To = 0.85. These results are

more reasonable than the rule generated by the WM method.

Repeating the above procedure for the other two regions, the following three rules are

generated when Tu is used as the ranking criterion:

IF x is Low, THEN y is Low T = 0.71, Tc = 1, Tu = 0.71, To = 0

IF x is Medium, THEN y is Medium T = 0.82, Tc = 1, Tu = 0.82, To = 0

IF x is High, THEN y is Low T = 0.57, Tc = 0.82, Tu = 0.57, To = 0.18 ¥

In summary, the differences between the WM method and linguistic summarization

are:
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1. The WM method tries to construct a predictive model7 whereas linguistic summa-

rization tries to construct a descriptive model8. According to [41], “a descriptive

model presents, in convenient form, the main features of the data. It is essentially a

summary of the data, permitting us to study the most important aspects of the data

without their being obscured by the sheer size of the data set. In contrast, a predic-

tive model has the specific objective of allowing us to predict the value of some target

characteristic of an object on the basis of observed values of other characteristics of

the object.”

2. Both methods partition the problem domain into several smaller regions and try

to generate a rule for each region; however, the WM method generates a rule for a

region as long as there are data in it, no matter how many data are there, whereas

linguistic summarization does not, e.g., if a region has very few data in it, then these

data may be considered as outliers and no useful rule is generated for this region.

3. The rules obtained from linguistic summarization have several quality measures

associated with them, so the rules can be sorted according to different criteria,

whereas the rules obtained from the WM method are considered equally important9.

7Predictive models [47] include classification (grouping items into classes and predicting which class an
item belongs to), regression (function approximation and forecast), attribute importance determination
(identifying the attributes that are most important in predicting results), etc.

8Descriptive models [47] include clustering (finding natural groupings in the data), association models
(discovering co-occurrence relationships among the data), feature extraction (creating new attributes as
a combination of the original attributes), etc.

9There is an improved version of the WM method [137] that assigns a degree of truth to each rule;
however, the degree of truth is computed differently from T in this chapter, and the rule consequents are
numbers instead of words modeled by FSs; so, it is not considered in this chapter.
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Chapter 7

Extract Rules through Survey:

Knowledge Mining

As has been mentioned in Chapter 1, sometimes the rules describing the dynamics of

a process can only be extracted though a survey. In this chapter the SJA introduced

in Example 3 is revisited to illustrate this knowledge mining approach. Particularly, we

focus on a fuzzy logic flirtation advisor.

Flirtation judgments offer a fertile starting place for developing an SJA for a variety

of reasons. First, many behavioral indicators associated with flirtation have been well

established [65]. Second, the indicators (e.g., smiling, touching, eye contact) are often

ambiguous by themselves and along with a changing level of the behavior (along with

other cues) the meaning of the behavior is apt to shift from one inference (e.g., friendly)

to another (e.g., flirtation, seductive, or harassing). Third, participants are apt to have
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had a great deal of experience with flirtation judgments, and be therefore apt to easily

make them. Finally, inferences made about the meaning of these behaviors are often

sensitive to both the gender of the perceiver and the gender of the interactants [65].

Although our focus is on flirtation judgment, the methodology can also be applied

to engineering judgments such as global warming, environmental impact, water quality,

audio quality, toxicity, etc.

7.1 Survey Design

An SJA uses a rulebase, which is obtained from surveys. The following methodology can

be used to conduct the surveys [82,83]:

1. Identify the behavior of interest. This step, although obvious, is highly application

dependent. As mentioned above, our focus is on the behavior of flirtation.

2. Determine the indicators of the behavior of interest. This requires:

(a) Establishing a list of candidate indicators (e.g., for flirtation [82], six candi-

date indicators are touching, eye contact, acting witty, primping, smiling, and

complementing).

(b) Conducting a survey in which a representative population is asked to rank-

order in importance the indicators on the list of candidate indicators. In some

applications it may already be known what the relative importance of the

indicators is, in which case a survey is not necessary.
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(c) Choosing a meaningful subset of the indicators, because not all of them may

be important. In Step 6, where people are asked to provide consequents for a

collection of IF–THEN rules by means of a survey, the survey must be kept

manageable, because most people do not like to answer lots of questions; hence,

it is very important to focus on the truly significant indicators. The analytic

hierarchy process [114] and factor analysis [36] from statistics can be used to

help establish the relative significance of indicators.

3. Establish scales for each indicator and the behavior of interest. If an indicator is

a physically measurable quantity (e.g., temperature, pressure), then the scale is

associated with the expected range between the minimum and maximum values

for that quantity. On the other hand, many social judgment indicators as well

as the behavior of interest are not measurable by means of instrumentation (e.g.,

touching, eye contact, flirtation, etc.). Such indicators and behaviors need to have

a scale associated with them, or else it will not be possible to design or activate an

SJA. Commonly used scales are 1 through 5, 0 through 5, 0 through 10, etc. We

shall use the scale 0 through 10.

4. Establish names and collect interval data for each of the indicator’s FSs and behavior

of interest’s FSs. The issues here are:

(a) What vocabulary should be used and what should its size be so that the FOUs

for the vocabulary completely cover the 0-10 scale and provide the user of the

SJA with a user-friendly interface?
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(b) What is the smallest number of FSs that should be used for each indicator and

behavior of interest for establishing rules?

This is the encoding problem and the IA [70] can be used to find the FOU word

models once a satisfactory vocabulary has been established, and word data have

been collected from a group of subjects using surveys.

5. Establish the rules. Rules are the heart of the SJA; they link the indicators of a

behavior of interest to that behavior. The following issues need to be addressed:

(a) How many antecedents will the rules have? As mentioned earlier, people gen-

erally do not like to answer complicated questions; so, we advocate using rules

that have either one or two antecedents. An interesting (non-engineering) in-

terpretation for a two-antecedent rule is that it provides the correlation effect

that exists in the mind of the survey respondent between the two antecedents.

Psychologists have told us that it is just about impossible for humans to corre-

late more than two antecedents (indicators) at a time, and that even correlating

two antecedents at a time is difficult. Using only one or two antecedents does

not mean that a person does not use more than this number of indicators

to make a judgment; it means that a person uses the indicators one or two

at a time (this should be viewed as a conjecture). This suggests the overall

architecture for the SJA should be parallel or hierarchical (see Section 8.4.6).
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(b) How many rulebases need to be established? Each rulebase has its own SJA.

When there is more than one rulebase, each of the advisors is a social judg-

ment sub-advisor, and the outputs of these sub-advisors can be combined to

create the structure of the overall SJA. If, e.g., it has been established that

four indicators are equally important for the judgment of flirtation, then there

would be up to four single-antecedent rulebases as well as six two-antecedent

rulebases. These rulebases can be rank-ordered in importance by means of

another survey in which the respondents are asked to do this. Later, when the

outputs of the different rulebases are combined, they can be weighted using

the results of this step.

There is a very important reason for using sub-advisors for an SJA. Even

though the number of important indicators has been established for the social

judgment, it is very unlikely that they will all occur at the same time in a

social judgment situation. If, for example, touching, eye contact, acting witty

and primping have been established as the four most important indicators

for flirtation, it is very unlikely that in a new flirtation scenario, all four occur

simultaneously. From your own experiences in flirting, can you recall a situation

when someone was simultaneously touching you, made eye contact with you,

was acting witty and was also primping? Not very likely! Note that a missing

observation is not the same as an observation of zero value; hence, even if it was

possible to create four antecedent rules, none of those rules could be activated
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if one or more of the indicators had a missing observation. It is therefore very

important to have sub-advisors that will be activated when one or two of these

indicators are occurring.

More discussions about this are in Section 8.4.6.

6. Survey people (experts) to provide consequents for the rules. If, e.g., a single an-

tecedent has five FSs associated with it, then respondents would be asked five ques-

tions. For two-antecedent rules, where each antecedent is again described by five

FSs, there would be 25 questions. The order of the questions should be random-

ized so that respondents don’t correlate their answers from one question to the

next. In Step 4 earlier, the names of the consequent FSs were established. Each

single-antecedent rule is associated with a question of the form:

IF the antecedent is (state one of the antecedent’s FSs),

THEN there is (state one of the consequent’s FSs) of flirtation.

Each two-antecedent rule is associated with a question of the form:

IF antecedent 1 is (state one of antecedent 1’s FSs) and antecedent 2 is

(state one of antecedent 2’s FSs),

THEN there is (state one of the consequent’s FSs) of flirtation.

The respondent is asked to choose one of the given names for the consequent’s FSs.

The rulebase surveys will lead to rule consequent histograms, because everyone will

not answer a question the same way.
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The following nine terms, shown in Fig. 7.1, are taken from the 32-word vocabulary1

in Fig. 2.12, and are used as the codebook for the SJA: none to very little (NVL), a bit

(AB), somewhat small (SS), some (S), moderate amount (MOA), good amount (GA),

considerable amount (CA), large amount (LA), and maximum amount (MAA). Their

FOUs and centroids have been given in Table 2.1. These FOUs are being used only to

illustrate our SJA methodology. In actual practice, word survey data would have to be

collected from a group of subjects, using the words in the context of flirtation.

1.  None to Very Little (NVL)          2.  A Bit (AB)          3.  Somewhat Small (SS)    

         4.  Some (S)            5.  Moderate Amount (MOA)       6.  Good Amount (GA)     

 7.  Considerable Amount (CA)     8.  Large Amount (LA)        9.  Maximum Amount (MAA)   

Fig. 7.1: Nine word FOUs ranked by their centers of centroid. Words 1, 4, 5, 8 and 9
were used in the Step 6 survey.

Our SJA was limited to rulebases for one- and two-antecedent rules, in which x1 and x2

denote touching and eye contact, respectively, and y denotes flirtation level. Section 8.4.6

explains how to deduce the output for multiple antecedents using rulebases consisting of

only one or two antecedents. For all of the rules, the following five-word subset of the

codebook was used for both their antecedents and consequents: none to very little, some,
1They are selected in such a way that they are distributed somewhat uniformly in [0, 10].
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moderate amount, large amount, and maximum amount. It is easy to see from Fig. 7.1

that these words cover the interval [0, 10]. Tables 7.1-7.3, which are taken from [82] and

Chapter 4 of [83], provide the data collected from 47 respondents to the Step 6 surveys.

Table 7.1: Histogram of survey responses for single-antecedent rules between touching
level and flirtation level. Entries denote the number of respondents out of 47 that chose
the consequent.

Touching
Flirtation

NVL S MOA LA MAA
1. NVL 42 3 2 0 0
2. S 33 12 0 2 0
3. MOA 12 16 15 3 1
4. LA 3 6 11 25 2
5. MAA 3 6 8 22 8

Table 7.2: Histogram of survey responses for single-antecedent rules between eye contact
level and flirtation level. Entries denote the number of respondents out of 47 that chose
the consequent.

Eye Contact
Flirtation

NVL S MOA LA MAA
1. NVL 36 7 4 0 0
2. S 26 17 4 0 0
3. MOA 2 16 27 2 0
4. LA 1 3 11 22 10
5. MAA 0 3 7 17 20

7.2 Data Pre-Processing

Inevitably, there are bad responses and outliers in the survey histograms. These bad data

need to be removed before the histograms are used.

Data pre-processing consists of three steps: 1) bad data processing, 2) outlier process-

ing, and, 3) tolerance limit processing, which are quite similar to the pre-processing steps
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Table 7.3: Histogram of survey responses for two-antecedent rules between touching/eye
contact levels and flirtation level. Entries denote the number of respondents out of 47
that chose the consequent.

Touching/Eye Contact
Flirtation

NVL S MOA LA MAA
1. NVL/NVL 38 7 2 0 0
2. NVL/S 33 11 3 0 0
3. NVL/MOA 6 21 16 4 0
4. NVL/LA 0 12 26 8 1
5. NVL/MAA 0 9 16 19 3
6. S/NVL 31 11 4 1 0
7. S/S 17 23 7 0 0
8. S/MOA 0 19 19 8 1
9. S/LA 1 8 23 13 2
10. S/MAA 0 7 17 21 2
11. MOA/NVL 7 23 16 1 0
12. MOA/S 5 22 20 0 0
13. MOA/MOA 2 7 22 15 1
14. MOA/LA 1 4 13 17 12
15. MOA/MAA 0 4 12 24 7
16. LA/NVL 7 13 21 6 0
17. LA/S 3 11 23 10 0
18. LA/MOA 0 3 18 18 8
19. LA/LA 0 1 9 17 20
20. LA/MAA 1 2 6 11 27
21. MAA/NVL 2 16 18 11 0
22. MAA/S 2 9 22 13 1
23. MAA/MOA 0 3 15 18 11
24. MAA/LA 0 1 7 17 22
25. MAA/MAA 0 2 3 12 30
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used in [70]. Rule 1 in Table 7.1 is used below as an example to illustrate the details of

these three steps. The number of responses before pre-processing are shown in the first

row of Table 7.4.

