
1

Customized Cognitive State Recognition

Using Minimal User-Specific Data

Dongrui Wu, PhD∗, Thomas D. Parsons, PhD†

Abstract Automatic cognitive state recognition is very important for military training, rehabilitation, soldier safety, and mission

success. However, developing cognitive state recognition algorithms is highly challenging due to the difficulties in building a

generic model whose parameters fit all subjects. Further, it is very expensive and/or time-consuming to acquire user-specific

training examples that allow the algorithms to be tailored for each user. We propose a generic machine learning framework to

minimize the data acquisition effort, by combining transfer learning and active class selection. Transfer learning improves the

recognition performance by combining a small number of user-specific training examples with a large number of auxiliary training

examples from other similar subjects. Active class selection optimally selects the classes to generate user-specific training

examples on-the-fly. We illustrate the effectiveness of the proposed approach on task difficulty classification from neural and

physiological signals.

INTRODUCTION

Automatic cognitive state recognition is very impor-
tant for military training, rehabilitation, soldier safety,
and mission success. For example, better learning
performance can be obtained by automatically ad-
justing the training pace according to the learner’s
cognitive state, and accidents may be prevented by
knowing a soldier’s emotional state and fatigue level.
Automatic cognitive state recognition algorithms can
be calibrated using virtual environments (VE) and
serious games [1]–[3]. One example VE in this do-
main is the Virtual Reality Cognitive Performance
Assessment Test (VRCPAT), which uses neuropsy-
chological tests embedded into military-relevant VEs
to evaluate potential cognitive deficits [4]. However,
because of strong individual differences, i.e., differ-
ent subjects usually have different cognitive states
and neural/physiological responses for the same task,
developing an automatic cognitive state recognition
algorithm whose parameters fit all subjects is very
challenging.

An example of the importance of individual dif-
ferences may be found in our earlier work [5], in
which we used a support vector machine (SVM) [6]
to classify three task difficulty levels from neural and
physiological signals while a user was immersed in a
virtual reality based Stroop test [4]. Results revealed
that when each subject is considered separately, an
average classification rate of 96.5% can be obtained;
however, the average classification rate was much
lower (36.9%, close to random guess) when a subject’s
perception of task difficulty was classified using data
from other subjects only.

∗Machine Learning Laboratory, GE Global Research, Niskayuna, NY
12309 USA.
†Department of Psychology, University of North Texas, Denton, TX

90094 USA.

The significant impact of individual differences on
cognitive state recognition performance underscores
the critical need for customizing the cognitive state
recognition algorithm to each individual user. Usually
this can be done by collecting some user-specific
training data training examples in this paper) and
then re-tuning the parameters of the recognition al-
gorithm. Because collecting user-specific data is time-
consuming and may also affect the user’s interest
in using the system, there is a need to minimize
this effort, i.e., to identify the optimal parameters
of a cognitive state recognition algorithm using a
minimum number of user-specific training examples.

METHODS

Automatic Cognitive State Recognition Algorithms

In this section we present the basic ideas of our
automatic cognitive state algorithms using a simple k-
nearest neighbor (kNN) classifier [7]. More technical
details on the algorithms and results for more sophis-
ticated classifiers such as the SVM can be found in a
forthcoming journal paper [8].

Empirically, the most intuitive method to tailor
a cognitive state recognition algorithm is to collect
a batch of user-specific training examples at once,
and then estimate the recognition performance by
cross-validation until either the cross-validation per-
formance is satisfactory, or the maximum number of
iterations or training examples is reached. However,
there are many techniques to improve this method.
Two of them are used in this paper:

• Transfer Learning (TL) [9]: Use the information con-
tained in other subjects’ training data. Although
training data from other subjects may not be
completely consistent with a new subject’s pro-
file, they still contain some useful information, as
people may exhibit similar responses at the same

2

cognitive state. As a result, improved cognitive
state recognition performance may be obtained
by combining a minimum amount of user-specific
training data with large amounts of auxiliary
training data from other subjects.
In the kNN classifier we need to optimize the
number of NNs, k. This is done through in-
ternal cross-validation [10]. The most important
parameter in determining the optimal k is the
internal cross-validation accuracy on the user-
specific training samples, i.e., the portion of the
correctly classified user-specific training samples
in the internal cross-validation. However, because
the number of user-specific data is very small,
different k may easily result in the same in-
ternal cross-validation accuracy. So, in our TL
algorithm the internal cross-validation accuracy
on the selected “good” auxiliary training samples
is used to break the ties. We have shown [11]
that this approach can result in better recognition
accuracy.
How the “good” auxiliary training examples are
selected is very important to the success of the
TL algorithm. The general guideline is to select
auxiliary training examples that are similar to
the user-specific training examples. The following
approach for classification is used in this paper:

1) Computing the mean feature vector of each
class for the new subject, from the user-
specific training samples. These are denoted
as m

p
i , where i = 1, 2, ..., c is the class index.

