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Abstract—Scoring of sleep stages plays an important role
in the diagnosis of sleep-related diseases. Scoring by visual
inspection is time-consuming and heavily depends on the ex-
perience of experts. Thus, there is an urgent need for an
automatic sleep stage classification system. This paper proposes a
novel compact convolutional neural network (C-CNN) using only
single-channel EEG signal. Compared with traditional machine
learning approaches based on hand-engineered features, our
approach provides an end-to-end solution that requires almost
no prior knowledge and preprocessing while achieving better
performance. Experiments on the expanded Sleep-EDF database
verified its effectiveness and efficiency. In addition, we notice the
issue of class imbalance in sleep stages, and a class-imbalance
metric, the balanced classification accuracy (BCA), is introduced.
At the cost of a little drop in accuracy, which is still higher
than existing classification methods, the introduction of class-
imbalance weights can significantly increase the BCA metric
and result in a higher recall for each sleep stage. This paper
also proposes a recurrent neural network based on the attention
mechanism and bidirectional long short-term memory (LSTM),
which provides better performance than C-CNN but requires
more training time.

Index Terms—Sleep stage classification, convolutional neural
network, attention, long short-term memory, class imbalance

I. INTRODUCTION

Almost one-third of a person’s life is spent on sleep. During

sleep, most of the body’s systems are in an anabolic state that

helps restore immune, nervous, skeletal and muscular systems.

Thus, sleep plays an important role in human health.

However, lots of people have sleep problems, e.g., at least

10% of the population in America suffer from sleep disorders

[16]. Proper scoring of sleep stages can help diagnose sleep

disorders and track the effect of treatment [4]. Polysomnogra-

phy (PSG) is the gold standard for sleep quality assessment.

It usually requires the subject to wear multiple sensors and

record various physiological signals. The PSG recording is

then segmented into 30s epochs, which are visually inspected

by a sleep expert and sorted according to protocols such as the

traditional Rechtschaffen and Kales (R&K) criteria [17] and

those proposed by the American Academy of Sleep Medicine

(AASM) [2]. This manual scoring process is time-consuming,

and the results may be inconsistent among different experts.

A study shows that the average agreement rate of sleep stage

scoring among experts is only 82.6% [18]. Thus, automatic

sleep state classification is desired.

There are already multiple machine learning approaches for

automatic sleep stage scoring using hand-engineered features

[3], [8], which usually performs preprocessing to remove

artifacts and noise, feature extraction and selection to obtain

discriminative features, and finally machine learning to train

a classifier. The scoring performances of these approaches

heavily depend on the quality of the hand-engineered features,

which are limited by the designer’s experience, and can hardly

be optimal.

In contrast to the traditional feature engineering plus ma-

chine learning approaches, deep learning provides an end-

to-end solution that can automatically mine the relationship

between the raw input and the output. It has achieved great

success in a wide range of applications, including image pro-

cessing [20], video analysis [24], natural language processing

[1], [15], and so on. Not surprisingly, multiple deep learn-

ing approaches, e.g., autoencoders [22], convolutional neural

networks (CNNs) [5], and recurrent neural networks (RNNs)

[21], have also been proposed for sleep stage classification.

Additionally, different sleep stages do not occur with equal

probability. If no special attention is paid to the class im-

balance problem, then the minority stages may be ignored.

Most deep learning based sleep stage classification approaches

attempted to address this issue by resampling the data (over-

sampling the minority classes or undersampling the majority

classes) so that different classes are balanced [5], [21], [22].

However, resampling data modifies the distribution of the

raw data and may cause other problems [10]. For example,

oversampling increases the total number of samples, and hence

increases the computational cost; undersampling removes cer-

tain samples, and hence loses information. In this paper

we cope with class imbalance problem using cost-sensitive

learning [7], i.e., we assign larger weights to the minority

classes so that they will not be overwhelmed.

In summary, the main contributions of this paper are:

1) We propose two novel deep learning models for sleep

stage classification. The first, based on CNN, is compact

and efficient. The second, based on LSTM, can achieve

better performance at the cost of longer training time.

2) We integrate cost-sensitive learning with deep learn-

ing to handle class-imbalance in sleep stage classifica-

tion, and achieve better balanced classification accuracy

(BCA).