1) Bad Data Processing: This removes gaps (a zero between two non-zero values) in

a group of subject’s responses. For Rule 1 in Table 7.1, the number of responses to the

five consequents are {42, 3, 2, 0, 0}. Because there is no gap among these numbers, no

response is removed, as shown in the second row of Table 7.4. On the other hand, for

Rule 2 in Table 7.1, the numbers of responses to the five consequents are {33, 12, 0, 2, 0}.

Observe that no respondent selected the word MOA between S and LA; hence, a gap

exists between S and LA. Let G1 = {NV L, S} and G2 = {LA}. Because G1 has more

responses than G2, it is passed to the next step of data pre-processing and G2 is discarded.

2) Outlier processing: Outlier processing uses a Box and Whisker test [136]. As

explained in [70], outliers are points that are unusually too large or too small. A Box and

Whisker test is usually stated in terms of first and third quartiles and an interquartile

range. The first and third quartiles, Q(0.25) and Q(0.75), contain 25% and 75% of the

data, respectively. The inter-quartile range, IQR, is the difference between the third and

first quartiles; hence, IQR contains 50% of the data between the first and third quartiles.

Any datum that is more than 1.5 IQR above the third quartile or more than 1.5 IQR

below the first quartile is considered an outlier [136].

Rule consequents are words modeled by IT2 FSs; hence, the Box and Whisker test

cannot be directly applied to them. In our approach, the Box and Whisker test is applied
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to the set of centers of centroids formed by the centers of centroids of the rule consequents.

Focusing again on Rule 1 in Table 7.1, the centers of centroids of the consequent IT2 FSs

NVL, S, MOA, LA and MAA are first obtained Table 2.1, and are 0.48, 3.91, 4.95, 8.13

and 9.69, respectively. Then the set of centers of centroids is

{0.48, · · · , 0.48︸ ︷︷ ︸, 3.91, 3.91, 3.91︸ ︷︷ ︸, 4.95, 4.95︸ ︷︷ ︸}
42 3 2

(7.1)

where each center of centroid is repeated a certain number of times according to the

number of respondents after bad data processing. The Box and Whisker test is then

applied to this crisp set, where Q(0.25) = 0.48, Q(0.75) = 0.48, and 1.5 IQR = 0. For

Rule 1, the three responses to S and the two responses to MOA are removed, as shown

in the third row of Table 7.4. The new set of centers of centroids becomes

{0.48, · · · , 0.48︸ ︷︷ ︸}
42

(7.2)

3) Tolerance limit processing: Let m and σ be the mean and standard deviation of the

remaining histogram data after outlier processing. If a datum lies in the tolerance interval

[m− kσ,m + kσ], then it is accepted; otherwise, it is rejected [136]. k is determined such

that one is 95% confident that the given limits contain at least 95% of the available data,

and it can be obtained from a table look-up [94].

For Rule 1 in Table 7.1, tolerance limit processing is performed on the set of 42 centers

of centroids in (7.2), for which m = 0.48, σ = 0 and k = 2.43. No word is removed for
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this particular example; so, only one consequent, NVL, is accepted for this rule, as shown

in the last row of Table 7.4.

The final pre-processed responses for the histograms in Tables 7.1, 7.2 and 7.3 are

given in Tables 7.5, 7.6 and 7.7, respectively. Comparing each pair of tables, observe that

most responses have been preserved.

Table 7.4: Data pre-processing results for the 47 responses to the question “IF there is
NVL touching, THEN there is flirtation.”

Number of responses NVL S MOA LA MAA
Before pre-processing 42 3 2 0 0
After bad data processing 42 3 2 0 0
After outlier processing 42 0 0 0 0
After tolerance limit processing 42 0 0 0 0

Table 7.5: Pre-processed histograms of Table 7.1.

Touching
Flirtation

NVL S MOA LA MAA
1. NVL 42 0 0 0 0
2. S 33 12 0 0 0
3. MOA 12 16 15 3 0
4. LA 0 6 11 25 2
5. MAA 0 6 8 22 8

Table 7.6: Pre-processed histograms of Table 7.2.

Eye Contact
Flirtation

NVL S MOA LA MAA
1. NVL 36 0 0 0 0
2. S 26 17 4 0 0
3. MOA 0 16 27 0 0
4. LA 0 3 11 22 10
5. MAA 0 0 0 17 20
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Table 7.7: Pre-processed histograms of Table 7.3.

Touching/Eye Contact
Flirtation

NVL S MOA LA MAA
1. NVL/NVL 38 0 0 0 0
2. NVL/S 33 11 3 0 0
3. NVL/MOA 0 21 16 0 0
4. NVL/LA 0 12 28 0 0
5. NVL/MAA 0 9 16 19 3
6. S/NVL 31 11 4 0 0
7. S/S 17 23 7 0 0
8. S/MOA 0 19 19 0 0
9. S/LA 0 8 23 13 2
10. S/MAA 0 7 17 21 2
11. MOA/NVL 0 23 16 0 0
12. MOA/S 0 22 20 0 0
13. MOA/MOA 0 7 22 15 1
14. MOA/LA 0 4 13 17 12
15. MOA/MAA 0 4 12 24 7
16. LA/NVL 0 13 21 0 0
17. LA/S 0 11 23 0 0
18. LA/MOA 0 3 18 18 8
19. LA/LA 0 0 0 17 20
20. LA/MAA 0 0 0 11 27
21. MAA/NVL 0 16 18 11 0
22. MAA/S 0 9 22 13 1
23. MAA/MOA 0 3 15 18 11
24. MAA/LA 0 0 0 17 22
25. MAA/MAA 0 0 0 12 30
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7.3 Rulebase Generation

Observe from Tables 7.5, 7.6 and 7.7 that the survey and data pre-processing lead to

rule consequent histograms, but how the histograms should be used is an open question.

In [83] three possibilities were proposed:

1. Keep the response chosen by the largest number of respondents.

2. Find a weighted average of the rule consequents for each rule.

3. Preserve the distributions of the expert-responses for each rule.

Clearly, the disadvantage of keeping the response chosen by the largest number of

respondents is that this ignores all the other responses.

The second method was studied in detail in [83]. Using that method, when T1 FSs

were used (see Chapter 5 of [83]), the consequent for each rule was a crisp number, c,

where

c =
∑5

m=1 cmwm∑5
m=1 wm

(7.3)

in which cm is the centroid [83] of the mth T1 consequent FS, and wm is the number of

respondents for the mth consequent. When IT2 FSs were used (see Chapter 10 of [83]),

the consequent for each rule was an interval, C, where

C =
∑5

m=1 Cmwm∑5
m=1 wm

(7.4)
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in which Cm is the centroid [57,83] of the mth IT2 consequent FS.

The disadvantages of using (7.3) or (7.4) are: (1) there is information lost when

converting the T1 or IT2 consequent FSs into their centroids, and (2) it is difficult to

describe the aggregated rule consequents (c or C) linguistically.

Our approach is to preserve the distributions of the expert-responses for each rule by

using a different weighted average to obtain the rule consequents, as illustrated by the

following:

Example 26 Observe from Table 7.5 that when the antecedent is some (S) there are two

valid consequents, so that the following two rules will be fired:

R2
1: IF touching is some, THEN flirtation is none to very little.

R2
2: IF touching is some, THEN flirtation is some.

These two rules should not be considered of equal importance because they have been

selected by different numbers of respondents. An intuitive way to handle this is to assign

weights to the two rules, where the weights are proportional to the number of responses,

e.g., the weight for R2
1 is 33/45 = 0.73, and the weight for R2

2 is 12/45 = 0.27. The

aggregated consequent Ỹ 2 for R2
1 and R2

2 is

Ỹ 2 =
33NV L + 12S

33 + 12
(7.5)

The result is shown in Fig. 7.2. ¥
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NVL S Ỹ
2

Fig. 7.2: Ỹ 2 obtained by aggregating the consequents of R2
1 (NVL) and R2

2 (S).

Without loss of generality, assume there are N different combinations of antecedents

(e.g., N = 5 for the single-antecedent rules in Tables 7.5 and 7.6, and N = 25 for

the two-antecedent rules in Table 7.7), and each combination has M possible different

consequents (e.g., M = 5 for the rules in Tables 7.5-7.7); hence, there can be as many as

MN rules. Denote the mth consequent of the ith combination of the antecedents as Ỹ i
m

(m = 1, 2, . . . ,M, i = 1, 2, . . . , N), and the number of responses to Ỹ i
m as wi

m. For each i,

all M Ỹ i
m can be combined first into a single IT2 FS by using the algorithm given in the

Appendix:

Ỹ i =
∑M

m=1 wi
mỸ i

m∑M
m=1 wi

m

(7.6)

Ỹ i then acts as the (new) consequent for the ith rule. By doing this, the distribution of the

expert responses has been preserved for each rule. Examples of Ỹ i for single-antecedent

and two-antecedent rules are depicted in Figs. 7.3(a), 7.4(a) and 7.5, and are described

in detail next.
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7.4 Single-Antecedent Rules: Touching and Flirtation

In this section, the rulebase for a single-antecedent SJA, which describes the relationship

between touching and flirtation, is constructed. The resulting SJA is denoted SJA1.

When (7.6) is used to combine the different responses for each antecedent into a single

consequent for the rule data in Table 7.5, one obtains the rule consequents depicted in

Fig. 7.3(a). As a comparison, the rule consequents obtained from the original rule data

in Table 7.1 are depicted in Fig. 7.3(b). Observe that:

1. The consequent for none to very little (NVL) touching is a left-shoulder in Fig. 7.3(a),

whereas it is an interior FOU in Fig. 7.3(b). The former seems more reasonable to

us.

2. The consequent for some (S) touching in Fig. 7.3(a) is similar to that in Fig. 7.3(b),

except that it is shifted a little to the left. This is because the two largest responses

[large amount (LA)] in Table 7.1 are removed in pre-processing.

3. The consequent for moderate amount (MOA) touching in Fig. 7.3(a) is similar to

that in Fig. 7.3(b), except that it is shifted a little to the left. This is because

the largest response [maximum amount (MAA)] in Table 7.1 is removed in pre-

processing.

4. The consequent for large amount (LA) is similar to that in Fig. 7.3(b), except that

it is shifted a little to the right. This is because the three smallest responses [none

to very little (NVL)] in Table 7.1 are removed in pre-processing.
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5. The consequent for maximum amount (MAA) is similar to those in Fig. 7.3(b),

except that it is shifted a little to the right. This is because the three smallest

responses [none to very little (NVL)] in Table 7.1 are removed in pre-processing.

Ỹ
1

NVL

Ỹ
2

 S 

Ỹ
3

MOA

Ỹ
4

LA 

Ỹ
5

MAA

(a)

NVL  S MOA LA MAA

(b)

Fig. 7.3: Flirtation-level consequents of the five rules for the single-antecedent touching
SJA1: (a) with data pre-processing and (b) without data pre-processing. The level of
touching is indicated at the top of each figure.

The consequents Ỹ 1–Ỹ 5 shown in Fig. 7.3(a) are used in the rest of this section for

the consensus SJA1. Its five-rule rulebase is

R1: IF touching is NVL, THEN flirtation is Ỹ 1.

R2: IF touching is S, THEN flirtation is Ỹ 2.

R3: IF touching is MOA, THEN flirtation is Ỹ 3.

R4: IF touching is LA, THEN flirtation is Ỹ 4.

R5: IF touching is MAA, THEN flirtation is Ỹ 5.
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7.5 Single-Antecedent Rules: Eye Contact and Flirtation

In this section, the rulebase for another single-antecedent SJA, which describes the rela-

tionship between eye contact and flirtation, is constructed. The resulting SJA is denoted

SJA2.

When (7.6) is used to combine the different responses for each antecedent into a single

consequent for the rule data in Table 7.6, one obtains the rule consequents depicted in

Fig. 7.4(a). As a comparison, the rule consequents obtained from the original rule data

in Table 7.2 are depicted in Fig. 7.4(b). The rule consequents for NVL, MOA, LA and

MAA are different in these two figures. The consequents in Fig. 7.4(a) are used by SJA2.

