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Abstract—Multi-view learning (MVL) is a strategy for fusing
multi-view data, which has better generalization performance
than single-view learning algorithms. Canonical correlation anal-
ysis (CCA) is a representative multi-view subspace learning
approach, which plays an important role in MVL classification
and information retrieval. Traditional CCA can only be used to
calculate the correlation of two views, and the learned features
are usually dense. Moreover, it is unsupervised, and hence wastes
label information in supervised learning. To overcome these
limitations, this paper proposes discriminative sparse generalized
CCA (DSGCCA), which integrates generalized CCA to handle
more than two views, and supervised discriminative sparse prin-
cipal component analysis to make use of the label information.
DSGCCA can handle small multi-view datasets with high feature
dimensionality and any number of views. Experiments on four
classification datasets demonstrated that DSGCCA outperformed
several other representative CCA-based MVL approaches.

Index Terms—Canonical correlation analysis, classification,
multi-view learning, principal components analysis

I. INTRODUCTION

Many real-world datasets can be described by multiple

feature sets. For instance, a web page can be represented by

texts and images above, a video can be represented by visual

and audio features, etc. Multi-view learning (MVL) improves

the learning performance by exploiting the consensual and

complementary information among multiple views [1]–[4].

As summarized in [2], MVL approaches can be divided into

three major categories:

1) Co-training [5], [6], which exchanges information be-

tween different views by training multiple models alter-

natively.

2) Multi-kernel learning [7], [8], which fuses different fea-

tures that are projected with different kernels.

3) Subspace learning [9], [10], which assumes that there

exists a shared latent space from which all views are

generated, and tries to identify it.

Hotelling [9] proposed Canonical correlation analysis

(CCA) in 1936. As a representative subspace learning ap-

proach, it projects two different views onto a shared correlated

subspace to maximize the correlation between. It is widely

used in multi-view clustering [11], [12], multi-view regression

[13], multi-view classification [14], [15], and so on [16], [17].

The traditional CCA has several limitations, and many

extensions have been proposed to accommodate them in the

past few decades. First, CCA cannot be used to calculate the

correlations of more than two views. Carroll [18] in 1968

proposed generalized CCA (GCCA) to maximize the correla-

tions of multiple views by finding a common latent correlated

space. In addition to estimating the correlations in pairs [19]–

[21], Luo et al. [22] analyzed a high-order covariance tensor

to directly maximize the correlations among multiple views.

Second, CCA is unsupervised, which completely ignores the

label information in supervised scenarios. Many works [23]–

[25] utilized the discriminative label information by taking the

inter-class and intra-class similarities of different views into

consideration. Third, the projections obtained from CCA are

usually very dense. Witten et al. [26] proposed a sparse CCA

by imposing LASSO-constraints on the canonical vectors.

CCA can be regarded as a dimensionality reduction method

[27], [28] for multi-view data. For single-view data, a repre-

sentative dimensionality reduction approach is principal com-

ponent analysis (PCA), which maps all instances onto a lower-

dimensional uncorrelated linear space and maximizes their

variance in that space. Traditional PCA has the same problem

as CCA, i.e., it ignores the label information and is not sparse.

Recently, Feng et al. [29] proposed supervised discriminative

sparse PCA (SDSPCA), by imposing additional constraints on

the learned linear space. Inspired by SDSPCA, we propose

discriminative sparse generalized CCA (DSGCCA) in this

paper, which integrates GCCA and SDSPCA.

Our DSGCCA MVL approach has three desirable proper-

ties:

1) It can handle any number of views.

2) It can extract more discriminative information by using

label information.

3) It can handle small multi-view datasets with high feature

dimensionality.

The remainder of this paper is organized as follows: We

first reviews related works in section II, and then introduces

the proposed DSGCCA algorithm. Section III presents exper-

imental results on several multi-view classification datasets.

Section IV draws conclusions.
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II. THE DSGCCA ALGORITHM

This section first briefly reviews the traditional CCA,

GCCA, and SDSPCA algorithms, and then introduces our

proposed DSGCCA algorithm.

