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Abstract. Deep learning, including convolutional neural networks
(CNNs), has started finding applications in brain-computer interfaces
(BCIs). However, so far most such approaches focused on BCI classi-
fication problems. This paper extends EEGNet, a 3-layer CNN model
for BCI classification, to BCI regression, and also utilizes a novel spec-
tral meta-learner for regression (SMLR) approach to aggregate multiple
EEGNets for improved performance. Our model uses the power spectral
density (PSD) of EEG signals as the input. Compared with raw EEG
inputs, the PSD inputs can reduce the computational cost significantly,
yet achieve much better regression performance. Experiments on driver
drowsiness estimation from EEG signals demonstrate the outstanding
performance of our approach.
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1 Introduction

Drowsy driving is one of the most important causes of traffic accidents, following
only to alcohol, speeding, and inattention [28]. As a result, it is very important
to monitor the driver’s drowsiness level and take actions accordingly. There have
been many different approaches [1,6,22,29] for doing so, which can be roughly
categorized into two groups:

1. Contactless detection approaches, which do not require the driver to physically
wear any sensors. Their main advantage is the convenience to use. Contactless
detection approaches can be further classified into two categories:
(a) Computer vision based detection approaches, which can be applied to

either the driver or the vehicle.
When applied to the driver, a typical practice is to place some cameras
behind the windshield, which capture the driver’s head in realtime. From
the video we can compute the eye blink frequency [12,21], the percentage
of eye closure (PERCLOS) [11,31], the eye movement [15,16], the head
pose [12,27], etc., which are indicators of drowsiness. The main drawback
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of these approaches is that they can be easily affected by the lighting
condition.
When applied to the vehicle, usually some cameras are used to capture
the relative position of the vehicle in the lane. From lane departure events
we can estimate the driver drowsiness [6,15,29]. The main drawback of
this approach is that it can also be easily affected by lighting and weather,
and it may not work when the lane markers are unclear or missing.

(b) Driver-vehicle interaction based detection approaches, which use various
sensors to measure the driving patterns, e.g., speeding, tailgating, abrupt
braking, inappropriate steering wheel adjustments, etc. [23,29], to infer if
the driver is drowsy.

2. Contact sensor based detection approaches, which require the driver to phys-
ically wear some sensors to measure his/her physiological signals, e.g., elec-
troencephalogram (EEG) [26,34–36], electrocardiography [20,26], electromyo-
graphy [2,19], respiration [30,32], galvanic skin response [5,15], etc. Theoret-
ically, physiological signals are more accurate and reliable drowsiness indica-
tors, as they originate directly from the human body. Their main disadvan-
tages include: (1) the driver’s body movements may introduce artifacts and
noise to the physiological signals, and hence reduce the detection accuracy;
and, (2) the driver may feel uncomfortable to wear such body sensors.

This paper focuses on the contact sensor based detection approaches. More
specifically, we consider EEG-based driver drowsiness detection. The main reason
is that EEG signals, which directly measure the brain state, have the potential
to predict the drowsiness before it reaches a dangerous level. Hence, compared
with other approaches, there is ample time to alert the driver to avoid accidents.

There has been research on using deep learning [17,18] for driver drowsiness
classification. This paper considers regression instead of classification. It makes
the following three contributions:

1. It extends EEGNet [24], a convolutional neural network (CNN) originally
designed for classification problems in brain-computer interface (BCI), to
regression problems.

2. It uses spectral meta-learner for regression (SMLR) [37], an unsupervised
ensemble regression approach, to aggregate multiple EEGNet regression mod-
els for improved performance.

3. Instead of using raw EEG signals as the input to EEGNet, it uses their power
spectral density (PSD) at certain frequencies as the input, which significantly
saves the computational cost, and also improves the regression performance.

The remainder of this paper is organized as follows: Sect. 2 introduces our
proposed EEGNet-PSD-SMLR approach. Section 3 presents the details of a
drowsy driving experiment in a virtual reality (VR) environment, and the per-
formance comparison of EEGNet-PSD-SMLR with several other approaches.
Finally, Sect. 4 draws conclusions and points out a future research direction.
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2 The EEGNet-PSD-SMLR Model

This section introduces our proposed EEGNet-PSD-SMLR model for driver
drowsiness estimation.