Ỹ
1

NVL

Ỹ
2

 S 

Ỹ
3

MOA

Ỹ
4

LA 

Ỹ
5

MAA

(a)

NVL  S MOA LA MAA

(b)

Fig. 7.4: Flirtation-level consequents of the five rules for the single-antecedent eye contact
SJA2: (a) with data pre-processing and (b) without data pre-processing. The level of eye
contact is indicated at the top of each figure.
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7.6 Two-Antecedent Rules: Touching/Eye Contact and Flir-

tation

The previous two sections have considered single antecedent rules. This section considers

two-antecedent (touching and eye contact) rules, whose corresponding SJA is denoted

SJA3.

When (7.6) is used to combine the different responses for each pair of antecedents into

a single consequent for the rule data in Table 7.7, one obtains the 25 rule consequents

Ỹ 1,1–Ỹ 5,5 depicted in Fig. 7.5. Observe that the rule consequent becomes larger (i.e.,

moves towards right in the [0,10] interval) as either input increases, which is intuitive.

The 25-rule rulebase of SJA3 is:

R1,1: IF touching is NVL and eye contact is NVL, THEN flirtation is Ỹ 1,1.

...

R1,5: IF touching is NVL and eye contact is MAA, THEN flirtation is Ỹ 1,5.

...

R5,1: IF touching is MAA and eye contact is NVL, THEN flirtation is Ỹ 5,1.

...

R5,5: IF touching is MAA and eye contact is MAA, THEN flirtation is Ỹ 5,5.
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Ỹ
1,1

NVL / NVL

Ỹ
1,2

NVL / S

Ỹ
1,3

NVL / MOA

Ỹ
1,4

NVL / LA

Ỹ
1,5

NVL / MAA

Ỹ
2,1

S / NVL

Ỹ
2,2

S / S

Ỹ
2,3

S / MOA

Ỹ
2,4

S / LA

Ỹ
2,5

S / MAA

Ỹ
3,1

MOA / NVL

Ỹ
3,2

MOA / S

Ỹ
3,3

MOA / MOA

Ỹ
3,4

MOA / LA

Ỹ
3,5

MOA / MAA

Ỹ
4,1

LA / NVL

Ỹ
4,2

LA / S

Ỹ
4,3

LA / MOA

Ỹ
4,4

LA / LA

Ỹ
4,5

LA / MAA

Ỹ
5,1

MAA / NVL

Ỹ
5,2

MAA / S

Ỹ
5,3

MAA / MOA

Ỹ
5,4

MAA / LA

Ỹ
5,5

MAA / MAA

Fig. 7.5: Flirtation-level consequents of the 25 rules for the two-antecedent consensus
SJA3 with data pre-processing. The levels of touching and eye contact are indicated at
the top of each figure.
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7.7 Comparisons with Other Approaches

A prevailing paradigm for examining social judgments would be to examine the influence

of various factors on the variable of interest using linear approaches, e.g., linear regression.

Unfortunately, perceptions regarding the variable of interest may not be linear, but rather

step-like. A linear model is unable to capture such non-linear changes, whereas the Per-C

is able to do this because of its non-linear nature. In summary, the main differences

between linear approaches and an SJA are [88]:

1. The former are determined only from numerical data (e.g., regression coefficients are

fitted to numerical data) whereas the SJA is determined from linguistic information,

i.e. a collection of IF-THEN rules that are provided by people.

2. The rules, when properly collected, convey the details of a nonlinear relationship

between the antecedents of the rule and the consequent of the rule.

3. An SJA can directly quantify a linguistic rule and can provide a linguistic output;

a regression model cannot do this.

4. Regression models can, however, include nonlinear regressors (e.g., interaction terms),

which make them also nonlinear functions of their inputs; however, the structure

of the nonlinearities in the SJA is not pre-specified, as it must be for a regression

model; it is a direct result of the mathematics of the SJA.

5. An SJA is a variable structure model, in that it simultaneously provides excellent

local and global approximations to social judgments, whereas a regression model
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can only provide global approximations to social judgments. By “variable structure

model” is meant that only a (usually) small subset of the rules are fired for a given

set of inputs, and when the inputs change so does the subset of fired rules, and this

happens automatically because of the mathematics of the SJA.

6. The way in which uncertainty is dealt with. Typically, in a linear regression model

individuals are forced to translate their assessment into absolute numbers, e.g., 1, 2,

3, 4. In contrast a person can interact with the SJA using normal linguistic phrases,

e.g., about eye contact (one of the indicators of flirtation), such as “eye contact is

moderate.”

7. Finally, if determining the level of flirtation were easy, we would all be experts;

but it is not, and we are not. In fact, many times we get “mixed signals.” Fuzzy

logic leads to an explanation and potential resolution of “mixed signals,” though

the simultaneous firing of more than one rule, each of which may have a different

consequent. So the SJA also provides us with insight into why determining whether

or not we are being flirted with is often difficult. The same should also be true for

other social judgments. We do not believe that this is possible using a regression

model.

The flirtation advisor was also studied in [83], and it is called a fuzzy logic advisor

(FLA). Two kinds of FLAs were designed: a T1 FLA (see Chapter 5 of [83]; it is similar

to the T1 FLA designed in [82]) which uses only T1 FSs and an IT2 FLA (see Chapter

10 of [83]) which uses IT2 FSs. The differences from these two FLAs and our SJA are:
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1. Surveys were used to obtain the interval end-points of the words used in the rules for

all three approaches; however, no pre-processing was used to removed bad data and

outliers for the two FLAs. Additionally, for the T1 FLA, only the means and the

standard deviations (stds) of the end-points were used to construct T1 FS models

for the words, and for the IT2 FLA, an ad hoc fraction of uncertainty was used to

blur the T1 FS word models into IT2 FSs. Both modeling approaches are not as

intuitive as the Interval Approach used in the SJA, where interval end-points data

are pre-processed, each interval is mapped into a T1 FS, and all T1 FSs are then

combined using the Representation Theorem [81] to obtain the FOU for each word.

2. Weighted averages were used to combine multiple responses of a rule into a single

consequent in all three approaches; however, no pre-processing was used to remove

bad responses and outliers for the two FLAs. Additionally, for the T1 FLA, (7.3)

was used to compute the consequent, the result being a crisp number, and, for the

IT2 FLA, (7.4) was used to compute the consequent, the result being an interval.

Both kinds of consequents can no longer be viewed as words. On the other hand,

the SJA used a three-step pre-processing procedure to remove bad responses and

outliers. It then used an LWA to combine the responses, the result being an FOU

that resembles the three kinds of word FOUs in the codebook so that it can be

easily mapped into a word in that codebook.

3. For both FLAs, their inputs can only be crisp numbers in [0, 10] instead of words,

and their outputs are crisp numbers (for the T1 FLA) or intervals (for the IT2 FLA).
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There is no procedure to map these numbers back into words; so, the two FLAs are

not performing CWW, which we view as a mapping of words into a recommendation.

On the other hand, as we will shown in Section 8.4, both the inputs and outputs of

the SJA are words.

In summary, our approach for designing the SJA is significantly different from a linear

regression model and the FLAs. Presently, it is the only approach that enable us to map

words into a recommendation, as will be shown in Section 8.4.
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Chapter 8

Perceptual Reasoning as a CWW

Engine for MODM

One of the most popular CWW engines uses IF-THEN rules [see (2.12)]. This chapter is

about such rules and how they are processed within a CWW engine so that their outputs

can be mapped into a word-recommendation by the decoder. This use of IF-THEN rules

is quite different from their use in most engineering applications of rule-based systems

— FLSs — because in a FLS the output almost always is a number, whereas the output

of the Per-C is a recommendation. This distinction imposes the following important

requirement on the output of a CWW engine using IF-THEN rules:

Requirement: The result of combining fired rules should lead to an FOU that resembles

the three kinds of FOUs in a CWW codebook.
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8.1 Traditional Inference Engines

Approximate reasoning using the Mamdani inference has been described in Section 2.2.4.

Two points about it are worth emphasizing:

1. Each fired-rule output FOU does not resemble the FOU of a word in the Per-C

codebook (Fig. 2.12). This is because the meet operation between the firing interval

and its consequent FOU results in an FOU whose lower and upper MFs are clipped

versions of the respective lower and upper MFs of a consequent FOU.

2. The aggregated fired rule output FOU also does not resemble the FOU of a word in

the Per-C codebook. This is because when the union operator is applied to all of the

fired rule output FOUs it further distorts those already-distorted FOUs.

Mamdani inference does not let us satisfy this requirement; hence, we turn to an

alternative that is widely used by practitioners of FLSs, one that blends attributes about

the fired rule consequent IT2 FSs with the firing quantities.

Attributes of a fired rule consequent IT2 FS include its centroid and the point of

symmetry of its FOU (if the FOU is symmetrical). The blending is accomplished directly

by the kind of type-reduction that is chosen, e.g., center-of-sets type-reduction makes

use of the centroids of the consequents, whereas height type-reduction makes use of the

point of symmetry of each consequent FOU. Regardless of the details of this kind of type-

reduction-blending1, the type-reduced result is an interval-valued set after which that

interval is defuzzified as before by taking the average of the interval’s two end-points.
1More details about type-reduction can be found in [83].
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It is worth noting that by taking this alternative approach there is no associated FOU

for either each fired rule or all of the fired rules; hence, there is no FOU obtained from

this approach that can be compared with the FOUs in the codebook. Consequently, using

this alternative to Mamdani inference also does not let us satisfy the Requirement.

By these lines of reasoning we have ruled out the two usual ways in which rules are

fired and combined for use by the Per-C.

8.2 Perceptual Reasoning: Computation

Perceptual reasoning2 (PR) [85,86,149,156], which satisfies the Requirement, is introduced

in this section.

Let X̃′ denote an N×1 vector of IT2 FSs that are the inputs to a collection of N rules,

as would be the case when such inputs are words. f i(X̃′) denotes the firing level for the

ith rule, and it is computed only for the n ≤ N number of fired rules, i.e., the rules whose

firing levels do not equal zero. In PR, the fired rules are combined using a LWA. Denote
2Perceptual Reasoning is a term coined in [86] because it is used by the Per-C when the CWW Engine

consists of IF-THEN rules. In [86] firing intervals are used to combine the rules; however, firing levels
are used in this dissertation because, as shown in [156], they give an output FOU which more closely
resembles the word FOUs in a codebook.
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the output IT2 FS of PR as ỸPR. Then, ỸPR can be written in the following expressive3

way:

ỸPR =
∑n

i=1 f i(X̃′)G̃i∑n
i=1 f i(X̃′)

(8.1)

This LWA is a special case of the more general LWA (Section 4.4) in which both G̃i and

f i(X̃′) were IT2 FSs.

Observe that PR consists of two steps:

1. A firing level is computed for each rule, and

2. The IT2 FS consequents of the fired rules are combined using an LWA in which the

“weights” are the firing levels and the “sub-criteria” are the IT2 FS consequents.

8.2.1 Computing Firing Levels

Similarity is frequently used in Approximate Reasoning to compute the firing levels [12,

106,174], and it can also be used in PR to do this.

Let the p inputs that activate a collection of N rules be denoted X̃′. The result of the

input and antecedent operations for the ith fired rule is the firing level f i(X̃′), where

f i(X̃′) = sJ (X̃1, F̃
i
1) ? · · · ? sJ (X̃p, F̃

i
p) ≡ f i (8.2)

3As in Section 4.4.1, (8.1) is referred to as “expressive” because it is not computed using multiplications,
additions and divisions, as expressed by it. Instead, Y PR and Y PR are computed separately using α-cuts,
as explained in Section 8.2.2.
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where sJ (X̃j , F̃
i
j ) is the Jaccard’s similarity measure for IT2 FSs [see (3.4)], and ? denotes

a t-norm. The minimum t-norm is used in (8.2).

Comment: To use PR, we need a codebook4 consisting of words and their associated

FOUs so that a user can choose inputs from it. Once this codebook is obtained, the sim-

ilarities between the input words and the antecedent words of the rules (i.e., sJ (X̃j , F̃
i
j ),

j = 1, . . . , p, i = 1, . . . , N) can be pre-computed and stored in a table (e.g., the sim-

ilarity matrix shown in Table 3.1), so that sJ (X̃j , F̃
i
j ) can be retrieved online to save

computational cost.

8.2.2 Computing ỸPR

ỸPR in (8.1) is a special case of the more general LWA introduced in Section 4.4. The

formulas for this special case have been presented in Section 4.5, except that different

notations were used. Because PR is widely used in the rest of this dissertation, these

formulas are repeated here using the notations in this chapter.

