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Abstract 
This paper proposes a two-stage multi-system architecture 
for forecasting post-fracturing responses in a tight oil 
reservoir using historical fracturing data. The first stage 
predicts the 180-day cumulative liquid (oil + water) 
production directly, and the second stage uses differential 
correction to predict the prediction error resulting from 
the first stage. The final prediction is a combination of the 
two stages. 5-fold cross-validation is used in each stage, 
resulting in five forecasters for each stage. The average of 
the five predictions is taken as the output of the 
corresponding stage. Each of the five forecasters in each 
stage consists of three independent subsystems (Location, 
Completion and Fracturing), whose inputs are subsets of 
the well properties. The Location subsystem is 
constructed by a weighted average, whereas Completion 
and Fracturing are constructed by fuzzy logic systems. 
The parameters of the three subsystems are optimized 
simultaneously using simulated annealing. The final 
design achieved over 70% prediction accuracy for more 
than 96% of the testing wells. The main advantages of our 
approach are that 1) it does not require a large training 
dataset; 2) it can cope well with incomplete data entries 
and uncertainties; and, 3) the redundancy in the input 
parameters is used to improve accuracy. 
 
1. Introduction 
This paper focuses on the prediction of post-fracturing 
productions in a tight oil reservoir where all producing 
wells need to be fractured due to extremely small pore 
size, high porosity and low permeability of the formation 
[1]. Previous efforts were made on classifying the post-
fracturing productions into several levels, but no simple 
relationships were found between fracturing parameters 
and post-fracturing productions. Additionally, the 
application of fracturing simulators did not prove 
beneficial for this particular reservoir.  

 
In this paper, we view this problem as forecasting 
(prediction) instead of classification and focus on the 
prediction of the180-day cumulative liquid production (oil 
+ water) after fracturing. Our database consisted of 
completion and fracturing data for 344 wells fractured by 
two different vendors during a period of eight years. A 
complete entry in the database consists of about 30 
different parameters, as shown in Fig. 1. These 
parameters were partitioned into three groups 1 , e.g., 
Location, Completion and Fracturing. Some of these 
inputs are hierarchically organized, e.g., each zone in 
Completion includes a group of “local” parameters (feet 
of perforations, number of holes, etc), and each stage in 
Fracturing also includes a group of “local” parameters 
(slurry/sand/pad volumes, pressure, and treatment rate).   
 
The challenges of this project were: 
• The database is small compared with the number of 

input; hence, the forecaster needs to be designed in 
such a way that it can be trained extensively using a 
small database. 

• There are missing values in the database; hence, the 
forecaster needs to be able to cope well with 
incomplete data entries. 

• There are errors in the database, and it is very 
difficult to identify them; hence, the forecaster needs 
to be able to cope well with uncertainties. 

 
In this paper a two-stage multi-system architecture is 
proposed, as shown in Fig. 2. The first stage predicts the 
180-day 2  cumulative liquid (oil + water) production 
directly, and the second stage uses differential correction 
to predict the prediction error resulting from the first 
stage. A multi-system approach is used because then each 
sub-system has only a few free parameters, which can be 
tuned using a small training dataset. Because the methods 
to construct the two stages are the same, except that their 
predictions are different, only the method to construct the 
first stage is described in detail next. 
 
 

                                                           
1 Our partition is similar to the one used in [2]. 
2 The 180-day cumulative liquid (oil + water) production is used in this paper; 
however, our approach can be easily extended to the forecast of any other measure 
of productivity. 
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2. Design of the first stage 
5-fold cross-validation [5] (Fig. 3) was used to partition 
our database into five folds for training and testing, 
leading to five individual forecasters. There were three 
sub-systems (Location, Completion and Fracturing) for 
each forecaster, which can be constructed independently 
using different methods. The parameters of the three sub-
systems in each forecaster were optimized simultaneously 
using Simulated Annealing [6]. The output of the first 
stage, which is a rough prediction of the 180-day liquid 
production, was computed as the average of the five 
forecasters.  
 
2.1. Data pre-processing 
As has been mentioned in the Introduction, there are 
missing values and inaccurate data in the database; so, the 
database must be conditioned before it can be used.  
 