2.1 EEGNet for Regression

The CNN regression model used in this paper is modified from the EEGNet
classification model [24], which has demonstrated outstanding performance in
four different BCI applications, i.e., P300 visual-evoked potential, error-related
negativity, movement-related cortical potential, and the sensory motor rhythm.

Denote an EEG epoch as x ∈ R
C×T , where C is the number of channels and

T is the number of time samples (or features) per channel. The EEGNet classifi-
cation and regression architectures are given in Table 1, where N is the number
of classes in classification. Observe that the two architectures are identical for
the first three layers; the only difference occurs at the fourth layer. The EEG-
Net classification architecture uses softmax regression for classification, whereas
the EEGNet regression architecture uses a dense layer followed by an activation
layer for regression. We have tested different activation functions (ReLU, sig-
moid, tanh, and linear), and found linear activation gave the best results. So,
linear activation was adopted in this paper.

Table 1. EEGNet architectures for classification and regression.

Layer Input size Operation Output size Number of parameters

1 C × T 16×Conv1D(C,1) 16× 1× T 16C + 16

16× 1× T BatchNorm 16× 1× T 32

16× 1× T Reshape 1× 16× T

1× 16× T Dropout(0.25) 1× 16× T

2 1× 16× T 4×Conv2D(2,32) 4× 16× T 4× 2× 32 + 4 = 260

4× 16× T BatchNorm 4× 16× T 8

4× 16× T Maxpool2d(2,4) 4× 8× T/4

4× 8× T/4 Dropout(0.25) 4× 8× T/4

3 4× 8× T/4 4×Conv2D(8,4) 4× 8× T/4 4× 4× 8× 4 + 4 = 516

4× 8× T/4 BatchNorm 4× 8× T/4 8

4× 8× T/4 Maxpool2d(2,4) 4× 4× T/16

4× 4× T/16 Dropout(0.25) 4× 4× T/16

4 (Class.) 4× 4× T/16 Softmax Regression N TN +N

4 (Regr.) 4× 4× T/16 Dense 1 T or T + 1

1 Activation 1 1

Total Classification 16C +N(T + 1) + 840

Regression 16C + T + 841
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2.2 SMLR for EEGNet Regression Model Aggregation

It’s well-known that neural network models can be easily trapped at local min-
ima. Since the EEGNet regression model is compact and can be trained quickly,
we can use ensemble learning to increase its robustness. More specifically, we
train 10 different EEGNet regression models by bootstrapping, and then use
SMLR [37] to aggregate them.

Consider a regression problem with a continuous value input space X and
a continuous value output space Y. Assume there are n unlabeled samples,
{xj}n

j=1, with unknown true outputs {yj}n
j=1, and m base regression models,

{fi}m
i=1. The ith regression model’s prediction for xj is fi(xj). The goal of SMLR

is to accurately estimate yj by optimally combining {fi(xj)}m
i=1. As shown in

Algorithm 1, SMLR consists of two steps: (1) estimate the accuracy of each base
regression model; (2) select and combine the strong base regression models.

Algorithm 1: The SMLR algorithm [37].
Input: n unlabeled samples, {xj}n

j=1;
m base regression models, {fi}m

i=1.
Output: The n estimated outputs, {f(xj)}n

j=1.
Apply each fi to {xj}n

j=1 to obtain the estimates {fi(xj)}n
j=1 and assemble

them into a vector fi(x);
Compute the covariance matrix Q ∈ R

m×m of {fi(x)}m
i=1;

Compute the first leading eigenvector, µ0, of Q;
Perform k-means clustering (k = 3) on the absolute values of the elements of µ0;
Identify S, the subset of the strong regression models, as those belong to the
cluster with the maximum centroid;

Return f(xj) =
∑

i∈S µ0,ifi(xj)∑
i∈S µ0,i

, j = 1, ..., n.