An interior FOU for rule consequent G̃i is depicted in Fig. 8.1(a), in which the height

of Gi is denoted hGi , the α-cut on Gi is denoted [air(α), bil(α)], α ∈ [0, hGi ], and the

α-cut on G
i is denoted [ail(α), bir(α)], α ∈ [0, 1]. For the left shoulder G̃i depicted in

Fig. 8.1(b), hGi = 1 and ail(α) = air(α) = 0 for ∀α ∈ [0, 1]. For the right-shoulder G̃i

depicted in Fig. 8.1(c), hGi = 1 and bil(α) = bir(α) = M for ∀α ∈ [0, 1].

4The words used in the antecedents of the rules, as will the words that excite the rules, are always
included in this codebook.
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Fig. 8.1: Typical word FOUs and an α-cut. (a) Interior, (b) left-shoulder, and (c) right-
shoulder FOUs.

Because the output of PR must resemble the three kinds of FOUs in a codebook, ỸPR

can also be an interior, left shoulder or right shoulder FOU, as shown in Fig. 8.2 (this is

actually proved in Section 8.3.2). The α-cut on Y PR is [yLl(α), yRr(α)] and the α-cut on

Y PR is [yLr(α), yRl(α)], where, as explained in Section 4.5, the end-points of these α-cuts

are computed for (8.1) as:

yLl(α) =
∑n

i=1 ail(α)f i∑n
i=1 f i

, α ∈ [0, 1] (8.3)

yRr(α) =
∑n

i=1 bir(α)f i∑n
i=1 f i

, α ∈ [0, 1] (8.4)
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yLr(α) =
∑n

i=1 air(α)f i∑n
i=1 f i

, α ∈ [0, hY PR
] (8.5)

yRl(α) =
∑n

i=1 bil(α)f i∑n
i=1 f i

, α ∈ [0, hY PR
] (8.6)

where

hY PR
= min

i
hGi (8.7)

Note that (8.3)-(8.6) are arithmetic weighted averages, so they are computed directly

without using KM or EKM algorithms.
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Fig. 8.2: PR FOUs and α-cuts on (a) interior, (b) left-shoulder, and (c) right-shoulder
FOUs.
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Observe from (8.3) and (8.4) that ỸPR is always normal, i.e., its α = 1 α-cut can

always be computed. This is different from many other Approximate Reasoning methods,

whose aggregated fired-rule output sets are not normal, e.g., the Mamdani-inference based

method. For the latter, even if only one rule is fired (see Fig. 2.10), unless the firing level

is one, the output is a clipped or scaled version5 of the consequent IT2 FS instead of a

normal IT2 FS. This may cause problems when the output is mapped to a word in the

codebook.

In summary, knowing the firing levels f i, i = 1, ..., n, Y PR is computed in the following

way:

1. Select m appropriate α-cuts for Y PR (e.g., divide [0, 1] into m− 1 intervals and set

αj = (j − 1)/(m − 1), j = 1, 2, ...,m).

2. For each αj , find the α-cut [ail(αj), bir(αj)] on G
i (i = 1, ..., n) and compute yLl(αj)

in (8.3) and yRr(αj) in (8.4).

3. Connect all left-coordinates (yLl(αj), αj) and all right-coordinates (yRr(αj), αj) to

form the T1 FS Y PR.

Similarly, to compute Y PR:

1. Determine hXi
, i = 1, . . . , n, and hmin in (8.7).

2. Select appropriate p α-cuts for Y PR (e.g., divide [0, hmin] into p − 1 intervals and

set αj = hmin(j − 1)/(p − 1), j = 1, 2, ..., p).
5A scaled version of the consequent IT2 FS occurs when the product t-norm is used to combine the

firing level and the consequent IT2 FS.
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3. For each αj , find the α-cut [air(αj), bil(αj)] on Gi (i = 1, ..., n) and compute yLr(αj)

in (8.5) and yRl(αj) in (8.6).

4. Connect all left-coordinates (yLr(αj), αj) and all right-coordinates (yRl(αj), αj) to

form the T1 FS Y PR.

8.3 Perceptual Reasoning: Properties

Properties of PR are presented in this section. All of them help demonstrate the Require-

ment for PR, namely, the result of combining fired rules using PR leads to an IT2 FS that

resembles the three kinds of FOUs in a CWW codebook.

8.3.1 General Properties About the Shape of ỸPR

In this section, some general properties are provided that are about the shape of ỸPR.

These general properties are used in Section 8.3.2.

Theorem 9 When all fired rules have the same consequent G̃, ỸPR defined in (8.1) is

the same as G̃. ¥

Proof: When all fired rules have the same consequent G̃, (8.1) simplifies to

ỸPR =
∑n

i=1 f iG̃∑n
i=1 f i

= G̃

(∑n
i=1 f i∑n
i=1 f i

)
= G̃. ¥ (8.8)

Although Theorem 9 is true regardless of how many rules are fired, its most interesting

application occurs when only one rule is fired, in which case the output from PR is the
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consequent FS, G̃, and G̃ resides in the codebook. On the other hand, when one rule

fires, the output from Mamdani inferencing is a clipped version of G̃, B̃, as depicted in

Fig. 2.10, and B̃ does not reside in the codebook.

Theorem 10 ỸPR is constrained by the consequents of the fired rules, i.e.,

min
i

ail(α) ≤ yLl(α) ≤ max
i

ail(α) (8.9)

min
i

air(α) ≤ yLr(α) ≤ max
i

air(α) (8.10)

min
i

bil(α) ≤ yRl(α) ≤ max
i

bil(α) (8.11)

min
i

bir(α) ≤ yRr(α) ≤ max
i

bir(α) (8.12)

where ail(α), air(α), bil(α) and bir(α) are defined for three kinds of consequent FOUs in

Fig. 8.1. ¥

Proof: Theorem 10 is obvious because each of yLl(α), yLr(α), yRl(α) and yRr(α) is an

arithmetic weighted average of the corresponding quantities on G̃i. So, e.g., from (8.3),

observe that

yLl(α) =
∑n

i=1 ail(α)f i∑n
i=1 f i

≥
min

i
ail(α) ·

∑n
i=1 f i∑n

i=1 f i
= min

i
ail(α) (8.13)

yLl(α) =
∑n

i=1 ail(α)f i∑n
i=1 f i

≤
max

i
ail(α) ·

∑n
i=1 f i∑n

i=1 f i
= max

i
ail(α) ¥ (8.14)
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The equalities in (8.9)-(8.12) hold simultaneously if and only if all n fired rules have

the same consequent. A graphical illustration of Theorem 10 is shown in Fig. 8.3. Assume

only two rules are fired and G̃1 lies to the left of G̃2; then, ỸPR lies between G̃1 and G̃2.

35<�

\

�*� �*�

� � �UD D � � �UD D� �/U\ D

D
35<K

X
�

Fig. 8.3: A graphical illustration of Theorem 10, when only two rules fire.

Theorem 10 is about the location of ỸPR. Theorem 11 below is about the span of

ỸPR; but first, the span of an IT2 FS is defined.

Definition 35 The span of the IT2 FS G̃i is bir(0) − ail(0), where ail(0) and bir(0) are

the left and right end-points of the α = 0 α-cut on Ḡi, respectively. ¥

It is well-known from interval arithmetic that operations (e.g., +, − and ×) on intervals

usually spread out the resulting interval; however, this is not true for PR, as indicated by

the following:

Theorem 11 The span of ỸPR, yRr(0) − yLl(0), is constrained by the spans of the con-

sequents of the fired rules, i.e.,

min
i

(bir(0) − ail(0)) ≤ yRr(0) − yLl(0) ≤ max
i

(bir(0) − ail(0)) . ¥ (8.15)
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Proof: It follows from (8.3) and (8.4) that

yRr(0) − yLl(0) =
∑n

i=1(bir(0) − ail(0))f i∑n
i=1 f i

≥
min

i
(bir(0) − ail(0)) ·

∑n
i=1 f i∑n

i=1 f i

= min
i

(bir(0) − ail(0)) (8.16)

yRr(0) − yLl(0) =
∑n

i=1(bir(0) − ail(0))f i∑n
i=1 f i

≤
max

i
(bir(0) − ail(0)) ·

∑n
i=1 f i∑n

i=1 f i

= max
i

(bir(0) − ail(0)). ¥ (8.17)

Both equalities in (8.15) hold simultaneously if and only if all n fired rules have the

same span.

The following two definitions are about the shape of a T1 FS, and they are used in

proving properties about the shape of ỸPR.

Definition 36 Let A be a T1 FS and hA be its height. Then, A is trapezoid-looking if

its α = hA α-cut is an interval instead of a single point. ¥

Y PR and ȲPR in Fig. 8.2(a) are trapezoid-looking.

Definition 37 Let A be a T1 FS and hA be its height. Then, A is triangle-looking if its

α = hA α-cut consists of a single point. ¥

Y PR in Fig. 8.3 is triangle-looking.
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Theorem 12 Generally, Y PR is trapezoid-looking; however, Y PR is triangle-looking if

and only if all Gi are triangles with the same height. ¥

Proof: Because air(α) ≤ bil(α) [see Fig. 8.1(a)], it follows from (8.5) and (8.6) that,

for ∀α ∈ [0, hY PR
],

yLr(hY PR
) =

∑n
i=1 air(hY PR

)f i∑n
i=1 f i

≤
∑n

i=1 bil(hY PR
)f i∑n

i=1 f i
= yRl(hY PR

) (8.18)

i.e., yLr(hY PR
) ≤ yRl(hY PR

). The equality holds if and only if air(hY PR
) = bil(hY PR

) for

∀i = 1, . . . , n, i.e., when all Gi are triangles with the same height hY PR
. In this case,

according to Definition 37, Y PR is triangle-looking. Otherwise, yLr(hY PR
) < yRl(hY PR

),

and according to Definition 36, Y PR is trapezoid-looking. ¥

Theorem 13 Generally, Y PR is trapezoid-looking; however, Y PR is triangle-looking when

all G
i are triangles. ¥

Proof: Because ail(α) ≤ bir(α) [see Fig. 8.1(a)], it follows from (8.3) and (8.4) that,

for ∀α ∈ [0, 1],

yLl(1) =
∑n

i=1 ail(1)f i∑n
i=1 f i

≤
∑n

i=1 bir(1)f i∑n
i=1 f i

= yRr(1) (8.19)
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i.e., yLl(1) ≤ yRr(1). The equality holds if and only if ail(1) = bir(1) for ∀i = 1, . . . , n,

i.e., when all Gi are triangles. In this case, Y PR is triangle-looking according to Defini-

tion 37. Otherwise, yLl(1) < yRr(1), and hence Y PR is trapezoid-looking according to

Definition 36. ¥

8.3.2 The Geometry of ỸPR FOUs

The following three definitions are about the geometry of ỸPR FOUs:

Definition 38 An IT2 FS ỸPR is a left shoulder FOU [see Fig. 8.2(b)] if and only if

hY PR
= 1, and yLl(α) = 0 and yLr(α) = 0 for ∀α ∈ [0, 1]. ¥

Definition 39 An IT2 FS ỸPR is a right shoulder FOU [see Fig. 8.2(c)] if and only if

hY PR
= 1, and yRl(α) = M and yRr(α) = M for ∀α ∈ [0, 1]. ¥

Definition 40 An IT2 FS ỸPR is an interior FOU [see Fig. 8.2(a)] if and only if it is

neither a left shoulder FOU nor a right shoulder FOU. ¥

Three lemmas derived from the above three definitions are used in the proofs of The-

orems 17-19 in Section 8.3.3:

Lemma 14 An IT2 FS ỸPR is a left shoulder FOU if and only if hY PR
= 1 and yLr(1) =

0. ¥

Proof: According to Definition 38, one only needs to show that “yLr(1) = 0” and

“yLl(α) = 0 and yLr(α) = 0 for ∀α ∈ [0, 1]” are equivalent. When hY PR
= 1, yLl(α) ≤
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yLr(α) holds for ∀α ∈ [0, 1] for an arbitrary FOU [e.g., see Fig. 8.4]; hence, one only needs

to show that “yLr(1) = 0” and “yLr(α) = 0 for ∀α ∈ [0, 1]” are equivalent. Because only

convex IT2 FSs are used in PR, yLr(α) ≤ yLr(1) for ∀α ∈ [0, 1] [e.g., see again Fig. 8.4];

hence, yLr(1) = 0 is equivalent to yLr(α) = 0 for ∀α ∈ [0, 1]. ¥
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� 0
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35<

X

Fig. 8.4: An IT2 FS with hY PR
= 1.