A. CCA

Let
{
Xj ∈ Rdj×N

}J
j=1

be a dataset containing J mean-zero

views with N instances, where dj is the feature dimensionality

of View j. CCA maximizes the correlation between two

views (J = 2). It seeks K linear projections for each view,

W1 ∈ Rd1×K and W2 ∈ Rd2×K , called canonical vectors, to

maximize the correlation between WT
1 X1 and WT

2 X2.

The objective function of CCA is:

max
W1,W2

WT
1 X1X

T
2 W2 (1)

s.t. WT
1 X1X

T
1 W1 = I,WT

2 X2X
T
2 W2 = I.

By solving a singular value decomposition problem [30] or

a generalized eigen decomposition problem [31], the canonical

vectors, W1 and W2, is obtained.

B. GCCA

GCCA [18] is a representative approach for dealing with

more than two views (J > 2). It assumes that there exists a

set of multivariate latent variables G = [g1,g2, . . . ,gN ]
T ∈

RN×K , from which each view is generated.

The objective function of GCCA is:

min
G,{Wj}J

j=1

J∑
j=1

∥∥WT
j Xj −GT

∥∥2
F

s.t. GTG = I, (2)

where Wj ∈ Rdj×K contains the canonical vectors of View

j, ‖ · ‖F denotes the Frobenius-norm of a matrix, and the

constraint GTG = I guarantees that G is an orthonormal

matrix.

The matrices G and {Wj}Jj=1 in (2) can be solved by the

approaches described in [32], [33].

C. PCA

PCA [34] is a representative single-view dimensionality

reduction algorithm. It maps the instances onto a lower-

dimensional uncorrelated linear space, in which the variance

of the instances is maximized.

Let X ∈ Rd×N be the single-view input data with d
features. Then, the objective function of PCA is:

min
W,G

‖X −WGT ‖2F s.t. WTW = I, (3)

where each column of G ∈ RN×K is a principal component,

and each column of W ∈ Rd×K is a principal direction. The

constraint WTW = I guarantees that the principal directions

are orthonormal.

Some works [29], [35] modified the traditional PCA by

replacing WTW = I with GTG = I , i.e., (3) becomes:

min
W,G

‖X −WGT ‖2F s.t. GTG = I. (4)

D. SDSPCA

In supervised classification, we have label information,

which should be taken into consideration to help extract

more discriminative principal components. Additionally, the

principal components calculated from PCA are usually dense,

whereas sparse features are usually preferred in machine

learning. For these reasons, Feng et al. [29] proposed SDSPCA

by imposing label correlated constraints and sparse constraints

on G.

The objective function of SDSPCA is:

min
W,G

‖X −WGT ‖2F + α‖B −AGT ‖2F + β‖G‖2,1
s.t. GTG = I, (5)

where B ∈ Rc×N is the labels’ one-hot coding matrix (c
denotes the number of classes), and α and β denote trade-off

parameters. Initialize the matrix A ∈ Rc×K randomly. ‖G‖2,1
is the L2,1 norm of G, i.e., ‖G‖2,1 =

∑N
i=1 ‖gi‖2, where ‖·‖2

is the 2-norm of a vector.

E. DSGCCA

Inspired by GCCA, we further extend SDSPCA to DS-

GCCA to deal with more than two views. Similar to GCCA,

we assume that each view is generated from a set of multivari-

ate latent variables G = [g1,g2, . . . ,gN ]
T ∈ RN×K , which

maximize the correlations of all views. Similar to SDSPCA,

we add extra constraints on G to take the sparsity and label

information into account.

The objective function of DSGCCA is:

min
G,{Wj}J

j=1

1

J

J∑
j=1

‖Xj −WjG
T ‖2F

+ α‖B −AGT ‖2F + β‖G‖2,1
s.t. GTG = I, (6)

where {Wj}Jj=1 contains the canonical vectors for View j.

The optimization of (6) is similar to SDSPCA [29]. Let

� =
1

J

J∑
j=1

‖Xj −WjG
T ‖2F + α‖B −AGT ‖2F + β‖G‖2,1.

