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Abstract
Differentiable neural computer (DNC) has demonstrated remarkable capabilities in solving complex problems. In this

paper, we propose to stack an enhanced version of differentiable neural computer together to extend its learning capa-

bilities. Firstly, we give an intuitive interpretation of DNC to explain the architectural essence and demonstrate the stacking

feasibility by contrasting it with the conventional recurrent neural network. Secondly, the architecture of stacked DNCs is

proposed and modified for electroencephalogram (EEG) data analysis. We substitute the original Long Short-Term

Memory network controller by a recurrent convolutional network controller and adjust the memory accessing structures for

processing EEG topographic data. Thirdly, the practicability of our proposed model is verified by an open-sourced EEG

dataset with the highest average accuracy achieved; then after fine-tuning the parameters, we show the minimal mean error

obtained on a proprietary EEG dataset. Finally, by analyzing the behavioral characteristics of the trained stacked DNCs

model, we highlight the suitableness and potential of utilizing stacked DNCs in EEG signal processing.

Keywords Deep Learning (DL) � Differentiable neural computer (DNC) � Electroencephalogram (EEG) �
Stacked DNCs

1 Introduction

The motivation for the invention of differentiable neural

computer (DNC) [1] is natural from the neurobiological

perspective. It is exemplified by the fact that human

beings’ high cognitive level is greatly attributed to the

brain’s memory mechanism, based on which tasks from

simple recall to complex reasoning could be well per-

formed. It is believed that the new memory-augmented

architecture which has already demonstrated its remarkable

capability in solving complex tasks would lead to new

horizons [2]. Hence, it is worthwhile to investigate its

performance in variant research fields like electroen-

cephalogram (EEG) data analysis.
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However, EEG data analysis is often quite challenging

because of factors such as high artifact pending, cross-

subject variance, low signal-to-noise ratio[3–5]. Due to the

neurophysiological traits or physical constraints, these

adversities are inevitable and impact the selection of the

appropriate models in achieving highly accurate results.

Hence, it is wise to have a good understanding of DNC to

properly exert its potential from an applicational perspec-

tive. When tracing the evolution of DNC, from its ancestor

the Neural Turing machine (NTM) [6] to its current state, it

can be well understood that the interaction with memory is

the most critical and most complex part of the whole sys-

tem. It is best to begin with the approach of memory

interaction in order to have an essential interpretation of

DNC.

In this paper, we investigate the operation and memory

mechanism of DNC and based on these studies the stacked

DNCs architecture is proposed. Our contributions lie in

several folds as numerated: (1) We give an intuitive

interpretation about the way of memory augmentation in

DNC, which simplifies the description and inspires the

extension. (2) By analogy to multilayer Long Short-Term

Memory (M-LSTM), we propose to stack multiple DNCs

together to promote the learning capabilities. (3) We

enhance the internal structure and operation of DNC in

accordance with the paradigm of the EEG data analysis. (4)

We properly illustrate the operation of trained stacked

DNCs to highlight its’ suitability to analyze EEG data.

The rest of the paper is organized as follows. First based

on the interpretation of memory mechanism and by com-

paring with M-LSTM, we stack multiple DNCs together to

form a new structure. Then we introduce the paradigm and

specialties of EEG data analysis and detail several modi-

fications to the original structure following the instantiation

of the stacked DNCs architecture. In the experiment sec-

tion, we demonstrate the elegance when applying stacked

DNCs on two EEG datasets by comparing it with other

methods. Finally, a discussion is given about the trained

stacked DNCs’ behavior which is probed by a white noise

mono-topography image to inspire a better understanding

of the proposed network and its effectiveness for EEG data

analysis.

2 Interpretation

Recurrent neural network (RNN), especially the cell type

of LSTM, is currently considered the most successful

model in utilizing memory mechanism [7–9]. Unlike plain

multilayer perceptron (MLP) network, the recurrent struc-

ture endows it with the ability to recall or correlate the past

input with the current one. The RNN and its unfolding

paradigm across time axis are illustrated as in Fig. 1a.

Generally during the recurrent procedures, hidden state at

time t � 1 is concatenated to the input at next time step t

for further processing. Usually, there is an assumption of

existence in temporal correlation between successive

inputs, which is also the motivation to apply RNN. How-

ever, it might not be always the case, like in the instance of

the copy task example [6]. There the authors believe what

should be emphasized is not the temporal pattern in data,

but a way of programming.