Lemma 15 An IT2 FS ỸPR is a right shoulder FOU if and only if hY PR
= 1 and

yRl(1) = M . ¥

Proof: According to Definition 39, one only needs to show that “yRl(1) = M” and

“yRl(α) = M and yRr(α) = M for ∀α ∈ [0, 1]” are equivalent. When hY PR
= 1, yRr(α) ≥

yRl(α) holds for ∀α ∈ [0, 1] [e.g., see Fig. 8.4]; hence, one only needs to show that “yRl(1) =

M” and “yRl(α) = M for ∀α ∈ [0, 1]” are equivalent. Because only convex IT2 FSs are

used in PR, yRl(α) ≥ yRl(1) for ∀α ∈ [0, 1] [e.g., see again Fig. 8.4]; hence, yRl(1) = M is

equivalent to yRl(α) = M for ∀α ∈ [0, 1]. ¥

Lemma 16 An IT2 FS ỸPR is an interior FOU if and only if:

(1) hY PR
< 1; or
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(2) hY PR
= 1, yLr(1) > 0 and yRl(1) < M . ¥

Proof: (1) Because both left shoulder and right shoulder require hY PR
= 1 (see Lem-

mas 14 and 15), ỸPR must be an interior FOU when hY PR
< 1.

(2) When hY PR
= 1 and yLr(1) > 0, ỸPR is not a left shoulder by Lemma 14. When

hY PR
= 1 and yRl(1) < M , ỸPR is not a right shoulder by Lemma 15. Consequently, ỸPR

must be an interior FOU. ¥

8.3.3 Properties of ỸPR FOUs

In this subsection it is shown that ỸPR computed from (8.1), that uses firing levels,

resembles the three kinds of FOUs in a CWW codebook.

Theorem 17 Let ỸPR be expressed as in (8.1). Then, ỸPR is a left shoulder FOU if and

only if all G̃i are left shoulder FOUs. ¥

Proof: From Lemma 14, ỸPR is a left shoulder FOU if and only if hY PR
= 1 and

yLr(1) = 0, and similarly all G̃i are left shoulder FOUs if and only if hGi = 1 and

air(1) = 0 for ∀i. To prove Theorem 17, one needs to show 1) “hY PR
= 1” and “hGi = 1

for ∀i” are equivalent; and 2) “yLr(1) = 0” and “air(1) = 0 for ∀i” are equivalent.

The first requirement is obvious from (8.7). For the second requirement, it follows

from (8.5) that

yLr(1) =
∑n

i=1 air(1)f i∑n
i=1 f i

(8.20)
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Because all f i > 0, yLr(1) = 0 if and only if all air(1) = 0. ¥

Theorem 18 Let ỸPR be expressed as in (8.1). Then, ỸPR is a right shoulder FOU if

and only if all G̃i are right shoulder FOUs. ¥

Proof: From Lemma 15, ỸPR is a right shoulder if and only if hY PR
= 1 and yRl(1) =

M , and similarly all G̃i are right shoulders if and only if hGi = 1 and bil(1) = M for ∀i.

To prove Theorem 18, one only needs to show that 1) “hY PR
= 1” and “hGi = 1 for ∀i”

are equivalent; and, 2) “yRl(1) = M” and “bil(1) = M for ∀i” are equivalent.

The first requirement is obvious from (8.7). For the second requirement, it follows

from (8.6) that

yRl(1) =
∑n

i=1 bil(1)f i∑n
i=1 f i

(8.21)

Because all f i > 0, yRl(1) = M if and only if all bil(1) = M . ¥

Theorem 19 Let ỸPR be expressed as in (8.1). Then, ỸPR is an interior FOU if and

only if one of the following conditions is satisfied:

1. {G̃i|i = 1, 2, . . . , n} is a mixture of both left and right shoulders.

2. At least one G̃i is an interior FOU. ¥

Proof: The sufficiency is proved first. Consider first Condition (1). Without loss of

generality, assume {G̃i|i = 1, . . . , n1} are left shoulders and {G̃i|i = n1 + 1, . . . , n} are

right shoulders, where 1 ≤ n1 ≤ n−1. For each left shoulder G̃i, it is true that air(1) = 0
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and6 bil(1) < M . For each right shoulder G̃i, it is true that7 air(1) > 0 and bil(1) = M .

In summary,

air(1)


= 0, i = 1, . . . , n1

> 0, i = n1 + 1, . . . , n

(8.22)

bil(1)


< M, i = 1, . . . , n1

= M, i = n1 + 1, . . . , n

(8.23)

It follows that

yLr(1) =
∑n

i=1 air(1)f i∑n
i=1 f i

>

∑n1
i=1 air(1)f i∑n1

i=1 f i
= 0 (8.24)

yRl(1) =
∑n

i=1 bil(1)f i∑n
i=1 f i

<

∑n
i=n1+1 bil(1)f i∑n

i=n1+1 f i
= M ; (8.25)

hence, ỸPR is an interior FOU according to Part (2) of Lemma 16.

Next consider Condition (2). Without loss of generality, assume only G̃1 is an interior

FOU, {G̃i|i = 2, . . . , n2} are left shoulders, and {G̃i|i = n2 +1, . . . , n} are right shoulders,

where 2 ≤ n2 ≤ n − 1. Two sub-cases are considered:

i) When hG1 < 1, according to (8.7), hY PR
= hG1 < 1, and hence ỸPR is an interior

FOU according to Part (1) of Lemma 16.

6bil(1) for a left shoulder cannot be M , because otherwise according to Lemma 15, G̃i would be a right
shoulder.

7air(1) for a right shoulder cannot be 0, because otherwise according to Lemma 14, G̃i would be a left
shoulder.

240



ii) When hG1 = 1, it follows from (8.7) that hY PR
= 1, and from Lemma 16 applied to

G̃1 that a1r(1) > 0 and b1l(1) < M , i.e.,

air(1)


= 0, i = 2, . . . , n2

> 0, i = 1, n2 + 1, . . . , n
(8.26)

bil(1)


< M, i = 1, 2, . . . , n2

= M, i = n2 + 1, . . . , n

(8.27)

Consequently,

yLr(1) =
∑n

i=1 air(1)f i∑n
i=1 f i

>

∑n2
i=2 air(1)f i∑n2

i=2 f i
= 0 (8.28)

yRl(1) =
∑n

i=1 bil(1)f i∑n
i=1 f i

<

∑n
i=n2+1 bil(1)f i∑n

i=n2+1 f i
= M (8.29)

Again, ỸPR is an interior FOU according to Part (2) of Lemma 16.

Next consider the necessity. {G̃i|i = 1, 2, . . . , n} can only take the following four forms:

i) All G̃i are left shoulders.

ii) All G̃i are right shoulders.

iii) {G̃i|i = 1, 2, . . . , n} is a mixture of both left and right shoulders.

iv) At least one G̃i is an interior FOU.

Assume ỸPR is an interior FOU whereas {G̃i|i = 1, 2, . . . , n} is not in Forms (iii) and

(iv). Then, {G̃i|i = 1, 2, . . . , n} must be in Form (i) or (ii). When {G̃i|i = 1, 2, . . . , n}
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is in Form (i) (i.e., all G̃i are left shoulders), according to Theorem 17, ỸPR must also

be a left shoulder, which violates the assumption that ỸPR is an interior FOU. Similarly,

when {G̃i|i = 1, 2, . . . , n} is in Form (ii) (i.e., all G̃i are right shoulders), according to

Theorem 18, ỸPR must be a right shoulder, which also violates the assumption. Hence,

when ỸPR is an interior FOU, {G̃i|i = 1, 2, . . . , n} must be a mixture of both left and

right shoulders, or at least one G̃i is an interior FOU. ¥

Theorems 17-19 are important because they show that the output of PR is a normal

IT2 FS and is similar to the word FOUs in a codebook8 (see Fig. 3.17). So, the Jaccard

similarity measure can be used to map ỸPR to a word in the codebook. On the other

hand, it is less intuitive to map a clipped FOU (see B̃ in Fig. 2.10), as obtained from a

Mamdani inference mechanism, to a normal IT2 FS word FOU in the codebook.

8.4 Example 3 Completed

In Chapter 7 we have introduced how simplified rulebases can be generated from for SJAs.

In this section, we explain how PR can be used in these SJAs.

8.4.1 Compute the Output of the SJA

First consider single-antecedent rules of the form

Ri : If x is F̃ i, Then y is Ỹ i i = 1, . . . , N (8.30)

8A small difference is that the LMFs of interior codebook word FOUs are always triangular, whereas
the LMFs of interior ỸPR are usually trapezoidal.
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where Ỹ i are computed by (7.6). In PR, the Jaccard similarity measure (3.4) is used to

compute the firing levels of the rules, i.e., f i = sJ (X̃, F̃ i), i = 1, . . . , N . Once f i are

computed, the output FOU of the SJA is computed as [see (8.1)]

ỸC =
∑N

i=1 f iỸ i∑N
i=1 f i

(8.31)

The subscript C in ỸC stands for consensus because ỸC is obtained by aggregating the

survey results from a population of people, and the resulting SJA is called a consensus

SJA. Because only the nine words in Fig. 7.1 are used in the SJAs, the similarities among

them can be pre-computed, and f i in (8.31) can be retrieved from Table 8.1. Finally,

ỸC is mapped into a word in the Fig. 7.1 vocabulary also using the Jaccard similarity

measure.

Table 8.1: Similarities among the nine words used in the SJAs.
NVL AB SS S MOA GA CA LA MAA

None to very little (NVL) 1 .11 .08 .05 0 0 0 0 0
A bit (AB) .11 1 .40 .21 .02 0 0 0 0
Somewhat small (SS) .08 .40 1 .43 .12 .02 0 0 0
Some (S) .05 .21 .43 1 .56 .26 .16 .05 0
Moderate amount (MOA) 0 .02 .12 .56 1 .37 .21 .06 0
Good amount (GA) 0 0 .02 .26 .37 1 .63 .32 .03
Considerable amount (CA) 0 0 0 .16 .21 .63 1 .50 .04
Large amount (LA) 0 0 0 .05 .06 .32 .50 1 .05
Maximum amount (MAA) 0 0 0 0 0 .03 .04 .05 1

Next consider two-antecedent rules of the form

Ri : If x1 is F̃ i
1 and x2 is F̃ i

2, Then y is Ỹ i i = 1, . . . , N (8.32)
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The firing levels are computed as

f i = sJ (X̃1, F̃
i
1) ? sJ (X̃2, F̃

i
2) i = 1, . . . , N (8.33)

where in this paper ? is the minimum t-norm. sJ (X̃1, F̃
i
1) and sJ (X̃2, F̃

i
2) can be obtained

from the pre-computed similarities in Table 8.1. When all f i are obtained, the output

FOU is computed again using (8.31) and then ỸC is mapped back into a word in the

Fig. 7.1 vocabulary using the Jaccard similarity measure.

8.4.2 Use SJA

As mentioned below (8.31), each SJA that is designed from survey is referred to as a

consensus SJA, because it is obtained by using survey results from a group of people.

There are at least two ways to make use of the consensus SJA:

1. Use it to infer outputs for new scenarios that are not considered in survey.

2. Use it to advise (counsel) an individual about a social judgment, as shown in Fig. 8.5.

An individual is given a questionnaire similar to the one used in Step 6 of the

knowledge mining process, and his/her responses are obtained for all the words in

the vocabulary. These responses can then be compared with the outputs of the

consensus SJA. If some or all of the individual’s responses are “far” from those

of the consensus SJA, then some action could be taken to sensitize the individual

about these differences.
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More details about both approaches are give in this section.

&RQVHQVXV�6-$

&RPSDUH $FWLRQ�'HFLVLRQ;�

&<�

,<�
,QGLYLGXDO
V
5HVSRQVH

Fig. 8.5: One way to use the SJA for a social judgment.

8.4.3 Single-Antecedent Rules: Touching and Flirtation

This subsection shows how the consensus SJA1 developed in Section 7.4 can be used.

For an input touching level, the output of SJA1 can easily be computed by PR, as

illustrated by the following:

Example 27 Let observed touching be somewhat small (SS). From the third row of Ta-

ble 8.1 the following firing levels of the five rules are obtained:

f1 = sJ (SS,NV L) = 0.08

f2 = sJ (SS, S) = 0.43

f3 = sJ (SS,MOA) = 0.12

f4 = sJ (SS,LA) = 0

f5 = sJ (SS,MAA) = 0
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The resulting ỸC computed from (8.31) is depicted in Fig. 8.6 as the dashed curve. The

similarities between ỸC and the nine words in the Fig. 7.1 vocabulary are computed to be:

sJ (ỸC , NV L) = 0.17 sJ (ỸC , AB) = 0.67 sJ (ỸC , SS) = 0.43

sJ (ỸC , S) = 0.24 sJ (ỸC ,MOA) = 0.04 sJ (ỸC , GA) = 0

sJ (ỸC , CA) = 0 sJ (ỸC , LA) = 0 sJ (ỸC ,MAA) = 0

Because ỸC and AB have the largest similarity, ỸC is mapped into the word AB. ¥

AB

Fig. 8.6: ỸC (dashed curve) and the mapped word (AB, solid curve) when touching is
somewhat small.