The remainder of this paper is organized as follows: Sec-

tion II introduces the sleep dataset and proposes our ap-

proaches. Section III introduces the experiment settings and

compares the performances of our proposed models with sev-

eral state-of-the-art approaches. Section IV draws conclusions.
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II. METHODS

A. Dataset

The SC (Sleep Cassette) files from the expanded Sleep-EDF

database [14] on PhysioNet [9] were used in our study. They

are PSG recordings of 20 healthy subjects (10 males and 10

females, 25-34 years old) without any sleep-related diseases.

19 subjects had PSG recordings for two consecutive days and

one subject only had one day’s recording. Each recording

lasted for 20 hours. For consistency, we only used data from

the 19 subjects with two days’ recording.

Each PSG recording contained EEG (from Fpz-Cz and Pz-

Cz pairs), horizontal EOG, submental chin EMG, and oro-

nasal respiration. The sampling frequency of EEG and MEG

was 100Hz. Each 30-s epoch was manually classified into

one of the following classes according to the R&M criteria:

movement time (M), wakefulness (W), rapid eye movement

(REM), non-REM including Stage 1 (S1), Stage 2 (S2), Stage

3 (S4) and Stage 4 (S4), and not scored. This paper considered

only W, REM, and S1-S4, and only used the EEG signal from

the Fpz-Cz pair1. The number of available epochs for each

sleep stage is shown in Table I.

TABLE I
NUMBER AND PERCENTAGE OF EEG EPOCHS IN EACH SLEEP STAGE.

W S1 S2 S3 S4 REM Total
Number 70,450 2,731 17,302 3,307 2,249 7,545 103,600

Percentage 68.00 2.65 16.70 3.19 2.17 7.28 100.00

B. Flowchart

The flowchart of our proposed approaches is shown in Fig 1.

For each 30-s EEG epoch, we first perform preprocessing to

transform it into a power spectral density map X , which is

then fed into the Feature Extractor. Different configurations

of the Feature Extractor are introduced below, and dropout

[12] was used after all such extractors to reduce overfitting.

Then, a fully-connected layer with 128 units (FC-128) is used

to combine these features, and a softmax layer gives the final

prediction.

C. Preprocessing

We performed some preprocessing on the raw EEG signal.

Given a 30-s epoch, we first converted it into a power

spectral density (PSD) map using short-time Fourier transform

(STFT) with a moving Hamming window of size 1s and

overlap of 0.5s. Then we converted the powers to dBs. Thus

each 30-s epoch was converted to a PSD map X ∈ RT×F ,

where T (time) was 59 and F (frequency) was 51. An example

of the EEG signal after conversion is shown in Fig. 2. It should

be noted that since the sampling frequency of the EEG signal

was 100 Hz, according to the Nyquist sampling theory, the

maximum frequency of the recoverable signal is 50 Hz.

1We also performed experiments on the Pz-Oz pair. The results were
slightly worse.

Fig. 1. The flowchart of our proposed approaches.

Fig. 2. Power spectral density map.

Next, z-normalization was performed to make each dimen-

sion of the feature to have mean zero and standard deviation

one.

D. Baseline Feature Extractor

Our baseline feature extractor is similar to CNN-static

(CNN-s) in [15]. This model was originally proposed for

natural language processing, and has been widely adopted in

other areas for its relatively simple structure and competitive

performance.

The main part of the model is shown in Fig. 3. For natural

language processing, a pre-trained word vector of a specific

length is used to represent each word. Words in the same

sentence are replaced with the corresponding word vector

in order. The resulting word vector sequence is used as the

model’s input, which is quite similar to the PSD map we

got: The word vectors in the sequence correspond to the PSD

vectors in our map, and the order of word vectors corresponds

to the time sequence of PSD vectors.

Therefore, we adopted the CNN-s from [15] as the baseline

feature extractor.

Conv1D(3× F − 128) in Fig. 3 represents a 1D convolu-

tional layer with 128 filters of size 3×F , where F is the length
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Fig. 3. The baseline feature extractor (A-CNN).

of the PSD vector. The convolution is also called temporal

convolution because the filter is moving in the time dimension

of the PSD map in the convolution.

Different filter sizes could be used to obtain receptive fields

of different sizes. We tried several different sizes and obtained

similar results. Filter sizes 3, 5 and 7 were used in our

experiments. The filter stride was 1 and the activation function

was rectified linear unit (ReLU).