However, due to the characteristic of the RNN structure

emphasized in Fig. 1b, the direct link between adjacent

time steps will unavoidably incur temporal couplings. The

advantage is it can capture the correlation if it does exist

for the problem being modeled. The drawback is that such

a tight coupling can be futile in some situations. For

instance, if the coupling to the current state is some hidden

state of several time steps latency, it is probably faded

away when passing through these links up until its current

state.

By the introduction of LSTM, we know such a restric-

tion is to some extent relieved. However, even a shallow

reflection of human’s cognitive processes can reveal the

fact that information or experiences obtained a long time

ago, are probably involved in the problem currently being

pondered. Hence, a natural question to ask is whether such

a temporal coupling (weak in the case of LSTM) in tradi-

tional RNN can be mitigated or even eliminated, but also

re-acquired when necessary.

As a comparison, the DNC and its equivalent unfolded

structure are given as in Fig. 1c. Compared with RNN, a

matrix or cell block exists acting as an external memory

(indicated by the disks in the figure) which characterizes

the specialty of the architecture. Intuitively speaking, the

common link between successive unfolded hidden layers is

squeezed by memory sitting in-between. There exist

mechanisms of reading from and writing to the memory at

each time step t. Such a modification incurs the complexity

from spatial perspective; however, the temporal depen-

dency is dramatically reduced due to memory access

methods. The links and interactions between unfolded

hidden layers of DNC’s controller are shown as in Fig. 1d,

by means of which coupling can be eliminated and

regained when necessary, especially when DNC is tacti-

cally trained.

Based on the interpretation and comparison above, as

for DNC, an intuitive interpretation could be stated that it is

targeted to solve the temporal coupling in traditional RNN.

Such an explanation is preferable than some exceedingly

general ones. One way is that such an insight indicates any

method which can modulate the temporal coupling in RNN

can be put into consideration. On the other hand, from

application perspective, problems with an implicit depen-

dence between long-distance inputs, or weekly dependence
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between consecutive inputs, can be considered to utilize

DNC for modeling.

It is now quite natural to stack multiple DNCs together,

since such an arrangement just resembles the multilayer

RNN or LSTM network which are ubiquitous in deep

learning applications [7–9]. A direct comparison is given

below as in Fig. 2. The reason that in Fig. 2 for stacked

DNCs the recurrent path and external memory are both in

dotted lines is to emphasize they are actually internal to

DNC not external. The current drawing is for analogous

purpose.

There are several advantages to consider stacking DNC

together. The most obvious one is by doing so that the scale

of hyperparameters gets increased. Though currently the

correspondence between complexity of the problem with

the magnitude of parameters of the model is still unavail-

able, it is believed one factor contributing to the success of

DL is the sufficient large parameters to form a potentially

large representation space. The second benefit is via

stacking we can construct a more powerful heterogeneous

system. As mentioned in the original paper, the controller

of DNC is free to choose. For multilayer LSTM, although

the configuration of each layer can be different from each

other, practice from implementation tends to put

Fig. 1 a RNN and its equivalent unfolded version along the time axis,

b Demonstration of tight temporal coupling in RNN, c equivalence of
unfolded DNC across time axis, d demonstration of temporal

decoupling by augmented memory. Note x, y and h are for input,

output and hidden state, respectively. We use capital letter U, V and

W to denote weight matrices. For denotation hm? in d, the question

mark indicates due to asynchronous operation, it is usually not known

the hidden state at which step involved in the current operation (latent

time step)

Fig. 2 Comparison of multilayered LSTM and DNC
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constraints on such flexibility and always requires

homogenous layers. But the configurations and operations

of DNCs can be independent of each other, which means

the stacked DNCs in Fig. 2 is a more flexible heteroge-

neous system. Actually, in the application part, the two

DNCs we stacked together are slightly different from one

another, but by cooperation harmonically, they can form a

more capable system than functioning alone.

3 Architecture

Brain research is among the most significant researches

currently [10], and one of the promising applications is

mind state monitoring via electroencephalogram (EEG)

signals captured by noninvasive sensors. The most critical

problem here is EEG signals are usually immensely com-

plicated, causing the design of feature-extraction procedure

to be very difficult. The general neural networks, particu-

larly the deep version, has proven their ability for

auto feature extraction [11]. It is understood such capa-

bility is underpinned by the weights being learnt. Some-

times not only the quality but also the quantity of weights

decides the performance of the model, and that is why

sometimes these parameters are called hyperparameters.