When PR is used to combine the rules and any of the nine words in Fig. 7.1 are used

as inputs, the outputs of the consensus SJA1 are mapped to words shown in the second

column of Table 8.2. Each of these words was determined by using the same kind of

calculations that were just described in Example 27. Observe that generally the flirtation

level increases as touching increases, as one would expect.

Next, assume for the nine codebook words, an individual gives the responses9 shown in

the third column of Table 8.2. Observe that this individual’s responses are generally the

same as or lower than ỸC . This means that this individual may under-react to touching.
9The individual is asked the following question for each of the nine codebook words: “If there is

(one of the nine codebook words) touching, then what is the level of flirtation?” and the answer must

also be a word from the nine-word codebook.
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The similarities between the consensus outputs ỸC and the individual’s responses ỸI ,

computed by using (3.4), are shown in the fourth column of Table 8.2. ỸI and ỸC are

said to be “significantly different” if sJ (ỸC , ỸI) is smaller than a threshold θ. Let θ = 0.6.

Then, for the last four inputs, ỸI and ỸC are significantly different. Some action could be

taken to sensitize the individual about these differences.

Table 8.2: A comparison between the consensus SJA1 outputs and an individual’s re-
sponses.

Flirtation level
Touching

Consensus (ỸC) Individual (ỸI)
Similarity sJ (ỸC , ỸI)

None to very little (NVL) NVL NVL 1
A bit (AB) AB AB 1
Somewhat small (SS) AB AB 1
Some (S) SS SS 1
Moderate amount (MOA) SS SS 1
Good amount (GA) S SS 0.12
Considerable amount (CA) MOA SS 0.56
Large amount (LA) GA SS 0.26
Maximum amount (MAA) CA MOA 0.21

8.4.4 Single-Antecedent Rules: Eye Contact and Flirtation

This subsection shows how the consensus SJA2 developed in Section 7.5 can be used.

When PR is used to combine the rules and any of the nine words in Fig. 7.1 are used

as inputs, the outputs of the consensus SJA2 are mapped to words shown in the second

column of Table 8.3. Observe that generally the flirtation level increases as eye contact

increases, as one would expect.

Assume for the nine codebook words, an individual gives the responses shown in the

third column of Table 8.3. Observe that this individual’s responses are generally the same
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as or higher than those from the consensus SJA2. This means that this individual may

over-react to eye contact.

The similarities between the consensus outputs ỸC and the individual’s responses ỸI

are shown in the fourth column of Table 8.3. Again, let the threshold be θ = 0.6. Then,

for the last six inputs, ỸI and ỸC are significantly different. Some action could be taken

to sensitize the individual about these differences.

Table 8.3: A comparison between the consensus SJA2 outputs and an individual’s re-
sponses.

Flirtation level
Eye contact

Consensus (ỸC) Individual (ỸI)
Similarity sJ (ỸI , ỸC)

None to very little (NVL) NVL NVL 1
A bit (AB) AB AB 1
Somewhat small (SS) SS SS 1
Some (S) SS S 0.43
Moderate amount (MOA) S MOA 0.56
Good amount (GA) MOA CA 0.21
Considerable amount (CA) GA LA 0.32
Large amount (LA) CA LA 0.50
Maximum amount (MAA) LA MAA 0.05

8.4.5 Two-Antecedent Rules: Touching/Eye Contact and Flirtation

This subsection shows how the consensus SJA3 developed in Section 7.6 can be used.

For input touching and eye contact levels, the output of SJA3 can easily be computed

by PR, as illustrated by the following:
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Example 28 Let observed touching be a bit (AB) and observed eye contact be consid-

erable amount (CA). Only 12 of the possible 25 firing levels are non-zero, and they are

obtained from the second and the seventh rows of Table 8.1, as:

f1,2 = min{sJ (AB,NV L), sJ (CA,S)} = min(0.11, 0.16) = 0.11

f1,3 = min{sJ (AB,NV L), sJ (CA,MOA)} = min(0.11, 0.21) = 0.11

f1,4 = min{sJ (AB,NV L), sJ (CA,LA)} = min(0.11, 0.50) = 0.11

f1,5 = min{sJ (AB,NV L), sJ (CA,MAA)} = min(0.11, 0.04) = 0.04

f2,2 = min{sJ (AB,S), sJ (CA,S)} = min(0.21, 0.16) = 0.16

f2,3 = min{sJ (AB,S), sJ (CA,MOA)} = min(0.21, 0.21) = 0.21

f2,4 = min{sJ (AB,S), sJ (CA,LA)} = min(0.21, 0.50) = 0.21

f2,5 = min{sJ (AB,S), sJ (CA,MAA)} = min(0.21, 0.04) = 0.04

f3,2 = min{sJ (AB,MOA), sJ (CA,S)} = min(0.02, 0.16) = 0.02

f3,3 = min{sJ (AB,MOA), sJ (CA,MOA)} = min(0.02, 0.21) = 0.02

f3,4 = min{sJ (AB,MOA), sJ (CA,LA)} = min(0.02, 0.50) = 0.02

f3,5 = min{sJ (AB,MOA), sJ (CA,MAA)} = min(0.02, 0.04) = 0.02
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The resulting ỸC computed from (8.31) is depicted in Fig. 8.7 as the dashed curve. The

similarities between ỸC and the nine words in the Fig. 7.1 vocabulary are computed to be:

sJ (ỸC , NV L) = 0 sJ (ỸC , AB) = 0.06 sJ (ỸC , SS) = 0.21

sJ (ỸC , S) = 0.64 sJ (ỸC ,MOA) = 0.71 sJ (ỸC , GA) = 0.28

sJ (ỸC , CA) = 0.15 sJ (ỸC , LA) = 0.03 sJ (ỸC ,MAA) = 0

Because ỸC and MOA have the largest similarity, ỸC is mapped into the word MOA. ¥

MOA

Fig. 8.7: ỸC (dashed curve) and the mapped word (MOA, solid curve) when touching is
AB and eye contact is CA.

When PR is used to combine the rules, and any pair of the nine words in Fig. 7.1 are

used as observed inputs for touching and eye contact, there are a total of 81 combinations

of these two inputs. The 81 SJA outputs and the words that are most similar to them

are shown in Fig. 8.8. Scan this figure horizontally from left-to-right to see the effect of

varying touching on flirtation. Scan it vertically from top-to-bottom to see the effect of

varying eye contact on flirtation. Scan it diagonally from top-left to bottom-right to see

the simultaneous effects of varying touching and eye contact on flirtation. Observe that

generally the flirtation level increases as either one or both inputs increase, as one would

expect.
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Once the consensus SJA3 is constructed, one can again check an individual’s responses

against it, as he or she did for SJA1 and SJA2. The procedures are quite similar, so they

are not repeated here.
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8.4.6 On Multiple Indicators

As has been mentioned in Example 3, people have difficulties in answering questions

with more than two antecedents. So, in the survey each rule consists of only one or

two antecedents; however, in practice an individual may observe one indicator or more

than one indicators. An interesting problem is how to deduce the output for multiple

antecedents using rulebases consisting of only one or two antecedents.

For the sake of this discussion, assume there are four indicators of flirtation, touching,

eye contact, acting witty and primping, and that the following ten SJAs have been created:

SJA1: IF touching is , THEN flirtation is .

SJA2: IF eye contact is , THEN flirtation is .

SJA3: IF acting witty is , THEN flirtation is .

SJA4: IF primping is , THEN flirtation is .

SJA5: IF touching is and eye contact is , THEN flirtation is .

SJA6: IF touching is and acting witty is , THEN flirtation is .

SJA7: IF touching is and primping is , THEN flirtation is .

SJA8: IF eye contact is and acting witty is , THEN flirtation is .

SJA9: IF eye contact is and primping is , THEN flirtation is .

SJA10: IF acting witty is and primping is , THEN flirtation is .

These ten SJAs can be used as follows:

1. When only one indicator is observed, only one single-antecedent SJA from SJA1–

SJA4 is activated.
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2. When only two indicators are observed, only one two-antecedent SJA from SJA5–

SJA10 is activated.

3. When more than two indicators are observed, the output is computed by aggregating

the outputs of the activated two-antecedent SJAs10. For example, when the observed

indicators are touching, eye contact and primping, three two-antecedent SJAs —

SJA5, SJA7 and SJA9 — are activated, and each one gives a flirtation level. The final

output is some kind of aggregation of the results from these three SJAs. There are

different aggregation operators, e.g., mean, linguistic weighted average, maximum,

etc. An intuitive approach is to survey the subjects about the relative importance

of the four indicators and hence to determine the linguistic relative importance of

SJA5–SJA10. These relative importance words can then be used as the weights

for SJA5–SJA10, and the final flirtation level can then be computed by a linguistic

weighted average.

A diagram of the proposed SJA architecture for different numbers of indicators is shown

in Fig. 8.9.

10Some of the four single-antecedent SJAs, SJA1–SJA4, are also fired; however, they are not used because
they do not fit the inputs as well as two-antecedent SJAs, since the latter account for the correlation
between two antecedents, whereas the former do not.
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Fig. 8.9: An SJA architecture for one-to-four indicators.
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Chapter 9

Conclusions and Future Works

9.1 Conclusions

In this dissertation, we have introduced the Per-C, a CWW architecture for MCDM. It

consists of three components: encoder, which transforms inputs words into IT2 FS models;

CWW engine, which performs operations on the IT2 FS word models; and decoder, which

maps the output of the CWW engine into a recommendation (word, rank or class). The

CWW engine and the decoder are the main focus of our work. Two CWW engines have

been proposed: 1) novel weighted averages for MADM, which for the first time enable us

to aggregate mixed signals consisting of numbers, intervals, T1 FSs and/or words modeled

by IT2 FSs; and, 2) perceptual reasoning for MODM, which is an approximate reasoning

method to infer an output for an input from rules. Two methods for rulebase construction

— linguistic summarization to extract rules from data and knowledge mining to construct
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rules through survey — have also been introduced. Particularly, linguistic summarization

can be used alone as a data mining approach for database understanding.

9.2 Future Works

Some future research works are proposed in this section.

9.2.1 Incorporate Uncertainties in the Analytic Hierarchy Process (AHP)

The analytic hierarchy process (AHP) is an MADM approach that uses multiple pair-

wise comparisons to rank order alternatives. It was first developed by Prof. Thomas L.

Saaty [111], has been extensively studied and refined since then [89, 112, 113, 120], and

has been used worldwide in a variety of decision-making situations in fields [113–116,118]

such as economics, finance, politics, social sciences, games, sports, etc. Its details are

given in Appendix C.

There are different types of uncertainties in the AHP, e.g., the inconsistency1 in the

pairwise comparison matrices (PCMs), the uncertainties in expressing the preferences

using crisp numbers, the change of judgments over time or in different scenarios, etc.

Some approaches to incorporate uncertainties in the AHP are introduced next.

Poyhonen et al. [105] expressed concern about the numerical interpretation of the

phrases that are used in the AHP, and chose to analyze the relationship between words and

numbers. They created some experiments to find “representative numerical counterparts

for the verbal expressions used in the AHP,” to see if the results from the AHP were
1A positive m × m matrix W = [cij ] is consistent if cijcjk = cik, ∀i, j, k = 1, . . . , m.
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sensitive to the numerical scale and “to study whether the numerical counterparts of the

verbal expressions vary from one decision problem to another.” Their experiments: 1) “Do

not support the 1-9 scale as the default to represent numerical counterparts for the verbal

expressions in the AHP”; 2) “Do not suggest any fixed numerical scale as a standard tool

for the AHP, because the interpretation of verbal expressions varies from one person to

another”; and, 3) demonstrate that “numerical counterparts of the verbal expressions vary

according to the set of elements involved in the comparisons,” i.e., they are application

dependent.

Regarding these three conclusions and the material in this dissertation: 1) Although

we began with the 0-10 scale, we did not pre-assign numbers to words; instead, our

collected word-interval data and the Interval Approach, that mapped it into an FOU,

located the word FOU on the 0-10 scale; 2) Variability from one person to another was

not ignored by us, but instead was directly mapped into a word FOU by the Interval

Approach; and, 3) From the very beginning we have advocated that the relationships

between words and numbers (FOUs) are application dependent.