It was found that some wells were out of production 
(downtime) for a certain amount of time during the 180-
day cumulative period, e.g., Well 1 may actually produce 
172 days in the 180-day period, whereas Well 2 may 
produce only 164 days. To reduce this kind of 
uncertainties, the cumulative production values in the 
original database were compensated using downtime. 
Denote the actual production dates of Well i in the 180-
day period as im and the uncompensated 180-day 
cumulative liquid production in the database as iy . Then, 
the downtime-compensated 180-day cumulative liquid 
production is computed as 

iic,i m/y180=y                 (1) 
 
All inputs and outputs in the database also need to be 
validated to remove bad data, outliers, etc. Generally, the 
validation process consists of three steps: 
 

1) Bad data processing to remove unreasonable 
data: 
• For production, the following are considered as 

bad data: a) Any of 30-, 60-, 90- or 180-day 
production that is equal to or less than 0; and, b) 
The 60-day cumulative liquid production is 
smaller than or equal to the 30-day cumulative 
liquid production, the 90-day production is 
smaller than or equal to the 60-day production, 
etc. 

• There is no bad data processing for the Location 
subsystem. 

• For the Completion subsystem, bad data mean 
wells with incomplete completion data and wells 
with zero feet of perforations and/or zero number 
of holes. 

• For the Fracturing subsystem, bad data mean 
wells with incomplete slurry/sand/pad volumes. 

2) Outlier processing using a Box and Whisker 
test [4]. Outliers are points that are unusually too 
large or too small. A Box and Whisker test is usually 
stated in terms of first and third quartiles and an 

inter-quartile range. The first and third quartiles, 
Q(0.25) and Q(0.75), contain 25% and 75% of the 
data, respectively. The inter-quartile range, IQR, is 
the difference between the third and first quartiles; 
hence, IQR contains 50% of the data between the first 
and third quartiles. Any datum that is more than 
1.5IQR above the third quartile or more than 1.5IQR 
below the first quartile is considered an outlier.  
3) Tolerance limit processing [4]. If a datum lies 
in ]σk+m,σk-m[ , then it is considered good; 
otherwise, it is rejected. k is determined such that we 
have 95% confidence that the given limits contain at 
least 95% of the available data. Note that depending 
on the number of remaining wells after Step (2), k in 
this step may be different for each parameter. 

 
The production data were validated first. Wells with 
invalid production data were removed from further 
consideration because if the production data of a well 
were not valid then that well cannot be used by any 
subsystem. Next, the inputs to Location, Completion and 
Fracturing subsystems were validated independently, and 
for each subsystem the wells with valid production data 
were partitioned into two groups: 

 Valid wells, which have valid inputs for the current 
subsystem (but may not be valid for the other two 
subsystems); and, 

 Invalid wells, which do not have valid inputs for the 
current subsystem (but may be valid for another 
subsystem). These wells will be removed from 
further consideration in that subsystem. 

Once the three valid well sets for the three subsystems 
were obtained, they were further partitioned into two 
groups: 

 Common wells, which are the common set of wells 
from the three valid well sets. The common wells 
were used in both training and testing of the five 
forecasters. 

 Extra wells, which are the remaining wells in the 
valid well sets for Location after removing the 
common wells. Generally, extra wells for the three 
subsystems were different. They were used in 
training of the Location subsystem, but not in testing. 

For example, if valid wells for Location are {1, 2, 3, 5}, 
valid wells for Completion are {1, 2, 3, 4}, and valid 
wells for Fracturing are {2, 3, 5, 6}, then the common 
wells are {2, 3}, and extra wells for Location are {1, 5}. 
 
2.2. Multi-system architecture 
Each forecaster consists of three subsystems, as shown in 
Fig. 4. Input parameters for the Location subsystem are 
the X and Y coordinates of a well. The Completion 
subsystem uses total feet of perforations in each zone, 
total number of holes in each zone, permeability in each 
zone and the total number of stages. The inputs to the 
Fracturing subsystem are the total Pad, Sand and Slurry 
volumes for each well. Depending on the input type, 
different subsystems may use different computational 
methods (e.g., fuzzy logic systems (FLSs), artificial 
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neural networks, linear regression, etc) to model its 
behavior. Note that in our approach each subsystem is 
constructed independent of each other without 
considering the methods and outputs of other subsystems. 
Once the three subsystems are constructed, their outputs 
are combined using a linear (arithmetic) or nonlinear 
(interval weighted) average. 
 
