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Abstract

Personality, likability, and pathology are important

speaker traits that convey rich information beyond the

actual language. They have promising applications

in human-machine interaction, health informatics, and

surveillance. However, they are less researched than

other paralinguistics phenomena such as emotion, age

and gender. In this paper we propose a novel feature

selection approach for speaker trait classification from

a large number of acoustic features. It combines Fisher

Information Metric feature filtering and Genetic Algo-

rithm based feature selection, and fuses several elemen-

tary Support Vector Machines with different feature sub-

sets to achieve robust classification performance. Exper-

iments on an INTERSPEECH 2012 Speaker Trait Chal-

lenge dataset show that our approach outperforms both

baseline approaches.

Index Terms: Paralinguistics, Speaker Trait Classifi-

cation, Personality, Likability, Pathology, Genetic algo-

rithm, Fisher Information Metric, SVM

1. Introduction

Speaker states and traits, including emotion, age, gender,

sleepiness, intoxication, personality, likability, pathol-

ogy, etc, are important phenomena in paralinguistics.

They convey rich information beyond the language it-

self. Among them, personality, likability and pathol-

ogy are less researched speaker traits. However, they

have important applications in human-machine interac-

tion [1], health informatics, and surveillance. The IN-

TERSPEECH 2012 Speaker Trait Challenge [2] is orga-

nized to fill this gap. Three sub-challenges are addressed:

1. Personality Sub-Challenge, in which the person-

ality of a speaker has to be determined based on

acoustic features. The personality is represented

by the 5-dimension OCEAN (Openness to experi-

ence, Conscientiousness, Extraversion, Agreeable-

ness, and Neuroticism) model [3]. Each dimension

is discretized into two levels: below average, or

above.

2. Likability Sub-Challenge, in which the likability of

a speaker’s voice has to be determined based on

acoustic features. The likability is discretized into

two levels: below average, or above.

3. Pathology Sub-Challenge, in which the intelligi-

bility of a speaker has to be determined based on

acoustic features. Again, the intelligibility is dis-

cretized into two levels: below the median, or

above.

6125 acoustic features were extracted for each speaker in

each sub-challenge. More descriptions about the data and

features can be found in [2].

This paper proposes a novel Genetic Algorithm (GA)

based feature selection method for speaker trait classifi-

cation and achieves better performance than the two base-

line approaches. The details of the algorithm are pre-

sented in Section 2. The experimental results are given

in Section 3.

2. The Proposed Algorithm

The flowchart of our algorithm is shown in Fig. 1. Linear

Support Vector Machines (SVMs), implemented by the

libSVM [4], are used as our classifier. We first normalize

each feature to [0,1], then perform feature filtering by the

Fisher Information Metric and feature selection by GA.

Next we optimize the parameters of the SVMs and finally

fuse several of them for robust performance. More details

on these steps are described next.

2.1. Data Normalization

Data normalization is used to avoid attributes in larger nu-

merical ranges dominating those in smaller ranges, and to

avoid numerical difficulties during the calculation. It is a

recommended step in libSVM [4]. In this paper we per-

form feature data normalization before feature filtering

and selection. We combine all examples from the train-

ing, development and test datasets and normalize each

feature into [0,1].

2.2. Feature Filtering by Fisher Information Metric

There is a total of 6125 features. Not all of them are

equally useful in classification. The useless or less useful

features should be removed as they increase the compu-

tational cost and also deteriorate the classification perfor-
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Figure 1: Flowchart of our algorithm.

mance. The feature selection procedure consists of two

steps. The Fisher Information Metric, which is a measure

of the distinguishing power of a single feature, is used in

feature filtering. We consider each feature independently

and compute its Fisher information metric. Let N0 be the

number of negative training examples, N1 be the number

of positive training examples, and {xn
i }

n=1,...,N0+N1
i=1,...,6125 be the

values of the ith feature. Then, the Fisher information

metric for two-class classification is computed as [5]:

Fi =
(m0 −m1)

2

σ0 +σ1

, i = 1, ...,6125 (1)

where m0 (m1) is the mean of xn
i corresponding to the neg-

ative (positive) training examples, and σ0 (σ1) is the vari-

ance of xn
i corresponding to the negative (positive) train-

ing examples.