Beyth-Marom [5], Hamm [40] and Timmermanns [130] have observed that verbal ex-

pressions seem to be best modeled by ranges of values rather than by point estimates.

Poyhonen et al. [105] state: “. . . provided these results can be generalized to ratio com-

parisons of relative importance, it is possible that the exact numbers in the AHP should

be replaced by intervals of numbers.”
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The data that we collect about a word are indeed ranges of values, one per subject;

however, the Interval Approach provides us with an FOU for the word and not just an

interval. If one wants to just use an interval of numbers for the AHP verbal expressions,

then one way to obtain such an interval is: 1) Choose an appropriate scale for the ap-

plication; 2) Collect interval end-point data for the words of that application as we have

explained; 3) Map the collection of subject intervals into an FOU using the Interval Ap-

proach (modified to the scale if it is not the 0-10 scale); and 4) Compute the centroids of

the word FOUs. The centroid is an interval of numbers on the given scale and provides a

measure of the uncertainty of the entire FOU.

Paulson and Zahir [103] considered the uncertainty in alternative rankings [114] and

the probability of rank reversals2 as functions of the number of alternatives and of the

layer of the hierarchy, and found that ranking uncertainty decreases as the number of

alternatives or the layer of the hierarchy increases. The sole source of uncertainty was

assumed to be the entries of the judgment matrices. Zahir [187] later showed how to

compute uncertainties in the relative priorities of a decision.

Reuven and Wan [109] considered two types of uncertainties: 1) the future charac-

teristics of the decision-making environment described by a set of scenarios, and 2) the

decision-making judgments regarding each pairwise comparison. They proposed a simu-

lation approach for handling both types of uncertainties in the AHP.
2Rank reversal denotes the phenomena that the rank of the alternatives may be changed by adding or

deleting (irrelevant) alternatives.
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Sugihara and Tanaka [127] proposed a linear programming approach to obtain interval

weight vector and priority vectors from the crisp judgment matrices, i.e., the crisp PCMs

are still used, but interval weight vector and priority vectors are computed from them by

making use of the inconsistencies of the PCMs.

Beynon [4] proposed a DS/AHP method which combines the Dempster-Shafer (DS)

theory of evidence with the AHP. This method allows judgments on groups of alternatives

to be made, instead of pairwise comparisons used in the original AHP. It also provides a

measure of uncertainty in the final results by evaluating the range of uncertainty expressed

by the decision maker, and hence allows an understanding of the appropriateness of the

rating scale values.

Fuzzy AHP [10, 11, 21, 121, 175] is a a popular way to incorporate uncertainties into

the AHP. In this approach, T1 FSs instead of crisp numbers are used in the judgment

matrices. Usually α-cuts are used to decompose these T1 FSs into intervals, and for

each α, an eigenvalue interval can be computed. The problem is then to find the “best”

(maximum) eigenvalue with small consistency ratio3 (e.g., <0.1) and high α. There

are several different ways to set up such kinds of multi-objective optimization problems,

e.g. [121],

1. Minimize the maximum eigenvalue (i.e., minimize the consistency ratio) while set-

ting constraints on α (e.g., α > 0.5).
3Consistency ratio [122] is a measure of inconsistency, and a smaller consistency ratio means better

consistency.
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2. Maximize α while setting a constraint on the consistency ratio (e.g., consistency

ratio < 0.1).

3. Run simulations to determine the eigenvalue intervals for all α and then ask the

user to make a decision.

Saaty and Tran [121] oppose the fuzzy AHP approach for the following reasons:

1. Improving consistency in the PCMs does not necessarily improve the validity of

the output, whereas in many fuzzy AHP approaches people try to improve the

consistency regardless of the consequences.

2. In many fuzzy AHP approaches people obtain certain and crisp judgments first and

then fuzzify them to be fuzzy judgments, whereas it is more reasonable to obtain

these uncertain judgments directly from the decision-maker.

We are in general agreement with Saaty and Tran about these objections; however,

we think the Interval Approach could be used to extend the AHP to a linguistic AHP

in which all pair-wise comparisons are expressed as linguistic terms that are modeled by

FOUs. Although the linguistic AHP would use FSs, it would not use T1 FSs, and it does

not simply fuzzify crisp numbers. The details for how to do this remain to be worked out.

9.2.2 Efficient Algorithm for Linguistic Summarization

Currently an exhaustive search method is used in linguistic summarization, i.e., to find

the top N rules with the maximum usefulness from a database, we need to compute the
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usefulness for all possible combinations of rules and then rank them. This is very time-

consuming when the database is large, and/or each rule has multiple antecedents/con-

sequents, and/or each antecedent/consequent has many MFs. An efficient algorithm that

can eliminate non-interesting rules from the beginning and hence speed up the search is

highly desirable.

9.2.3 Make Use of the Rule Quality Measures in Perceptual Reasoning

In linguistic summarization, we generate not only rules, but also quality measures for

them, e.g., truth level, degree of sufficient coverage, degree of usefulness, and degree of

outlier. Unfortunately, presently we do not know how to make use of them in perceptual

reasoning. It is counter-intuitive to simply ignore them, because they indicate different

degrees of importance for different rules.
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Appendix A

The Enhanced Karnik-Mendel

(EKM) Algorithms

The EKM Algorithm for computing cl(X̃) in (2.22) is [146,154]:

1. Sort xi (i = 1, 2, . . . , N) in increasing order and call the sorted xi by the same name,

but now x1 ≤ x2 ≤ · · · ≤ xN . Match the weights wi with their respective xi and

renumber them so that their index corresponds to the renumbered xi.

2. Set k = [N/2.4] (the nearest integer to N/2.4), and compute

a =
k∑

i=1

xiwi +
N∑

i=k+1

xiwi (A.1)
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b =
k∑

i=1

wi +
N∑

i=k+1

wi (A.2)

and

y = a/b (A.3)

3. Find k′ ∈ [1, N − 1] such that

xk′ ≤ y ≤ xk′+1 (A.4)

4. Check if k′ = k. If yes, stop, set yl = y and call k L. If no, continue.

5. Compute s = sign(k′ − k), and1

1When k′ > k, it is true that

a′ = a + s

k′
X

i=k+1

xi(wi − wi), b′ = b + s

k′
X

i=k+1

(wi − wi)

and when k > k′, it is true that

a′ = a + s

k
X

i=k′+1

xi(wi − wi), b′ = b + s

k
X

i=k′+1

(wi − wi).

(A.5) and (A.6) express the above two cases in a more concise form.
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a′ = a + s

max(k,k′)∑
i=min(k,k′)+1

xi(wi − wi) (A.5)

b′ = b + s

max(k,k′)∑
i=min(k,k′)+1

(wi − wi) (A.6)

y′ = a′/b′ (A.7)

6. Set y = y′, a = a′, b = b′ and k = k′. Go to Step 3.

The EKM Algorithm for computing cr(X̃) in (2.23) is [146,154]:

1. Sort xi (i = 1, 2, . . . , N) in increasing order and call the sorted xi by the same name,

but now x1 ≤ x2 ≤ · · · ≤ xN . Match the weights wi with their respective xi and

renumber them so that their index corresponds to the renumbered xi.

2. Set k = [N/1.7] (the nearest integer to N/1.7), and compute

a =
k∑

i=1

xiwi +
N∑

i=k+1

xiwi (A.8)

b =
k∑

i=1

wi +
N∑

i=k+1

wi (A.9)

and

y = a/b (A.10)
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3. Find k′ ∈ [1, N − 1] such that

xk′ ≤ y ≤ xk′+1 (A.11)

4. Check if k′ = k. If yes, stop, set yr = y and call k R. If no, continue.

5. Compute s = sign(k′ − k), and

a′ = a − s

max(k,k′)∑
i=min(k,k′)+1

xi(wi − wi) (A.12)

b′ = b − s

max(k,k′)∑
i=min(k,k′)+1

(wi − wi) (A.13)

y′ = a′/b′ (A.14)

6. Set y = y′, a = a′, b = b′ and k = k′. Go to Step 3.
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Appendix B

Derivations of (3.20) and (3.21)

Consider ssl(X̃1, X̃2) first. Define

fl(µXe
1
(x)) =

∑N
i=1 min

(
µXe

1
(xi), µX2

(xi)
)∑N

i=1 µXe
1
(xi)

(B.1)

where µXe
1
(xi) ∈ [µX1

(xi), µX1
(xi)]. Then,

ssl(X̃1, X̃2) = min
µXe

1
(xi)∈

h

µX1
(xi),µX1

(xi)
i

fl(µXe
1
(x)) (B.2)

Let Xl be the embedded T1 FS from which ssl(X̃1, X̃2) is computed. For a particular

xj , there are three possible relationships between [µX1
(xj), µX1

(xj)] and µX2
(xj):

281



1. When µX1
(xj) ≥ µX2

(xj), i.e., the entire interval [µX1
(xj), µX1

(xj)] is larger than

or equal to µX2
(xj), it follows that min(µXe

1
(xj), µX2

(xj)) = µX2
(xj), and hence

d(min(µXe
1
(xj), µX2

(xj)))
dµXe

1
(xj)

= 0 (B.3)

∂fl(µXe
1
(x))

∂µXe
1
(xj)

= −
∑N

i=1 min(µXe
1
(xi), µX2

(xi))(∑N
i=1 µXe

1
(xi)

)2 ≤ 0 (B.4)

i.e., fl(µXe
1
(x)) decreases as µXe

1
(xj) increases; so, ssl(X̃1, X̃2), the minimum of

fl(µXe
1
(x)), is obtained when µXe

1
(xj) = µX1

(xj), i.e., µXl
(xj) = µX1

(xj) when

µX2
(xj) ≤ µX1

(xj), which is the first line of (3.18).

2. When µX1
(xj) ≤ µX2

(xj), i.e., the entire interval [µX1
(xj), µX1

(xj)] is smaller than

or equal to µX2
(xj), it follows that min(µXe

1
(xj), µX2

(xj)) = µXe
1
(xj), and hence

d(min(µXe
1
(xj), µX2

(xj)))
dµXe

1
(xj)

= 1 (B.5)

∂fl(µXe
1
(x))

∂µXe
1
(xj)

=

∑N
i=1 µXe

1
(xi) −

∑N
i=1 min(µXe

1
(xi), µX2

(xi))(∑N
i=1 µXe

1
(xi)

)2 ≥ 0 (B.6)

The second part of (B.6) is true because µXe
1
(xi) ≥ min(µXe

1
(xi), µX2

(xi)) for ∀i.

(B.6) indicates that fl(µXe
1
(x)) decreases as µXe

1
(xj) decreases; so, ssl(X̃1, X̃2),

the minimum of fl(µXe
1
(x)), is obtained when µXe

1
(xj) = µX1

(xj), i.e., µXl
(xj) =

µX1
(xj) when µX2

(xj) ≥ µX1
(xj), which is the second line of (3.18).

3. When µX1
(xj) < µX2

(xj) < µX1
(xj), i.e., µX2

(xj) is within the interval [µX1
(xj),

µX1
(xj)], [µX1

(xj), µX1
(xj)] can be partitioned into two sub-intervals, [µX1

(xj),
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µX2
(xj)] and [µX2

(xj), µX1
(xj)], and then the minimum for each sub-interval can

be computed. The minimum over the entire interval is the smaller one of the mini-

mums of the two sub-intervals. Note that for sub-interval [µX1
(xj), µX2

(xj)], which

is smaller than or equal to µX2
(xj), the result in Case 2 can be used, and the mini-

mum is obtained when µXe
1
(xj) = µX1

(xj); and for sub-interval [µX2
(xj), µX1

(xj)],

which is larger than or equal to µX2
(xj), the result in Case 1 can be used, and the

minimum is obtained when µXe
1
(xj) = µX1

(xj). ssl(X̃1, X̃2) is obtained by comput-

ing fl(µXe
1
(x)) for both µX1

(xj) and µX1
(xj) and choosing the smaller value. This

means, that when µX1
(xj) < µX2

(xj) < µX1
(xj), µXl

(xj) = {µX1
(xj), µX1

(xj)},

which is the third line of (3.18).

(3.20) is a summarization of the above results.