For the feature map obtained after convolution, a max-

over-time pooling operation with stride 1 was applied, i.e.,

selecting the largest value in the time dimension as the feature

corresponding to a particular filter. The idea here was to

capture the most important feature (maximum value) for each

filter. Finally, features of different scales were concatenated

together for further processing.

E. Feature Extractor 2

1) CNN Feature Extractor: We propose a new feature

extractor, as shown in Fig. 4, to enhance CNN-s.

Instead of using large receptive fields (or filters) of size

5× F and 7× F , we only use receptive fields of size 3× F
and 3× 1. This idea is adopted from [20]. Stacking a 3 × F
convolutional layer and a 3 × 1 layer achieves an effective

receptive field of 5 × F , as illustrated in Fig. 5. Similarly,

stacking a 3×F layer and two 3× 1 layers results in a 7×F
effective receptive field.

Stacking three convolutional layers instead of using a single

7 × F layer directly offers at least two benefits: first, three

ReLU layers instead of one are now used, resulting in more

nonlinearity; second, fewer parameters are needed, making the

network more compact. Assume the network input and output

channels of the convolution layer are both C, then the number

of parameters required for a separate 7×F convolution layer

is 7 × F × C2, while the stacked convolution layers is 3 ×
(F + 1 + 1)× C2, i.e. 43% of the former.

Moreover, in order to utilize features of different levels,

we used the feature map from middle layers for the final

prediction. We thought that pushing useful gradients to the

lower layers, making them immediately useful, can make the

training more stable and converge faster. Batch normalization

was adopted after each convolutional layer, which is proved to

Fig. 4. The proposed C-CNN feature extractor.

Fig. 5. Stacking a 3×F convolutional layer and a 3× 1 layer is equivalent
to a 5× F layer.

be useful in handling internal covariate shift and making the

subsequent training easier. So we got the final feature extractor

shown in Fig. 4.
2) Attention Feature Extractor: Except for CNN, we also

applied LSTM [13] with attention mechanism, which has been

widely used in time series and natural language processing [1],

to sleep stage classification and proposed the Attention feature

extractor in Fig. 6.

RNN has a strong ability to capture temporal information,

and EEG data is a time series. Therefore, RNN is natu-

rally suitable for such a scenario. Given the input sequence

X = (x1,x2, ...,xT ′ ), the RNN calculates the hidden state

sequence H = (h1,h2, ...,hT ′ ) by iterating the following

equation from t = 1 to T
′
:

ht = f(Wxxt +Whht−1 + b) (1)

where Wx and Wh are weight matrixes, b is a bias vector, f
is an activation function, and all of them are shared at different

time steps. Thus, the current hidden layer state ht of RNN is

not only related to the current input xt, but also related to

the previous hidden layer state ht−1. That’s why RNN can

capture the time dependency.

LSTM is a special RNN, which was introduced by Hochre-

iter & Schmidhuber at 1997. It uses multiple gates to selec-
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Fig. 6. Attention feature extractor.

tively store memory, thus it is more efficient at capturing long-

term dependencies. In this paper, we further used the bidirec-

tional LSTM with attention mechanism. To the best of our

knowledge, it has not been used in sleep stage classification.

When training a regular LSTM, there is a limitation that

future input information cannot be used. However, bidirec-

tional LSTM [19] could solve this issue. It consists of forward

and backward LSTMs, which are trained simultaneously in the

positive and negative time direction, respectively. By concate-

nating the forward hidden state
−→
ht and the backward one

←−
ht,

which contains future input information, we obtain ht as the

hidden state of the bidirectional LSTM, i.e., ht = [
−→
ht;

←−
ht].

128 LSTM units were used.

As for the attention mechanism, it has been widely adopted

in various of applications, such as machine translation [1],

image caption generation [23], question answer [11], etc.

When combined with LSTM, its output, context vector c, is

computed as a weighted sum of each hidden state ht across

different time steps:

c =

T
′∑

t=1

αtht (2)

The weight αt of each ht is computed by

αt =
exp(et)∑T ′

t=1 exp(et)
(3)

where et can be given by a trainable fully-connected layer

with ht as input.