We then sort {Fi}i=1,...,6125 in descending order and

pick only the top M features in further feature selection.

M = 2000 was used in our experiment. It was chosen

empirically.

2.3. Feature Selection by Genetic Algorithm

Two questions need to be addressed in further feature se-

lection: 1) How many features should be used? and, 2)

Which features should be selected? As it is difficult to

determine how many features should be used, we address

the first question by selecting a group of features with dif-

ferent lengths (N = {100,200,300,400,500} were used

in this paper) and then fusing the corresponding SVM

classifier for robust performance. Given a target N, the

number of features to be selected, we use GA [6], a very

popular global optimization method, to determine which

features should be selected.

The flowchart of the GA is shown in Fig. 2. 20 gen-

erations were used and there were 100 chromosomes in

each generation. In the following we use N = 100 as an

example to explain how each step works.

Initial population
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Crossover

Mutation

Terminate?

Yes

No

Output the

chromosome with

the maximum fitness

Figure 2: Flowchart of the GA.

2.3.1. Initial Population

Each chromosome in the initial population contains the

indices of 100 random features selected from the 2000

features, and the initial population has 100 such chromo-

somes. The most intuitive way to generate a chromosome

is to generate 100 random integers in [1,2000]. However,

there may be duplicate indices, especially when N gets

large. So, we need to check each chromosome and re-

place duplicate indices by new indices to ensure all 100

indices in a chromosome are unique.

2.3.2. Fitness Evaluation

The fitness of each chromosome is evaluated using both

the training dataset and the development dataset. For

the training dataset, we use 5-fold cross-validation and

SVM to compute the unweighted average (UA) recall (ai,

where i is the index of the chromosome). For the de-

velopment dataset, we first train a SVM using the entire

training dataset, and then compute the UA (bi) on the de-

velopment dataset. The overall fitness of the ith chromo-

some is then computed as

fi = (ai +w ·bi)/(1+w), i = 1, ...,N (2)

where w is a constant to ensure that ai ≈ bi. w = 1.5 was

used in our experiment and it was chosen empirically.
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We need to point out that in each generation, the par-

tition of the five folds in 5-fold cross-validation is gener-

ated randomly, i.e., the five folds in each generation are

different from those in other generations. We believe this

can increase the generability of the resulting feature sub-

set because it is extensively validated in many different

scenarios. However, more experiments are needed to ver-

ify this conjecture.

2.3.3. Reproduction

In reproduction, we copy the 100 chromosomes in the

previous generation directly to the next generation. The

top five chromosomes with the maximum fitness are not

touched at all. The rest 95 chromosomes are modified

using crossover and mutation.

2.3.4. Crossover

To perform crossover, we need to find a partner for each

of the 95 chromosomes. Every chromosome in the 100-

chromosome population has a probability to be selected,

and the probability is proportional to f 2
i [ fi is defined in

(2)]. We used f 2
i instead of fi for faster convergence.

Once the partner of a chromosome is identified, the

two chromosomes perform crossover at a random loca-

tion to obtain a new chromosome, which is stored in the

next generation.

2.3.5. Mutation

We do not perform mutation explicitly. However, the new

chromosome obtained from the crossover of two parent

chromosomes usually has some duplicate indices. We re-

place these duplicates by randomly generated unique in-

dices, which is equivalent to mutation.

2.4. SVM Parameter Optimization

In the above GA-based feature selection, the complexity

parameter C of the linear SVM is fixed to be 0.1. How-

ever, this may not be optimal. When the GA terminates

after 20 generations, we select the top 10 chromosomes in

the final population with the maximum fitness. For each

of them, we test C ∈ {10−4,10−3.8, ...,100} and record

the C which gives the maximum fitness. In this way we

obtain the optimal C for each of these top 10 chromo-

somes. The best chromosome is then chosen as the one

which gives the best fitness among them. The 100 indices

stored in that chromosome constitute our best feature sub-

set for N = 100.

2.5. SVM Fusion

We repeat the above feature selection by GA and SVM

parameter optimization for N = {100,200,300,400,500}
to obtain five best feature subsets with different length,

and the corresponding C. These can be used to construct

five different SVMs. We then use a majority vote to fuse

them for robust performance.