For EEG signals, it is quite natural to try memory network

since the extra memory mechanism (read-heads and write-

heads) to some extent adds to the number of weights to

learn and motivates us to stack multiple DNCs together.

3.1 Computation graph

For EEG signal processing, usually a series of EEG seg-

ments are related to a certain mind state or cognitive

phenomenon and treated by associating pairs. By terming

them input and label respectively to free from the neuro-

logical context, the problem formed in EEG domain is

delivered to the machine learning domain to solve. To

regard it as time series data and model it via RNN, it is

obvious of a many-to-one mapping paradigm. The original

DNC structure in [1] is of the many-to-many type with a

dependency graph drawn as in Fig. 3a. So, the first step for

EEG application is to deduce the formula for the corre-

sponding many-to-one mapping.

We take the same symbols as in [1], and there for many-

to-many mapping, the computation graph is governed by

the following formulas:

vt ¼ xt; r
1
t�1; . . .; r

R
t�1

� �
ð1Þ

tt ¼ Wy h1t ; . . .; h
L
t

� �
ð2Þ

nt ¼ Wn h1t ; . . .; h
L
t

� �
ð3Þ

yt ¼ tt þWr r1t ; . . .; r
R
t

� �
ð4Þ

We leave other formulas like the ones governing the

update of the controller network to the next section; for

instance, how to compute hit from vt and hi�1
t , etc. We only

draw a simplified version as in Fig. 3a correspondingly for

demonstration.

Since for many-to-one mapping the learning signal only

exists for the last time step, so tt is only necessary for the

last time step T . This reasoning leads to the following

formulas (5, 6) and the corresponding computation graph

as in Fig. 3b.

nt ¼ Wn h1t ; . . .; h
L
t

� �
ð5Þ

yT ¼ Wy h1T ; . . .; h
L
T

� �
þWr r1T ; . . .; r

R
T

� �
ð6Þ

3.2 Controller network

The next concern of designing a stacked DNCs for EEG

data analysis lies in the variant input formats that the

research community adopts. As in Fig. 4, EEG data can be

treated in time domain, frequency domain, or spatial

domain depending on the underlying models or algorithms.

The most natural way to present EEG data is taking the

waveform format from time domain. This is the way most

EEG acquisition devices use for storing raw data. However,

only with trained eyes and in some special cases, otherwise

it is hard to glean information or draw useful conclusion

directly from the waveform data [12]. Nevertheless, there

is work in directly processing waveform data at the

advantage of avoiding intensive preprocessing or frequency

domain transform [13].

Frequency domain is conventionally where the EEG

analysis is performed [14, 15]. EEG signal oscillation

along the time axis is generally the reflection of the

underlying brain activities, but noises caused by impedance

varies and other factors are unavoidable. By scarifying the

time information, some features like frequency distribution

and power spectrum are more eminent than the wave bursts

or oscillation in time domain. Since transforming from

time domain to frequency domain requires EEG data last-

ing for some duration being processed, it means some

unusual variance is discarded at the same time. Based on

these global and stable features, more sophisticated

biomarkers can be achieved [16].

To study brain function and corresponding connections

with different vortex lobes, especially brain activities under

some specially designed or induced cognitive process, a

convenient way is to examine EEG power alterations of

frequency components over spatial domain, aka working
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with EEG topography [17–19]. It is well known that the

success of the deep neural network to some extent attri-

butes to the utilization of convolutional operation itera-

tively to exploit the local structures of input data.

Following this criterion, it is obvious the topographical

format for EEG data representation is the most suit-

able way to work with when considering deep learning. So,

in the following we stick to EEG topography to further

tailor the network structure.

The relation between different representations or for-

mats of EEG data is also shown in Fig. 4. Note that the

transformations are irreversible. In practice the research

community puts emphasis mainly on specific frequency

bands, aka theta, alpha, beta, respectively, for unveiling or

discussing brain activities and functionalities. When com-

pared with image recognition, the topographical maps of

each band added together are identical to color images.

Because of this, it is quite direct to apply available tactics

in deep learning for processing EEG topographies.