Besides, in order to avoid the problem of exploding or

vanishing gradients during the training of LSTM, we firstly

did a 1D convolution with stride 2 in the input to reduce the

sequence length, and then adopted batch normalization. Thus,

we got the final Attention feature extractor in Fig. 6.

F. Network Training

The training goal of our networks was to minimize the

cross-entropy loss function. We trained these models using an

Adam optimizer with a learning rate 10−3. And a decay rate of

0.95 was adopted to the learning rate per pass over the training

set. The batch size was set to 128. Dropout is an effective

regularization method for reducing overfitting, so we applied

dropout with drop rate 0.5 before the fully-connected layer. In

addition, early stopping was used to determine when to stop

training, by monitoring the model’s accuracy on a randomly

selected validation set. Our models were implemented using

TensorFlow and trained with a single Nvidia GeForce GTX

1080 GPU.

G. The Class-imbalance Weight

When training a model with imbalanced data, what typically

happens is that the learned model tends to predict samples

to majority class. So we adopted cost-sensitive learning and

added a class-imbalance weight in the loss function to reweight

the cost of making a wrong prediction. The general principle

is assigning larger weights to the minority classes. For each

class, the weight is computed as,

wl =
max{Nl}Ll=1

Nl
(4)

where Nl is the number of samples in Class l, and L is the

number of classes.

The motivation for this is that we expect the model to pay

equal attention to the class with fewer samples (the class with

more samples would be seen more frequently by model during

training), and ensure that each class has a similar prediction

accuracy. Except for the R&M criteria, we also merged S3

and S4 according to the AASM manual. Moreover, we also

considered a simpler task that S1 and S2 were merged.

III. EXPERIMENTS

A. Performance Measures

To evaluate the performance of the proposed models, we

used recall (RE), which is also known as sensitivity, overall

accuracy (ACC) and Cohen’s Kappa coefficient (Kappa) [6] as

performance measures. Considering serious class imbalance in

the dataset, we introduced a class-imbalance metric, i.e. the

balanced classification accuracy (BCA). The RE, ACC and

BCA are defined as follows:

REl =
TPl

Nl
(5)

ACC =

∑L
l=1 TPl

N
(6)

BCA =
1

L

L∑
l=1

TPl

Nl
=

∑L
l=1REl

L
(7)

where TPl represents true positives for Class l, L is the

number of classes, N is the number of all samples, and Nl

represents the number of samples in Class l.
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In fact, the REl represents the proportion of samples in

Class l that are predicted correctly, while ACC represents the

proportion of samples across all classes that are predicted

correctly. We expect each class to have a similar prediction

accuracy (i.e. recall), so we used the BCA, which is the mean

of recalls for different classes.

Besides, since there might exist obvious differences between

the EEG signal of different subjects, we performed the leave-

one-subject-out cross validation.

B. Results for Different CNN Feature Extractors

In this section, the performances of different CNN feature

extractors for six classification task were compared. The

average ACCs and BCAs are shown in Table II.

TABLE II
AVERAGE PERFORMANCE OF DIFFERENT CNN FEATURE EXTRACTORS

ACROSS THE 19 SUBJECTS.

Feature Extractor ACC BCA
A-CNN 87.37 68.80
C-CNN 88.19 70.95

As seen from the table, the baseline A-CNN already

achieved high classification accuracy. The performance of C-

CNN formed by the stacking of convolutional layers with

small receptive fields was further improved, which was mainly

benefited from its deeper layers and stronger nonlinear fitting

capability.

C. The Impact of Class-imbalance Weight

In this section, we explored the impact of class-imbalance

weight on performance metrics. It was a six class classification

task, using the C-CNN feature extractor. The only difference

between the two experiments was whether the class-imbalance

weight was used in the loss function. The result is shown

in Table III. Mean means the performance is the average

of different subjects, while Summary is calculated after

combining all the predictions of different subjects.

TABLE III
THE IMPACT OF CLASS-IMBALANCE WEIGHT

6-class Mean Summary
ACC BCA ACC BCA Kappa

Weighted 88.19 70.95 88.24 73.21 77.44
Not weighted 90.94 67.94 90.98 70.18 81.97

We can observe that the class-imbalance weights had a great

influence on ACC and BCA. After applying the weights, the

BCA metric increased significantly, while the ACC and Kappa

decreased, which was mainly due to the decreased prediction

accuracy for those categories with more samples. When the

classes are significantly unbalanced, sometimes we would like

all classes to have similar recalls (i.e., higher BCA), even if

some classes only have a small number of samples.