3. Experimental Results

The Fisher Information Metrics for the 6125 features are

shown in Fig. 3. Observe that only a very small portion

of the 6125 features have good distinguishing ability. Re-

moving the less useful features can increase the speed and

robustness of our algorithm.
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Figure 3: Fisher Information Metrics for different fea-

tures. Note that the metrics have been sorted in descend-

ing order. The first 2000 features were used in this paper.

The UAs on the training and development datasets in

each GA generation are shown in Fig. 4, as well as the

aggregated UA by (2). Observe from Fig. 4(c) that the

sum of the UAs on the training dataset and the develop-

ment dataset, which was used as the fitness measure in

our experiment, generally increases with the number of

generations. However, there are fluctuations, because in

each generation the partition of the five folds in evaluat-

ing the training performance was different. There will be

less fluctuations when the number of folds is larger, at the

cost of increased computation time.

We use the five feature subsets and C obtained after

SVM parameter optimization to train five SVM model

based on both the training and development datasets,

compute their classification results individually for the

test dataset, and then fuse them to obtain the final clas-

sification for the test dataset. The UAs and weighted av-

erages (WAs) are shown in Table 1. For comparison pur-

pose the baseline results using SVM and Random Forests

(RF), given in [2], are also shown. Due to time constraint

we have only finished our experiments on the Likability

dataset, but in the final submission we will report results

on all three sub-challenges. Observe that:

1. Our UA and WA on the development dataset are

significantly better than those in the baseline SVM

and RF approaches. This is because we considered

the development dataset explicitly in GA-based

feature selection, at the risk of overfitting.
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Figure 4: The UAs in different generations of the GA. (a)

The UA from the 5-fold cross-validation on the training

dataset; (b) The UA on the development dataset; (c) The

sum of UAs on the training dataset and the development

dataset.

2. Our UA and WA on the test dataset are consider-

ably better than the UA and WA in the baseline

SVM approach, and are also slightly better than the

UA and WA in the baseline RF approach.

3. Our UA and WA on the test dataset are much lower

than those on the development dataset, because of

overfitting. This implies that there is great room

for improvement. How to reduce this overfitting

will be considered in our future study.

Table 1: Likability classification results. The values

shown are percentages.
Development Test

Task Classifier UA WA UA WA

Baseline SVM 58.5 58.4 55.9 56.1
Likability Baseline RF 57.6 57.5 59.0 59.2

Our algorithm 68.6 69.1 59.5 59.6

4. Conclusions

Personality, likability, and pathology are important

speaker traits which have promising applications in

human-machine interaction, health informatics, and

surveillance; however, they are less researched than other

paralinguistics phenomena such as emotion, age and gen-

der. In this paper we have proposed a novel feature se-

lection approach for speaker trait classification from a

large number of acoustic features. It combines Fisher

Information Metric feature filtering and GA-based fea-

ture selection, and fuses several elementary SVMs with

different feature subsets to achieve robust classification

performance. Experiments on an INTERSPEECH 2012

Speaker Trait Challenge dataset showed that our ap-

proach can outperform both baseline approaches.

5. References

[1] F. Metze, A. Black, and T. Polzehl, “A review of personality in
voice-based man machine interaction,” in Proc. HCI International,
vol. 2, Orlando, FL, July 2011, pp. 358–367.

[2] B. Schuller, S. Steidl, A. Batliner, E. Noth, A. Vinciarelli,
F. Burkhardt, R. van Son, F. Weninger, F. Eyben, T. Bocklet,
G. Mohammadi, and B. Weiss, “The Interspeech 2012 Speaker
Trait Challenge,” in Proc. Interspeech 2012, Portland, OR, Septem-
ber 2012.

[3] J. S. Wiggins, Ed., The five-factor model of personality: Theoreti-

cal perspectives. NY: Guilford, 1996.

[4] C.-C. Chang and C.-J. Lin, “LIBSVM: A library
for support vector machines,” 2009. [Online]. Available:
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[5] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification.
NY: Wiley-Interscience, 2000.

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley, 1989.

INTERSPEECH 2012 297