3 Experiment and Results

3.1 Dataset

The experiment setup used in this paper was identical to that in [34,37]. Six-
teen healthy subjects with normal or corrected-to-normal vision were recruited
to participant in a sustained-attention driving experiment [7,8], which consisted
of a real vehicle mounted on a motion platform with six degrees of freedom
immersed in a 360-degree VR scene. Each subject performed the experiment
for about 60–90 min in the afternoon when the circadian rhythm of sleepiness
reached its peak. To induce drowsiness during driving, the VR scene simulated
monotonous driving at 100 km/h on a straight and empty highway. During the
experiment, random lane-departure events were introduced every 5–10 s, and
participants were instructed to steer the vehicle to compensate for them imme-
diately. Their response time was recorded and later converted to a drowsiness
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index (see the next subsection), as research has shown that it has strong corre-
lation with fatigue [21]. Participants’ scalp EEG signals were recorded using a
500 Hz 32-channel Neuroscan system (30-channel EEGs plus 2-channel earlobes).

3.2 Preprocessing

The 16 subjects had different lengths of experiment, because the disturbances
were presented randomly every 5–10 s. Data from one subject was not recorded
correctly, so we used only 15 subjects. To ensure a fair comparison, we used the
first 3,600 s data for each subject.

We defined a function [34,37] to map the response time τ to a drowsiness
index y ∈ [0, 1]:

y = max
{

0,
1 − e−(τ−τ0)

1 + e−(τ−τ0)

}
(1)

τ0 = 1 was used in this paper, as in [34,37]. The drowsiness indices were then
smoothed using a 90-second square moving-average window to reduce variations.
This does not reduce the sensitivity of the drowsiness index because previous
research showed that the cycle lengths of drowsiness fluctuations are longer than
four minutes [25].

We used EEGLAB [10] for EEG signal preprocessing. A 1–50 Hz band-pass
filter was applied to remove high-frequency muscle artifacts, line-noise contam-
ination and direct current drift. Next the EEG data were downsampled from
500 Hz to 250 Hz and re-referenced to averaged earlobes.

We tried to predict the drowsiness index for each subject every 3 s. All 30
EEG channels were used in feature extraction. We epoched 30-second EEG
signals right before each sample point, computed the power spectral density
(PSD) in the theta and alpha bands (4–12 Hz) for each channel using Welch’s
method [33], and converted them into dBs. Each channel had 67 such PSD points
at different frequencies. Some channels may have dBs significantly larger than
others, which degraded the regression performance. So we removed channels
which had at least one dB larger than 20, and normalized the dBs of all remain-
ing channels to mean zero and standard deviation one. Assume the number of
remaining channels is C ′ (usually C ′ is about 30). Then, the input matrix to our
EEGNet regression model has dimensionality C ′ × 67.

3.3 Algorithms

We used data from 14 subjects to build a regression model for the 15th subject,
simulating the scenario that we already collected data from 14 subjects and
need to use their data to help estimate the drowsiness level for a new driver.
We repeated this process 15 times so that each subject had a chance to be the
“new” driver.

We compared the performance of the following five algorithms:



EEG-Based Driver Drowsiness Estimation Using CNNs 827

1. Ridge regression based on principal component features (RR), which is the
baseline. This method was first used in [34]. It combined data from all existing
14 subjects and extracted average PSDs in the theta band as features. Similar
to the case in Sect. 3.2, some channels may have extremely large average
PSDs, which were removed (using a 20 dB threshold) for better regression
performance. We then normalized the dBs of each remaining channel to mean
zero and standard deviation one, and extracted a few (usually around 10)
leading principal components, which accounted for 95% of the variance. The
projections of the dBs onto these principal components were then used as our
features. At last we built a ridge regression model for the 15th subject.

2. RR based on principal component features and SMLR (RR-SMLR). This is the
method proposed in [37]. We built 14 RR models, each one using only one
source subject’s data as the training dataset. Feature extraction was the same
as in RR. After obtaining 14 models trained on different datasets, we used
SMLR to aggregate them for the target subject.

3. EEGNet regression model using band-passed EEG inputs (EEGNet), which
used the EEGNet regression architecture described in Sect. 2.1. EEG signals,
after 1–50 Hz band-pass filtering, were used as input. So, the input dimen-
sionality was 30× 7500 (the second dimensionality was 7500 because we used
30-second EEG signals for estimation, and the sampling rate was 250 Hz).

4. EEGNet regression model using the PSD features (EEGNet-PSD). The EEGNet
regression architecture was identical to the one in EEGNet, but the C ′ × 67
PSD features described in Sect. 3.2 were used as its input.

5. EEGNet-PSD with SMLR (EEGNet-PSD-SMLR), which was the above EEGNet-
PSD model combined with SMLR ensemble learning, as described in Sect. 2.2.