2.2.1. The Location Subsystem 
The Location subsystem has two inputs: X and Y 
coordinates of each well. There are several different 
methods that can be use to represent the coordinate 
information, e.g., kriging, inverse distance weighting 
(IDW) [8], nearest neighbors, etc. The basic ideas of these 
methods are similar. In this paper the IDW method was 
used for its simplicity. 
  
The generic equation for IDW is 

∑ )k(w
∑ )k(w)k(y

=y )k(n
1=i i

)k(n
1=i iik

L   (2)   

where k
Ly  is the estimated liquid production (from the 

Location subsystem only) of the kth well, )k(yi is the 
production of its ith neighbor, which is included in the 
training dataset, and )k(wi  is the weight for that 
neighbor. In our approach )k(n is the number of 
neighbors within a certain radius, r. Note that )k(n  may 
vary from well to well. If all neighbors have distances 
larger than r, then k

Ly  is set equal to the production of 
the nearest neighbor, no matter how far away it is.  
The general strategy for constructing )k(wi  is to assign 
larger weights to nearby neighbors and smaller weights to 
far away neighbors. Particularly, in this paper 
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where )k(di  is the distance between the ith well and the 
kth well, and β is a positive constant. Observe that there 
are only two parameters, β and r, to be optimized in the 
Location subsystem. 
 
2.2.2. The Completion Subsystem 
Three parameters, the total feet of perforations, the total 
number of holes, and the number of stages, were used in 
the Completion subsystem; however, they were not used 
directly. Because the perforations were performed in 
different zones, whereas each zone has different 
permeability (porosity) and hence different influence to 
the post-fracturing response, the zonal permeabilities 
were used to weight the inputs. The actual inputs to the 
Completion subsystem were the permeability weighted 
total feet of perforations ( f ), the permeability weighted 
total number of holes ( h ), and the total stage number 

( h ), i.e.3, 

 i

13

1=i
if∑p=f     (4) 

 i

13

1=i
ih∑p=h     (5) 

 i

13

1=i
s∑=s      (6) 

where 13 is the total number of zones, if is the feet of 
perforations in Zone i, ih is the number of holes in Zone 
i, and ip is the permeability of Zone i. Note that the total 
stage number is not weighted. 
 
The Completion subsystem was implemented by a FLS 
with rules in the form of: 
R :  IF   f   is F  ,  h  is H , and  s  is S , THEN  

cy   is  y . 
where F , H  and S are fuzzy sets, and y is a crisp 
number. Four4 Gaussian membership functions (MFs) 
were used for each of f and h, and one s-shaped MF was 
used for s. Consequently, there were a total of 16 rules. 
Because each Gaussian MF and s-shaped MF is 
completely determined by two parameters, there were 
(2×4) + (2×4) + (2×1) = 18 parameters for the MFs and 
16 parameters for the consequents, i.e., a total of 34 
parameters need to be optimized for the Completion 
subsystem. Note that the f, h and s domains may be 
partitioned more finely to achieve better performance; 
however, the number of parameters to be tuned increases 
rapidly. 
 
2.2.3. The Fracturing Subsystem 
Each fracturing job was completed in several stages. The 
total pad, slurry and sand volumes from all stages were 
used as inputs to the Fracturing subsystem. A FLS was 
also used to construct the fracturing subsystem, and its 
rules were in the form of: 
R :  IF  pad  is P and  slurry  is  Sl  and  sand  
is  Sa , THEN Fy  is y . 
where P, Sl and Sa are fuzzy sets, and y is a crisp number. 
Three Gaussian MFs were used for the total sand volume, 
and two Gaussian MFs were used for the total slurry 
volume and total pad volume. Consequently, there were a 
total of 2×3+2×2×2+3×2×2 = 26 parameters to be 
optimized. 
 
2.3 Optimization 
The outputs of the three subsystems can be combined 
using different methods. Two methods are considered in 
this paper: a linear arithmetic average (AA) and a non-
linear method called interval weighted average (IWA) [7]. 