However, in [1], the controller is constructed from a

traditional LSTM network which may fail to merit such a

spatial correlation between channel values. Inspired by the

work in [20], the structure of a recurrent convolutional

network is put into consideration here. To effectively blend

convolutional operation with recurrent operation and also

from computation efficiency perspective, a modified ver-

sion of gated recurrent unit (GRU) governed by the

Fig. 3 a Computation graph dependency for many-to-many paradigm of DNC, b computation graph dependency for many-to-one paradigm of

DNC

Fig. 4 EEG data format a waveform data in time domain, b power

spectrum in frequency domain (transformation of segmented wave-

form data), c EEG topographies in spatial domain (mapped from

power values of same sub-bands of multiple channels). The transfor-

mation from a to b is via Fourier transform for each segment. The

transformation from b to c is via functionality provided by EEGLab

(https://sccn.ucsd.edu/eeglab/index.php). It consists of extrapolation

and interpolation based on the available power spectrum to cover the

whole scalp meanwhile involving projection from 3D to 2D

Neural Computing and Applications (2020) 32:7611–7621 7615
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following formulas is specially designed as the building

block for controller network:

vt ¼ concat It; St�1;Mt�1ð Þ ð7Þ
zt ¼ r conv vt;Wzð Þð Þ ð8Þ
rt ¼ r conv vt;Wrð Þ þ 1:0ð Þ ð9Þ
ct ¼ tanh conv vt;Wið Þð Þ ð10Þ
ht ¼ ht�1 � rt þ ct � zt ð11Þ

In (7), It denotes the current input to the network. St�1 is

the state of the controller network and Mt�1 is the related

memory information at last time step. For addressing

similarity, it is preferable to compare between normalized

vectors of which no component supremely dominates, so

all the activation functions chosen in (8–10) are either

sigmoid or hyper-tangent functions. The design of the

controller network complying with the above formulas is

demonstrated as in Fig. 5a. Overall the controller network

can be regarded as a convolutional gated recurrent cell

network (Conv.GRU).

3.3 External memory

The last consideration of our proposed architecture lies in

the memory layout. The external memory in [1] is in the

matrix form of which each row represents a context or

problem-dependent granular vector from the internal state

perspective, while the number of rows represents the

capacity. Since we have to work with topographies which

results in all intermediate processing representations

essentially being 2D, so to cater for the requirement of

storing the internal states into the memory in row vector

form, a conversion between 1D and 2D layouts is specially

designed for the whole structure to work as expected as in

Fig. 5b. It is pointed out here it is not the optimal way for

exploring the potential of stacked DNCs model, but we will

consider a more appropriate version in future work.

3.4 Network architecture

The overall architecture of the network is shown in Fig. 6.

In this paper, only two DNCs are stacked together, but

there is no constraint on how many DNCs are involved. A

maximal pooling layer is also introduced between con-

secutive DNCs to reduce the dimension, which is a

stereotypical treatment in deep neural networks. Since

DNC is a general architecture, for instance, the size of

external memory is still problem-depended, so the details

of configuration are delayed to the experiment sec-

tion. However, it is always the architecture as in Fig. 6 we

take to analyze different EEG datasets.

4 Experiments

Two EEG datasets are made use of to justify the feasibility

and elegance of the proposed stacked DNCs. One is an

open-sourced EEG dataset indexing the load of mind [19];

another is our proprietary EEG dataset captured from a

sustained-attention driving task [21].

4.1 EEG mind load dataset

To validate the feasibility of our proposed model, the open-

sourced data in [19] will be utilized. It is EEG data cap-

tured during an experiment which is to measure mind load

or cognitive capacity via working memory as in Fig. 7. The

test is to have test subjects decide whether a randomly

showing letter is belonging to the previously appearing

randomly generated letter set or not. For fixed memorizing

Fig. 5 a Controller network constituted by recurrent convolutional

network; Interactions with memory is substantially simplified just for

indication, b specially tailored DNC: a recurrent convolutional

structure substituted the original LSTM; feature maps are flattened

and concatenated into vectors to be stored into the external memory
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period and retaining period, the mind load is regulated by

the size of the letter set, or how many letters are contained

in the set. The postulate of the experiment is that brain

activities could differ under different cognitive loads. A

precaution for low performance of test subjects’ partici-

pation is by only counting the correct experiment trials.