(7)

The partial derivative of � w.r.t. {Wj}Jj=1 is:

∂�

∂Wj
= −2 (Xj −WjG

T
)
G, j = 1, . . . , J. (8)

By setting
∂�(Wj)
∂Wj

= 0 and noting that G is orthonormal, we

have

Wj = XjG, j = 1, . . . , J. (9)

Similarly, taking the partial derivative of � w.r.t. A and

setting it to zero, we have

A = BG. (10)

‖G‖2,1 in (7) can be transformed into tr(GTV G), where

V ∈ RN×N is a diagonal matrix with its i-th diagonal element
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be Vii =
1

2‖gi‖2
if gi �= 0. Substituting (9) and (10) into (7),

and noting that GTG = I , it follows that:

� =
1

J

J∑
j=1

tr
(
Xj −XjGG

T
) (
Xj −XjGG

T
)T

(11)

+ α tr
(
B −BGGT

) (
B −BGGT

)T
+ β tr

(
GTV G

)
=
1

J

J∑
j=1

(− tr (GTXTj XjG)+ ‖Xj‖2F
)

− α tr
(
GTBTBG

)
+ α‖B‖2F + β Tr

(
GTV G

)
=− tr(GT (

1

J

J∑
j=1

XTj Xj)G)− α tr
(
GTBTBG

)
+ β tr

(
GTV G

)
+
1

J

J∑
j=1

‖Xj‖2F + α‖B‖2F

=tr(GT (−( 1
J

J∑
j=1

XTj Xj)− αBTB + βV )G)

+
1

J

J∑
j=1

‖Xj‖2F + α‖B‖2F .

(6) can be transformed into a convex optimization problem:

min
G

tr

⎡⎣GT
⎛⎝− 1

J

J∑
j=1

XTj Xj − αBTB + βV

⎞⎠G

⎤⎦
+
1

J

J∑
j=1

‖Xj‖2F + α‖B‖2F (12)

s.t. GTG = I.

We use the Lagrange multiplier to obtain G, which is equiv-

alent to the K leading eigenvectors of T = 1
J

∑J
j=1X

T
j Xj +

αBTB − βV . Once G is obtained from the training set, the

canonical vectors {WT
j }Jj=1 are calculated using (9). On the

test set, {WT
j Xj}Jj=1 are the inputs to a classifier.

Algorithm 1 shows the pseudo-code of DSGCCA. Per-

forming eigen decomposition of matrix T is the most time-

consuming step in solving DSGCCA, which depends on the

sample size N but is independent of the feature dimensionality

{dj}Jj=1. This suggests that DSGCCA is more suitable for

handling small datasets with high feature dimensionality.

III. EXPERIMENTS

This section evaluates DSGCCA algorithm on several multi-

view datasets with two or three views.

A. Datasets

Table I summarizes the four datasets used in our experi-

ments, which are:

1) Corel5k: This dataset contains 5,000 images with 50

semantic topics, with 100 images per topic. We selected

three topics (topic tag 1000, 10000, and 12000), with a

total of 300 instances.

2) MIR Flickr: This dataset has 25,000 images in 38 cate-

gories. We selected three categories (animals, food, and

night), with a total of 362 images.

3) NUS-WIDE-LITE [36]: This dataset contains 48,615 im-

ages with a total of 81 concepts. We selected 915

single-label images from two concepts (lake and snow).

Six descriptors were provided, and we selected color

histogram (CH), wavelet textures (WT), and block-wise

color moments (CM55) as the views.

4) Wiki Text-Image [37]: This dataset contains two views of

images and text with ten categories and a total of 2,866

instances. The 10-D text features were extracted with

latent Dirichlet allocation, and 128-D SIFT features were

extracted from the images. We selected five categories

(art, biology, geography, history, and literature), with a

total of 1,472 instances.

All datasets were z-normalized. For datasets with three

views, the first two views were used to evaluate the two-view

CCA approaches.

B. Experimental Setup and Model Parameters

We included three baselines in our experiments:

1) Combined-view baseline, which concatenated the features

from all views and then trained an SVM classifier.

2) PCA, where PCA was used to reduce the dimensional-

ity of the concatenated features (according to the 95%

variance threshold) from all views, and then an SVM

classifier was trained.

3) SDSPCA, where SDSPCA was used on concatenated

features from all views, and then an SVM classifier was

trained.

We also compared DSGCCA with several representative

CCA-based MVL approaches for two and more views:

1) Sparse CCA (sCCA) [26]. As in [26], sparse CCA obtains

sparsity by imposing LASSO-constraints on the canonical

vectors. The sparse coefficients c1 and c2 were set to

c
√
d1 and c

√
d2, respectively, where c = 0.2.