Each algorithm was repeated 10 times so that statistical meaningful results can
be obtained. The performance measures were the root mean square error (RMSE)
and the correlation coefficient (CC), as in [34,37].

3.4 Results and Discussions

The experimental results are shown in Fig. 1 and Table 2. Observe that:

1. EEGNet, which used band-passed EEG signals as the input, had the worst
RMSE and CC for most subjects and also on average. This is because the
input feature had very large dimensionality (T = 7500 in Table 1), so there
were about 8820 parameters in this model. On the contrary, there were only
1200 × 14 = 12800 training samples, which may not be enough to fully opti-
mize these parameters.

2. EEGNet-PSD, which had about 67 PSD points in each channel, achieved better
RMSE and CC than both RR and EEGNet for most subjects. This demonstrates
that the PSD features are better than the band-passed EEG temporal fea-
tures. Because of the much smaller dimensionality, training time of EEGNet-
PSD was also reduced significantly compared with EEGNet.
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3. EEGNet-PSD-SMLR, which is an ensemble of multiple EEGNet-PSD aggregated
by the SMLR, achieved comparable performance with RR-SMLR, which was
our best approach on this driving dataset. On average its RMSE was 1.99%
smaller than EEGNet-PSD, and its CC was 2.65% larger than EEGNet-PSD.
This suggests that SMLR can indeed improve the learning performance.
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Fig. 1. (a) RMSEs and (b) CCs of the five approaches on the 15 subjects. The last
group in each subfigure shows the average performance across the 15 subjects.

Table 2. Average performances of the five algorithms on the 15 subjects.

RR RR-SMLR EEGNet EEGNet-PSD EEGNet-PSD-SMLR

RMSE 0.2587 0.2371 0.3208 0.2394 0.2347

CC 0.5994 0.6446 0.3499 0.6215 0.6379

We also performed a two-way Analysis of Variance (ANOVA) for the five
algorithms to check if the RMSE and CC differences among them were statisti-
cally significant, by setting the subjects as a random effect. The results are shown
in Table 3, which shows that there were statistically significant differences (at
5% level) for both RMSEs and CCs.
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Table 3. p-values of two-way ANOVA tests for the five algorithms.

RMSE CC

p < .0001 < .0001

Then, non-parametric multiple comparison tests based on Dunn’s proce-
dure [13,14] were used to determine if the difference between any pair of algo-
rithms was statistically significant, with a p-value correction using the False
Discovery Rate method [4]. The p-values are shown in Table 4, where the statis-
tically significant ones are marked in bold. Observe that the RMSE differences
and the CC differences between EEGNet-PSD-SMLR and RR/EEGNet were statis-
tically significant, but the differences between EEGNet-PSD-SMLR and EEGNet-
PSD/RR-SMLR were not.

Table 4. p-values of non-parametric multiple comparisons for the five algorithms.

RR RR-SMLR EEGNet EEGNet-PSD

RMSE RR-SMLR .0040

EEGNet .0000 .0000

EEGNet-PSD .0087 .3757 .0000

EEGNet-PSD-SMLR .0007 .3239 .0000 .2416

CC RR-SMLR .0015

EEGNet .0000 .0000

EEGNet-PSD .0731 .0767 .0000

EEGNet-PSD-SMLR .0055 .3226 .0000 .1550

4 Conclusions

This paper focused on the much under-studied regression problems in BCI, par-
ticularly, driver drowsiness estimation from EEGs. It has extended EEGNet,
a 3-layer CNN model for BCI classification, to BCI regression, and also uti-
lized SMLR to aggregate multiple EEGNets for improved performance. Another
novelty of our model is that it uses the PSD of EEG signals as the input,
instead of raw EEG signals. In this way it can reduce the computational
cost significantly, yet achieve much better regression performance. Experiments
showed that EEGNet-PSD-SMLR achieved comparable performance with our
best regression model proposed recently.

Recently Riemannian geometry features have demonstrated outstanding per-
formance in several BCI classification applications [3,9]. Our latest research [38]
has also showed that Riemannian geometry features can outperform the tra-
ditional powerband features in an EEG-based BCI regression problem. Our
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future research will investigate Riemannian geometry features in the EEGNet
and SMLR framework.
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