EEG is recorded along the process simultaneously and

continuously. Detail of the experiment itself and data

capturing specification can be referred to [19].

As in Fig. 7, the duration from display of the randomly

generated test letter set to test subjects’ respond is called a

trial. The EEG data lasting from t ¼ 1 to t ¼ 3500 ms are

taken as input data, which is segmented into 7 consecutive

pieces with each equal to 500 ms length. For each segment,

fast Fourier transform (FFT) is performed on the time

series data to calculate the power spectrum of the signal.

The average power for EEG sub-bands theta, alpha and

beta is put into consideration here. We take the same

approach as in [19] by mapping the spectrum components

into topographies. The transformation procedure is given in

Fig. 4. The size of test set (aka how many letters) is treated

as mind load label.

To evaluate the performance by comparing different

models, no discrepant treatment is taken compared with the

original paper. There were 13 subjects who participated in

the experiment. During data preparation, one subject is

excluded for each fold. The trials of all left subjects are

combined together and shuffled. Then the number of trials

which is equal to the excluded subject in the current fold is

picked out for cross-validation, and all the remains are used

for training. This process is repeated for all the test

subjects.

We trained the model with the configuration as in

Table 1. The batch number is set to 10 percent of training

samples which are about 2250. The training process was

noticed being convergent after 5 epochs, but the whole

duration lasts for 40 epochs. We also take the early stop

strategy to prevent overfitting as in the original paper. The

statistics for testing and comparison are given in Table 2.

In Table 2, the first three methods are all from the

original paper [19]. They are convolutional network,

recurrent network with LSTM cell, and recurrent convo-

lutional network, respectively. ‘‘Mix’’ means features

extracted by conventional network are fed into recurrent

network for final inference. It also gains the name of

recurrent-conventional network, which is of better perfor-

mance over other methods in [19]. The results, however,

are still subject dependent.

It is eminent that stacked DNCs achieve the best average

accuracy compared with other methods. Though it is not

the state-of-the-art results for all folds, we believe that the

less optimal result is due to some factors such as we only

explore a portion of parameter space when seeking the

optimal one. With more computation resource and effort,

there is still some margin to which the result could be

improved.

4.2 EEG sustained-attention dataset

Although the mind load dataset is made open-sourced, it is

just in the intermediate processed form of the original EEG

signal. Namely, they are frequency components of three

bands after Fourier transformation to the original prepro-

cessed waveform data. Sometimes, iterations between try-

ing different frequency band composition and test results

comparison need to be performed. Therefore, it is more

suitable to use an EEG dataset from the very original form

to thoroughly evaluate a proposed model. As a result, we

Fig. 6 Overall structure of stacked DNCs; Note the maximum

pooling layer between consecutive DNCs

Fig. 7 Mind load via working memory experiment paradigm

Table 1 Configurations of stacked DNCs for mind load EEG data

analysis

Controller Memory

DNC1

Structure RNN Slot size 16

Cell type Conv. GRU Word size 1024

Filter size 5 9 5 Read head 4

Feature map 12 Write head 1

DNC2

Structure RNN Slot size 16

Cell type Conv. GRU Word size 256

Filter size 5 9 5 Read head 4

Feature map 12 Write head 1
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will use a sustained-attention EEG dataset captured during

an experiment conducted by us to test the proposed mod-

el’s performance.

The scenario of the experiment is shown in Fig. 8. The

aim of the experiment is to study the relation between

fatigue and driving performance, based on the postulate

that low vigilance leads to significant latency to various

occurrences during driving. During the experiment,

recruited test subjects with driver license participated in a

simulated driving conducted in a laboratory environment.

Subjects would operate a converted car and react to the

driving scenario showing before them in giant chained

screens. Usually, the car would be cruising along one lane

of the highway, then a deliberate perturbation to the car

was introduced (deviation onset) and the consequence of

car deviation was also synchronized to the display on the

screens. The test subjects were instructed to adjust the

steering wheel (response onset) to have the car back to the

original cruising lane. It is manifest that short reaction time

corresponds to alert mind state, while long reaction time

corresponds to the mind state of fatigue. The related ter-

minologies are also indicated as in Fig. 8, and a detailed

description of the experiment is also contained in [21, 22].