2) Kernel CCA (KCCA) [38], which projects data onto a

higher dimensional space using kernel functions. The

Gaussian RBF kernel, κ (xi,xj) = exp
(
−‖xi−xj‖2

2

2σ2

)
,

was used, and the bandwidth parameter σ was set as

the mean distance of the ten nearest neighbors for all

instances.

3) Random CCA (RCCA) [39], which deals with nonlinearity

between views by projecting data randomly. For simplic-

ity, all views had the same number of nonlinear random

features, which was selected from {100, 120, . . . , 300}.

4) Discriminative CCA (DisCCA) [23], which takes label

information into consideration by minimizing the within-

class similarity and maximizing the between-class simi-

larity.

5) Multi-view linear discriminant analysis (MLDA) [24],

which utilizes the label information by integrating lin-

ear discriminant analysis [40] and CCA. The trade-off

parameter was selected from {1, 5, 10, 15, 20}.
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Algorithm 1: Discriminative sparse generalized canonical correlation analysis (DSGCCA).

Input: J views {Xj ∈ Rdj×N}Jj=1 with N instances, where dj is the feature dimensionality of View j;

B ∈ Rc×N , the labels’ one-hot coding matrix, where c denotes the number of classes;

K, the number of canonical vectors;

α, β, the trade-off parameters;

Output: The canonical vectors {Wj}Jj=1.

1 Initialize V = IN×N , θ =∞, �′ = 0, and A ∈ Rc×K randomly;

2 while |θ| > 10−5 do
3 Construct G as the K leading eigenvectors of matrix T = 1

J

∑J
j=1X

T
j Xj + αBTB − βV ;

4 Wj = XjG, j = 1, . . . , J ;

5 A = BG;

6 Vii =
1

2‖gi‖2
, where gi is the i-th row of G;

7 � = 1
J

∑J
j=1 ‖Xj −WjG

T ‖2F + α‖B −AGT ‖2F + β‖G‖2,1;

8 θ = �− �′;
9 �′ = �;

10 end
11 return {Wj}Jj=1

TABLE I
SUMMARY OF THE FOUR CLASSIFICATION DATASETS.

Dataset
No. of No. of No. of features No. of

instances views per view classes

Corel5k1 300 3 512/100/100 3

MIR Flickr1 362 3 512/100/100 3

NUS-WIDE-LITE2 915 3 64/128/225 2

Wiki Text-Image3 1472 2 128/10 5
1 http://lear.inrialpes.fr/people/guillaumin/data.php
2 https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3 http://www.svcl.ucsd.edu/projects/crossmodal/

6) Generalized CCA (GCCA) [18], which calculates a

rank-m approximation of each view, where m was

selected from {50, 100, . . . , m̃}, in which m̃ =
min(200, d1, d2, d3).

7) Least squares CCA (LS-CCA) [21], which minimizes the

distances between the instances projected from different

views.

8) Tensor CCA (TCCA) [22], which analyzes a high-order

covariance tensor to directly maximize the correlations

among multiple views. The final feature dimensionality,

K, was selected from {50, 100, . . . , 300}.

For DSGCCA, as in [29], the trade-off parameters α and β
were selected from {10−20, 10−19, . . . , 1020}. The number of

canonical variables, K, was selected from {10, 20, 30}.

For each dataset, a random one-fourth of the training set

was used for parameter search. To simplify the experiments,

the covariance regularization parameters were all set to 0.01.

The number of canonical variables, K, was selected from

{10, 20, . . . , d̃}, where d̃ = min(100, d1, d2) for two views,

and d̃ = min(100, d1, d2, d3) for three views.

For each view, the canonical variables were input to an SVM

classifier separately to compute the confidence for each class,

and then the confidences from all views were averaged to give

the final classification. All experiments were repeated six times

with 5-fold cross-validation.

C. Experimental Results

Because the classes in every dataset were balanced, we

computed the raw classification accuracy on the test set as

the performance measure. Tables II and III shows the means

and standard deviations, for the 2-view and 3-view datasets,

respectively. We can observe that:

TABLE II
AVERAGE CLASSIFICATION ACCURACIES (%) ON THE 2-VIEW DATASETS

[MEAN±STANDARD DEVIATION].