                                                           
3 f , h and s can be normalized to the [0, 1] interval so that linguistic descriptions 
can be assigned to their membership functions, e.g., small, large, etc; however, 
whether or not f , h and s are normalized will not change the prediction 
performance, whereas the normalization takes extra time. So, they are not 
normalized in this paper. 
4 The numbers of MFs for Completion and Fracturing subsystems were obtained 
by trial and error. 
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These weights, as well as the parameters of the three 
subsystems, were optimized simultaneously using 
Simulated Annealing [6].  
The objective function of simulated annealing was the 
sum of the squared forecasting errors. Let iy  be the 

actual 180-day liquid production of Well i , and p
iy be 

the prediction. Then, the objective function is 

 ∑ )y-y(=J
N

1=i

2p
ii           (7) 

where N is the number of training examples. The change 
of J with respect to the number of iterations is shown in 
Fig. 5. It converges as the number of iterations increases. 
 
3. Results 
The prediction performance was evaluated based on the 
number of wells whose forecasted 180-days liquid 
production is outside the ±30% and ±20% error bound 
and the mean-squared errors. Figs. 6 and 7 show the 
performance of the proposed approach for wells fractured 
by two different service companies, Vendor A and 
Vendor B, respectively. These companies used different 
fracturing methodologies and cannot be predicted using a 
single forecaster. 
The top-left figures in Figs. 6 and 7 show the 
performances of baseline linear regression models. Their 
inputs was a 8-dimensional vector, which is a 
combination of the inputs to the three subsystems, i.e., x 
and y coordinates, permeability weighted total feet of 
perforations, permeability weighted total number of holes, 
total stage number, total pad/slurry/sand volumes, and the 
output is the average of the five forecasters. Observe that 
many predictions were out of the 30% error bound. This 
is not surprising because it does not seem reasonable to 
model a complex fracturing process using a simple linear 
regression model. 
The top-right figures in Figs. 6 and 7 show the 
performance of the multi-system approach, where the 
three subsystems were combined using an arithmetic 
average (AA) without differential correction (DC). 
Observe that this approach dramatically outperformed the 
linear regression model; however, the mean squared error 
was still large. 
The bottom-left figures of Fig. 6 and 7 show the results 
when AA was used to combine the three subsystems and 
DC was also implemented. Observe that this approach 
outperformed the two previous methods in terms of both 
the number of wells outside accuracy bounds and the 
mean squared errors. 
Finally, the bottom-right figures of Fig. 6 and 7 show the 
results when the interval weighted average was used to 
combine the three subsystems and DC was also 
implemented. Observe that it gave the best performance 
among the four approaches, i.e., both the number of wells 
outside the accuracy bounds and the mean squared errors 
were the smallest. This approach can not only follow the 
trend of values, something which linear regression cannot 
even do, but also give predictions within the 30% error 
band for more than 96% of the wells in our database and 

within the 20% error band for over 80% of the wells. 
 
In summary, the main advantages of the proposed 
approach include: 
• Flexibility. According to the form of the inputs, each 

subsystem can be constructed in its own way, and 
different subsystems may use different processing 
methods, e.g. fuzzy logic systems, artificial neural 
networks, decision trees, linear regressions, etc. 

• Utilization of the redundancy in the inputs to improve 
performance. By redundancy it meant that some 
inputs may be related to other inputs, e.g., the 
injected volumes should be partially dependent on the 
feet of perforations and number of holes in each 
zone. The sub-systems approach reduces the 
redundancy in each sub-system, but the full system 
does utilize the redundancy in the inputs. Moreover, 
this approach reduces the “curse of dimensionality.” 

• Easiness to incorporate expert rules. Because each 
subsystem has only a few inputs, people can 
understand it and give guidelines for its rules. 

• Easiness to handle missing values. If a single full 
system is constructed using all inputs, a missing 
value in a data entry usually means that data entry 
cannot be used, or the missing value must be 
estimated. On the other hand, in our approach a 
missing value only affects one subsystem. 

 
4. Conclusion 
A two-stage multi-system architecture has been proposed 
in this paper to predict the 180-day cumulative liquid 
productions in a tight oil reservoir. This data-driven 
forecasting system achieved satisfactory prediction 
accuracy given the relatively small training data size and 
the complexity of the problem. The forecaster constructed 
in this paper is part of our ongoing work on post-
fracturing response optimization where the forecaster is 
used to estimate the performance of a given fracturing 
design during the optimization process. The fracturing 
optimization part of our work will be reported in a future 
publication.   
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Fig. 6. Forecasting of 180-day cumulative liquid production for wells fractured by Vendor A. 
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Fig. 7. Forecasting of 180-day cumulative liquid production for wells fractured by Vendor B. 

 
 
 