For data preprocessing, the procedures resemble the

treatment as in [22]. However, in [22], it works with graphs

as shown in Fig. 4b, after manually adjusting the channel

sequence for x-axis. As mentioned above, in order to utilize

neural networks to automatically explore the spatial rela-

tionship between channel locations, it is preferred to work

with topographies as in Fig. 4c. Since the mapping from

Fig. 4b and c requires interpolation and extrapolation of

original channel values, in this paper all the channels are

retained to ensure the interpolating or extrapolating accu-

racies. It is still common to select some channels according

to experience and knowledge to analyze as in [22]. The less

picky on EEG data means more information can be kept

during transformation. The topographical data preparation

procedures are identical to the first experiment above.

For simplicity, the dataset is depicted abstractly in a

machine learning context. The preprocessed multichannel

waveform EEG data captured during the baseline period

(600 ms immediate before deviation onset) after transfor-

mation is denoted by Xi. The corresponding reaction time

(RT) used to measure the vigilance of test subjects is

denoted by yi. Each trial corresponds to a sample pair

Xi; yið Þ. We treat the problem as a regression to predict RT

yi given baseline data Xi. EEG data of five subjects were

made use of from balanced-sample perspective.

We take the leave-one-subject-out method as in the first

experiment. For a given test subject, the trials from other

subjects are used to train the model, and trials for the

specified subject are used for testing. With the configura-

tion as in Table 3, the model takes around 2.5% of the total

training samples as batch number trained for 500 iterations.

The initial learning rate is 0.0001 and decays by a factor

0.8 for every 100 iterations. The model is evaluated five

times for each subject and the averaged root-mean-square

errors (RMSEs) of the predicted RTs are treated as the final

performance indicators.

For comparison, all the models in [19] have been re-

implemented as benchmark methods. The statistics are

shown in the following Table 4. From the table, it is

manifest that the performance achieved by the proposed

stacked DNCs is the best among them all. We also compare

the correlation coefficients between various models; the

values that are overall comparable, which demonstrates the

practicability of the model proposed by us. It is believed by

continuing to fine-tune the parameters, there is still room to

reduce the averaged RMSE, even though the potential of

utilizing the general stacked DNC for EEG signal analysis

is well demonstrated.

Table 2 Mind state classification accuracies for each fold and meansa

Test subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Mean

1D conv 88.3 72.5 93.9 97.5 98.3 98 98.2 100 98.5 94.5 88.5 79.5 45.9 88.7

LSTM 56.7 73.5 92.2 99 99.4 99.5 98.9 100 100 97.7 99 88 59.1 89.5

Mix 88.9 76.5 93.3 99 100 98 100 98.5 99 96.8 96.5 91 46.8 91.1

S-DNC 82.2 75.9 91.5 100 99.5 99.5 98.4 100 98.6 97.3 100 90.4 68.2 92.4

The means (values in bold) are calculated across all subjects’ test accuracies
aPart of the results is directly from [19]

Fig. 8 Paradigm of sustain-attention driving test
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5 Discussion

Neural networks are criticized as black boxes in spite of

their excellent performance. It is helpful to look into the

behavior of the network to have a better understanding of

the underlying working principle or to inspire the designing

of new architectures. In the following, the second EEG

dataset analyzed above, aka the dataset captured during the

sustained-attention task, will be focused to carry on the

discussion.

The experiment is based on the assumption that the

attention of test subjects could not be maintained on the

same level during the whole procedure. To measure the

attention or fatigue during driving (especially to increase

the correlation between attention and reaction time as well

as to exclude other impacting factors), participants only

need to operate the steering wheel in reaction to the lane-

perturbation event and are free from accelerator and brakes

pedals controlling. The setup of the experiment is as in

Fig. 9.

From the design principles and test setup, it is obvious

visuomotor sensory and mind vigilance or attention are key

factors of the physiological or cognitive process of the

subjects during the experiment. For visuomotor sensory,

due to the structure of the brain [23], it is well known that

occipital part will be the most active area [24, 25]. For

vigilance, it is believed the frontal cortex is correlated with

attention variance [26, 27]. Therefore, it is inclined to

expect such priori could be reflected in the trained model.