Algorithm Corel5k MIR-
Flickr

NUS
-WIDE
-LITE

Wiki
Text

-Image
Average

Combined-view 91.67±3.13 60.87±5.54 69.89±2.40 68.59±2.33 72.61±3.35
PCA 91.72±2.64 57.88±5.63 72.75±2.61 70.15±2.03 72.48±3.23

CCA [19] 83.22±5.67 55.01±5.48 67.05±3.64 75.83±1.88 72.47±4.17
sCCA [26] 90.83±3.09 55.66±6.67 70.66±3.14 67.09±3.29 70.17±4.05
KCCA [38] 92.28±2.68 57.46±7.34 66.43±3.60 63.11±2.98 68.99±4.15
RCCA [39] 84.83±4.36 54.47±5.81 69.11±2.44 75.76±2.11 72.71±3.68

DisCCA [23] 80.83±6.31 54.73±5.03 67.38±3.32 74.04±1.71 70.91±4.09
MLDA [24] 81.67±5.59 51.69±7.40 64.68±3.59 75.15±2.00 70.91±4.65

SDSPCA 88.78±4.26 61.79±6.26 73.72±3.04 73.99±2.04 74.64±3.90
DSGCCA 92.72±3.80 63.17±4.95 72.73±2.71 76.46±1.52 77.20±3.24

1) DSGCCA outperformed SDSPCA, suggesting that ex-

tending the single-view SDSPCA algorithm to the multi-

view DSGCCA algorithm improved the generalization

performance. This may be because DSGCCA reduces

the noise contained in each view when considering the

consensus among different views.

2) On average, DSGCCA performed the best among all

CCA-based algorithms. It achieved the highest average

classification accuracy and relatively low standard devia-

tion.

3) DSGCCA did not outperform SDSPCA on two of the

three 3-view datasets, although their performances were
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TABLE III
AVERAGE CLASSIFICATION ACCURACIES (%) ON THE 3-VIEW DATASETS

[MEAN±STANDARD DEVIATION].

Algorithm Corel5k MIR-
Flickr

NUS
-WIDE
-LITE

Average

Combined-view 92.89±4.08 63.04±4.74 67.36±3.23 74.55±4.02
PCA 94.00±2.79 62.10±6.18 72.04±2.98 76.05±3.98

GCCA [18] 87.72±4.70 55.43±6.59 70.86±2.69 71.33±4.66
LS-CCA [21] 85.89±5.12 53.49±6.00 67.25±2.37 68.88±4.50
TCCA [22] 90.44±3.79 53.27±6.28 69.80±3.13 71.17±4.40
SDSPCA 89.33±4.75 64.19±5.23 74.90±3.10 76.14±4.36
DSGCCA 94.28±3.49 64.05±4.93 74.24±3.32 77.52±3.92

close. This may be caused by the fact that the average

of the predicted confidences from all views were used

in classification. Estimating the correlation of multiple

views is more difficult than two views. When different

views have different importance, view weights may be

considered for better performance.

4) Although the feature dimensionality of several datasets

was higher than their sample size, such as Corel5k

and MIR-Flickr, DSGCCA still achieved relatively high

classification accuracy, which suggests that DSGCCA can

deal with high feature dimensionality without significant

overfitting.

5) Many CCA-based MVL approaches did not outper-

form the combined-view baseline, suggesting that blindly

choosing a CCA-based MVL algorithm for a multi-view

dataset may not always be appropriate. However, the

performance of DSGCCA on different datasets was more

consistent than other algorithms, suggesting that it is a

safer choice among these CCA-based MVL approaches.

IV. CONCLUSIONS AND FUTURE WORK

This paper has proposed a novel MVL approach, DSGCCA,

which integrates GCCA and SDSPCA. DSGCCA can handle

dataset with any number of views, and takes the label infor-

mation and the sparsity into consideration. Experiments on

four classification datasets demonstrated that DSGCCA out-

performed other representative CCA-based MVL approaches.

The proposed DSGCCA also has some limitations, which

will be addressed in our future research. First, it can only

optimize the linear correlation among different views, whereas

the correlation may be nonlinear in real-world datasets. A

possible solution is to combine DSGCCA with deep neural

networks, or to project the data onto a higher dimensional

space using kernel functions. Second, searching for the optimal

parameters of DSGCCA is time-consuming. Third, the com-

putational complexity of DSGCCA increases with the sample

size, making it unsuitable for big data. A remedy is to use

mini-batch instead of the full batch in its optimization, just

like how mini-batch is used in training neural networks.
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