D. Comparison between C-CNN and Attention Feature Ex-
tractors

Convolutional neural network is good at processing image

information, while recurrent neural network is better for time

series task.

We further compared the performance of C-CNN and Atten-

tion feature extractor under multiple classification tasks. The

results are shown in Table IV.

TABLE IV
COMPARISON BETWEEN C-CNN AND ATTENTION FEATURE EXTRACTORS.

6-class 5-class 4-class
Model ACC BCA ACC BCA ACC BCA
C-CNN 88.19 70.95 90.23 77.09 91.03 85.94

Attention 88.43 73.58 90.27 79.50 91.91 87.56

It shows that the performance of the Attention feature

extractor was always a little better than C-CNN, both on

ACC and BCA, which means it learned better representations.

However, due to the characteristics of LSTM itself, the training

time Attention needed was much more than C-CNN.

E. Comparison with Exiting Methods

We also compared our approaches with two exiting methods

and demonstrated that our approaches outperformed them. The

results are shown in the Table V.

The review by Boostani et al. [3] compared five methods

based on hand-engineered features using the expanded Sleep-

EDF database, and [8] which used entropy of continuous

wavelet transform as features and random forest as classifier

achieved the best performance. It got 87.06% ACC and

71.10% BCA respectively (the BCA was computed based on

the confusion matrix in the paper).

Compared with the traditional methods based on hand-

engineered features, our proposed C-CNN provided an end-

to-end solution that requires almost no prior knowledge, and

achieved improvement of +3.17% (from 87.06% to 90.23%)

and +6.12% (from 71.10% to 77.22%) in ACC and BCA,

respectively. Besides, our approach could further improve

ACC (91.88%) and still provide a compare BCA (73.83%)

if the class-imbalance weight was not adopted.

DeepSleppNet [21] was the state-of-the-art model for sleep

stage scoring. This model was divided into two parts. The first

part was representation learning using CNN, and the second

part used adjacent EEG epoches and bidirectional LSTM

to learn transition rules among sleep stages. The training

of DeepSleepNet was also divided into two steps. The first

step performed a supervised pre-training on the representation

learning part using a class-balanced set generated by resam-

pling; The second steps performed fine-tuning on the whole

model using a sequential training set, which meant it used

adjacent EEG epochs to train the bidirectional LSTM part.

We re-implemented the first part for comparison in our

experiments. Compared with DeepSleppNet, our models were

much simpler, required no special handing and achieved a

slightly higher ACC while providing a comparable BCA.
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TABLE V
COMPARISON WITH THE EXITING METHODS

6-class 5-class 4-class

Mean1 Summary2 Mean1 Summary2 Mean1 Summary2

ACC BCA ACC BCA Kappa ACC BCA ACC BCA Kappa ACC BCA ACC BCA Kappa

Our proposed C-CNN
Weighted 88.19 70.95 88.24 73.21 77.44 90.23 77.09 90.26 77.22 81.07 91.03 85.94 91.04 85.68 82.22

No Weighted 90.94 67.94 90.98 70.18 81.97 91.84 73.67 91.88 73.83 83.71 91.84 73.67 92.43 84.63 84.70
Our proposed Attention Weighted 88.43 73.58 88.47 75.89 77.99 90.27 79.50 90.30 79.77 81.26 91.91 87.56 91.93 87.63 83.92

Review [3] 87.06 71.10
DeepSleepNet [21] 90.01 79.39 90.04 79.75 80.86

1 The results of Mean were the average of different subjects.
2 The results of Summary were computed after combining all the predictions of different subjects.

Besides, the training time C-CNN required was only half of

DeepSleepNet.

IV. CONCLUSIONS

This paper has proposed two novel sleep state classification

approaches based on single-channel EEG signal: C-CNN using

small receptive fields and multi-level features, and Attention

method based on the attention mechanism and bidirectional

LSTM. The latter outperformed the former at the cost of

longer training time. We also introduced the BCA metric

and integrated cost-sensitive learning with deep learning to

handle class-imbalance in sleep stage classification. Exper-

iments verified that our proposed models are efficient, and

they outperformed an existing approach using hand-engineered

features, and also a state-of-the-art deep learning model.
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