Consider ssr(X̃1, X̃2) next. Define

fr(µXe
1
(x)) =

∑N
i=1 min

(
µXe

1
(xi), µX2

(xi)
)

∑N
i=1 µXe

1
(xi)

(B.7)

where µXe
1
(xi) ∈ [µX1

(xi), µX1
(xi)]. Then,

ssr(X̃1, X̃2) = max
µXe

1
(xi)∈

h

µX1
(xi),µX1

(xi)
i

fr(µXe
1
(x)) (B.8)

Let Xe
1 be the embedded T1 FS from which ssr(X̃1, X̃2) is computed. Again, for

a particular xj , there are three possible relationships between [µX1
(xj), µX1

(xj)] and

µX2
(xj):
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1. When µX1
(xj) ≥ µX2

(xj), i.e., the entire interval [µX1
(xj), µX1

(xj)] is larger than

or equal to µX2
(xj), it follows that min(µXe

1
(xj), µX2

(xj)) = µX2
(xj), and hence

d(min(µXe
1
(xj), µX2

(xj)))
dµXe

1
(xj)

= 0 (B.9)

∂fr(µXe
1
(x))

∂µXe
1
(xj)

= −
∑N

i=1 min(µXe
1
(xi), µX2

(xi))(∑N
i=1 µXe

1
(xi)

)2 ≤ 0 (B.10)

So, ssr(X̃1, X̃2) is obtained when µXe
1
(xj) = µX1

(xj), i.e., µXr(xj) = µX1
(xj) when

µX2
(xj) ≤ µX1

(xj), which is the first line of (3.19).

2. When µX1
(xj) ≤ µX2

(xj), i.e., the entire interval [µX1
(xj), µX1

(xj)] is smaller than

or equal to µX2
(xj), it follows that min(µXe

1
(xj), µX2

(xj)) = µXe
1
(xj), and hence

d(min(µXe
1
(xj), µX2

(xj)))
dµXe

1
(xj)

= 1 (B.11)

∂fr(µXe
1
(x))

∂µXe
1
(xj)

=

∑N
i=1 µXe

1
(xi) −

∑N
i=1 min(µXe

1
(xi), µX2

(xi))(∑N
i=1 µXe

1
(xi)

)2 ≥ 0 (B.12)

The second part of (B.12) is true because µXe
1
(xi) ≥ min(µXe

1
(xi), µX2

(xi)) for ∀i.

So, ssr(X̃1, X̃2) is obtained when µXe
1
(xj) = µX1

(xj), i.e., µXr(xj) = µX1
(xj) when

µX2
(xj) ≥ µX1

(xj), which is the second line of (3.19).

3. When µX1
(xj) < µX2

(xj) < µX1
(xj), i.e., µX2

(xj) is within the interval [µX1
(xj),

µX1
(xj)], [µX1

(xj), µX1
(xj)] can be partitioned into two sub-intervals, [µX1

(xj),

µX2
(xj)] and [µX2

(xj), µX1
(xj)], and then the maximum for each sub-interval can be

computed. The maximum over the entire interval is the larger one of the maximums
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of the two sub-intervals. Note that for sub-interval [µX1
(xj), µX2

(xj)], which is

smaller than or equal to µX2
(xj), the result in Case 2 can be used [where µX2

(xj)

plays the role of µX1
(xj)], and the maximum is obtained when µXe

1
(xj) = µX2

(xj);

and for sub-interval [µX2
(xj), µX1

(xj)], which is larger than or equal to µX2
(xj),

the result in Case 1 can be used [where µX2
(xj) plays the role of µX1

(xj)], and the

maximum is also obtained when µXe
1
(xj) = µX2

(xj). So, ssr(X̃1, X̃2) is obtained

when µXe
1
(xj) = µX2

(xj), i.e., µXr(xj) = µX2
(xj) when µX1

(xj) < µX2
(xj) <

µX1
(xj), which is the third line of (3.19).

(3.21) is a summarization of the above results.
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Appendix C

The Analytic Hierarchy Process

(AHP)

The Harvard psychologist Arthur Blumenthal [8] pointed out that there are two types

of judgments: comparative judgment which is the identification of some relation between

two stimuli both present to the observer, and absolute judgment which is the identification

of the magnitude of some simple stimulus. ... Absolute judgment involves the relation be-

tween a single stimulus and some information held in short-term memory — information

about some former comparison stimuli or about some previously experienced measurement

scale. On that basis, an observer identifies or rates a single stimulus. In the AHP the first

type of judgment is called relative measurement and the second is called absolute mea-

surement [113]. In relative measurement each alternative is compared with many other

alternatives, and in absolute measurement each alternative is compared with one ideal
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alternative the decision-maker knows of or can imagine, a process called “rating alterna-

tives.” Novel weighted averages introduced in Chapter 4 use absolute measurements (i.e.,

each alternative is evaluated independently). The distributive mode AHP introduced in

this appendix uses relative measurements.

C.1 The Distributive Mode AHP

In the distributive mode AHP, pair-wise comparisons are used to obtain the weights for

the criteria and for the scores of the alternatives for each criterion, and then a weighted

average is used to compute the overall performance of each alternative. It consists of the

following four steps: 1) Identify the alternatives and criteria, 2) Compute the weights

for the criteria, 3) Compute the priorities of the alternatives for each criterion, and, 4)

Compute the overall priorities of the alternatives. These four steps are explained in more

detail next1.

C.1.1 Identify the Alternatives and Criteria

In this step, first the alternatives that will be compared in a specific MCDM problem are

identified. Denote them as Ai, i = 1, ..., n. Then, the major criteria for comparing the

alternatives are identified2. Denote these criteria as Cj , j = 1, ...,m.

1There are many variants of the distributive model AHP, e.g., ideal mode AHP [119] and logarithmic
least-squares method [11,19].

2Each major criterion can have several sub-criteria; however, for simplicity no sub-criteria are consid-
ered in this section.
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C.1.2 Compute the Weights for the Criteria

Once the criteria are identified, their weights are computed through pair-wise compar-

isons3. A pair-wise comparison matrix (PCM) W is constructed, whose ijth element,

cij , is the ratio of the importance of Ci to the importance of Cj . The comparisons are

performed linguistically using the terms shown in the second column of Table C.1, and

then the corresponding numerical intensities are used to fill the appropriate positions in

matrix W .

Table C.1: The fundamental scale [117] for AHP. A scale of absolute numbers is used
to assign numerical values to judgments made by comparing two elements, with the less
important one used as the unit and the more important one assigned a value from this
scale as a multiple of that unit.

IntensityaDefinition Explanation
1 Equal importanceb Two elements contribute equally to the objective
3 Moderate importance Experience and judgment slightly favor one

element over the other
5 Strong importance Experience and judgment strongly favor one

element over the other
7 Very strong or One element is favored very strongly over the

demonstrated importance other; its dominance is demonstrated in practice
9 Extreme importance The evidence favoring one element over the other

is of the highest possible order of affirmation
a Intensities of 2, 4, 6 and 8 can be used for compromise between the above values.
b Intensities {1.1, . . . , 1.9} can also be used when elements are close and nearly indis-

tinguishable.

Because it always holds that cii = 1 and cji = 1/cij , a total of m(m − 1)/2 (instead

of m2) pair-wise comparisons need to be made, as illustrated in (C.1).

W = [cij ]i,j=1,...,m where cii = 1 and cji = 1/cij (C.1)

3This is very different from the way in which the weights are chosen when using a NWA.
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This matrix cannot be used directly in the final aggregation. A weight vector w =

(w1, ..., wm)T corresponding to the weights of the criteria is needed. This w must be

deduced from W . It has been shown [114] that w should be the principle eigenvector of

W . Usually, w is normalized so that
∑m

j=1 wj = 1.

C.1.3 Compute the Priorities of the Alternatives for Each Criterion

The priorities of the n alternatives to the m criteria need to be determined so that they

can be aggregated to obtain the overall priority. For criterion Ck (k = 1, ...,m), using a

similar approach as used above to construct W , a PCM Xk is constructed, as:

Xk = [aij ]i,j=1,...,n where aii = 1 and aji = 1/aij (C.2)

in which aij is the relative importance of alternative Ai over alternative Aj . Then, the

normalized principal eigenvector of Xk, xk, is computed to represent the priorities of the

alternatives for criterion Ck. Once this is done for all m criteria, one ends up with m

priority vectors xk, k = 1, ...,m.

C.1.4 Compute the Overall Priorities of the Alternatives

In the final step of the AHP, a vector p = (p1, ..., pn)T , representing the overall priorities

of the n alternatives, is derived from xk (k = 1, ...,m) and w, as:

p = [x1 x2 · · · xm]w (C.3)
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Usually p is normalized so that
∑n

i=1 pi = 1, though the normalization does not change

the overall priorities of the alternatives.

C.2 Example

The following example [1] is used to illustrate the procedures of the AHP.

Example 29 Suppose a family wants to buy a new car, and they consider four criteria:

C1 = Cost, C2 = Safety, C3 = Style and C4 = Capacity. There are three candidates

for selection: A1 = Accord Sedan, A2 = Pilot SUV and A3 = Odyssey Minivan. The

complete AHP hierarchy is shown in Fig. C.1.

*RDO�
6HOHFW�D�QHZ�FDU

&ULWHULRQ���
&RVW

&ULWHULRQ���
6DIHW\

&ULWHULRQ���
6W\OH

&DQGLGDWH���
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&DQGLGDWH���
3LORW�689

&DQGLGDWH���
2G\VVH\�0LQLYDQ

&ULWHULRQ���
&DSDFLW\

Fig. C.1: The AHP hierarchy for car selection.

The relative importance of the four criteria is determined first by pair-wise compar-

isons. Assume the family thinks Cost is equally important as Safety (c12 = 1), very

strongly more important than Style (c13 = 7), and moderately more important than Ca-

pacity (c14 = 3); Safety is extremely more important than Style (c23 = 9) and moderately
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more important than Capacity (c24 = 3); and, Capacity is strongly more important than

Style (c43 = 5). Then, the PCM is constructed as

W =

Cost

Safety

Style

Capacity

Cost Safety Style Capacity

1 1 7 3

1 1 9 3

1/7 1/9 1 1/5

1/3 1/3 5 1


(C.4)

The relative importance of the three criteria is computed as the principle eigenvector of

W , which is

w = (0.39, 0.41, 0.04, 0.16)T (C.5)

According to the typical prices of the three models and the family’s budget, they think

Accord is very strongly preferred to Pilot (a12 = 7) and strongly preferred to Odyssey

(a13 = 5), and Odyssey is moderately preferred to Pilot (a32 = 3); so, they construct the

PCM X1, for cost, as
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X1 (for Cost) =
Accord

Pilot

Odyssey

Accord Pilot Odyssey
1 7 5

1/7 1 1/3

1/5 3 1



Assume for the other three criteria, after some research the family gives the following

PCMs:

X2 (for Safety) =
Accord

Pilot

Odyssey

Accord Pilot Odyssey
1 1/3 1/7

3 1 1/5

7 5 1



X3 (for Style) =
Accord

Pilot

Odyssey

Accord Pilot Odyssey
1 5 3

1/5 1 1/3

1/3 3 1



X4 (for Capacity) =
Accord

Pilot

Odyssey

Accord Pilot Odyssey
1 1/5 1/5

5 1 1

5 1 1


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Then, the corresponding priority vectors are

x1 = (0.73, 0.08, 0.19)T (C.6)

x2 = (0.08, 0.19, 0.73)T (C.7)

x3 = (0.64, 0.10, 0.26)T (C.8)

x4 = (0.10, 0.45, 0.45)T (C.9)

Consequently, the overall priority of the three cars is

p = [x1 x2 x3 x4]w = (0.36, 0.18, 0.46)T (C.10)

So, the choice would be the Odyssey Minivan. ¥

C.3 AHP versus NWA

Comparisons of the NWA and AHP are shown in Table C.2. Each method has four steps,

but only Step 1 is common to both the NWA and AHP. Weights, scores of the alternatives,

and final rank are computed differently by the NWA and AHP.
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Table C.2: A comparison of the NWA and AHP.
Step NWA AHP
1. Identify criteria This step is common to both the NWA and AHP.
and alternatives
2. Find weights for Decision-makers express A PCM is constructed, and then a
the criteria the weights linguistically, weight vector is computed from it.

and then IT2 FSs are used
to represent them.

3. Find scores of Decision-makers express A PCM is constructed for each
the alternatives for the scores linguistically, criterion, and then a priority
each criterion and then IT2 FSs are used vector is computed from it.

to represent them.
4. Compute the An NWA is computed for each The priority vectors are weighted
final rank alternative to obtain its overall by the weight vector to obtain the

performance, and then the final overall priority vector.
IT2 FSs are ranked. Similarities
among the ranked alternatives
are also computed.
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