To inspect the behavior of the stacked DNC after

training with our experimental data, we restore the trained

parameters and input as a series of identical white noise

topography image then observe the manipulated feature

maps to seek whether there exist such correlations. The

reason for choosing white noise image is we want to know

whether for averaged distribution power values, could they

be enhanced or saturated by the network especially for

some local regions. The feature maps are drawn from the

first DNC since it is believed convolutional layers in lower

hierarchy of the neural network tends to extract concrete

features [11], which is a little easier to make the compar-

ison. Four feature maps selected from a total 12 are drawn

in Fig. 10 for demonstration and comparison.

It is interesting to note that feature maps 1 and 2 mainly

focus on the occipital area, probably due to signals of

visuomotor processes and how they should be specifically

captured by the network model [24, 25] for better perfor-

mance. For feature map 3 and 4, they are focusing on the

contralateral frontal part. Since the recruited test subjects

are all right-handed and sustained-attention is highly

involved in the whole process, it makes sense and has some

coincidence with the conclusion as in [26, 27]. So generally

speaking, all these parts that got modulated are in accor-

dance to our expectation.

Based on the above observation, we conclude that

besides asynchronization of recurrence, DNC is also

endowed with some attention or local concentration

mechanism. Complexity is usually an unavoidable topic for

EEG data, plus the limited understanding of cognitive

processes, so it tends to be a hard problem to manually

extract features from EEG data to help interpret the brain’s

functionalities for a specific experimental setup. However,

such a local concentration mechanism of our model can

Table 3 Configurations of stacked DNCs for driving EEG data

analysis

Controller Memory

DNC1

Structure RNN Slot size 32

Cell type Conv. GRU Word size 256

Filter size 5 9 5 Read head 2

Feature map 12 Write head 1

DNC2

Structure RNN Slot size 32

Cell type Conv. GRU Word size 256

Filter size 5 9 5 Read head 2

Feature map 12 Write head 1

Table 4 Comparison of RMSE

by different models
Model Indicator S1 S2 S3 S4 S5 Mean

1D-conv Accuracy 0.369 0.763 0.598 0.557 0.732 0.604a

Corr. Coef. 0.322 0.483 0.610 0.435 0.083 0.387

LSTM Accuracy 0.344 0.943 0.630 0.390 0.733 0.608a

Corr. Coef. 0.434 0.443 0.553 0.462 0.158 0.410

Mix Accuracy 0.383 0.779 0.599 0.552 0.740 0.611a

Corr. Coef. 0.324 0.479 0.600 0.432 0.075 0.382

S-DNC Accuracy 0.380 0.769 0.578 0.485 0.717 0.586a

Corr. Coef. 0.339 0.413 0.472 0.389 0.138 0.350

aMain performance indicators for different models
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effectively select the targeted regions in favor of optimal

result, which in turn unveils which part of brain is more

involved in a specific task than others. Put it together, all

these characteristics of DNC especially the stacked one

reveal the feasibility and promising potentiality to be uti-

lized for EEG data analysis.

Another aspect worthwhile to mention is the way in

which memory gets used. As aforementioned, our modifi-

cation to the memory-related structure is plausible but may

not the optimal way. One difficulty lies in the implemen-

tation of the DNC itself. The original implementation is by

analogous to the modern computer architecture. Although

with succeeded applications to complicated problems,

following the architecture of modern computers especially

the memory part requires two challenges to be solved: how

to decide the address for accessing data and how to eval-

uate the freeness of memory locations. In fact, several

RNNs internally to DNC architecture are designed to cater

for these challenges, but all of these avoidably add to the

complexity of the whole architecture and make the

adjustment or modification to the original memory part

extremely difficult. We consider this in future work to

address the above problems in some ingenious and direct

way in order to drastically reduce the complexity.

6 Conclusion

In this paper, we first compared DNC with the conventional

RNN to highlight its asynchronized memory operation

characteristics. We then proposed to stack an enhanced

version of DNC together based on the intuitive interpre-

tation to expand its representation and learning capabilities.

Following that, we gave a brief illustration of EEG data in

different formats and highlighted our modification to the

internal structure and operation for analyzing EEG topo-

graphical data. By applying instantiations of stacked DNCs

against EEG datasets captured from various experiments,

we showed the best mean results achieved by our model.

We gave a short discussion to emphasize the characteristics

of stacked DNCs’ operation and the potential of utilizing

our proposed architecture on EEG data analysis as well as

future work to make the interaction with memory part more

optimal.
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