2) Computing the mean feature vector of each
class for each subject in the auxiliary dataset.
These are denoted as m

j
i , where i = 1, 2, ..., c

is the class index and j is the subject index.
3) Select the subject with the smallest

difference from the new subject, i.e.,
argminj

∑c

i=1
||mp

i −m
j
i ||

2, and use his/her
data as ”good” auxiliary training data.

The above TL algorithm is denoted as TL in this
paper.

• Active Class Selection (ACS) [12]: Optimally generate
the user-specific training samples online. As the user-
specific training data are generated on-the-fly,
we need to determine which tasks are presented
to the user. Assume there are c classes of tasks
that are corresponding to c different cognitive
states. The simplest approach is to select the tasks
uniformly from all classes. However, this may not
result in optimal performance, as some classes
may be easier to train than others. ACS can be
used to optimize the training example generation
process.
In [13] we compared two ACS algorithms, pro-
posed by Lomasky et al. [12], with a baseline
uniform sampling approach, and found that one
of them consistently outperformed the baseline

when the kNN classifier was used. That approach
is considered and improved in this paper. The
ACS method relies on the assumption that poor
class accuracy is due to not having observed
enough training examples. It requires internal
cross-validation to evaluate the performance of
the current classifier so that the class with poor
classification accuracy can be identified and then
more training examples can be generated for that
class.
The ACS algorithm begins with a small set of l0
user-specific training examples, where li is the
number of instances to generate in Iteration i.
ACS is used to determine p

j
i (0 6 p

j
i 6 1),

the portion of the li instances that should be
generated from Class j. In Iteration i, we record
the classification accuracy (in the leave-one-out
cross-validation) for each class, aji , j = 1, 2, ..., c.
Then, Lomasky et al. [12] defined the probability
of generating a new instance from Class j as:

p
j
i =

1

a
j

i∑c

j=1

1

a
j

i

, j = 1, 2, ...c (1)

i.e., it is proportional to the inverse of a
j
i . We

improved this approach by adding a constraint
that no two consecutive new instances can be
generated from the same class, i.e., if the last new
instance is generated from Class h, then the next
new instance is generated from Class j (j 6= h)
with probability:

p
j
i =

1

a
j

i∑
j 6=h

1

a
j

i

, j 6= h (2)

This improvement reduces the risk that most new
instances are generated from the class which has
the lowest accuracy but is difficult to improve,
and our experiments showed that it performs
better than Lomasky et al.’s original approach.
The above ACS algorithm is denoted as ACS in
this paper.

Because TL considers how to make use of data from
other subjects and ACS considers how to optimally
generate user-specific training examples online, they
are independent and complementary. So, it is possible
that better performance can be obtained by combining
TL and ACS. The basic idea is to use TL to select
the optimal classifier parameters, and then ACS to
generate most informative new training examples,
as illustrated in Fig. 1. This algorithm is denoted
TL+ACS in this paper.

The idea of TL+ACS can be illustrated with the
following example. Suppose there are three cognitive
states, and we start from 3 user-specific training sam-
ples (one for each state) and generate one new train-
ing sample in each iteration until the desired cross-
validation accuracy is reached. In the first iteration,

3

we use TL (combining the 3 user-specific training
samples with a large number of “good” auxiliary
training samples) to identify the optimal k, and then
use ACS to compute the probability that the new
training sample should be generated from each state.
A new training sample is then generated according to
the three probabilities. It is added to the user-specific
training dataset. These 4 user-specific training sam-
ples are then combined with a large number of “good”
auxiliary training samples and used in the second
iteration. The program iterates until the desired cross-
validation accuracy is reached. The optimal k obtained
in the last iteration (identified by TL) is output as the
optimal kNN parameter.

A few initial primary training

examples

TL to determine the optimal

classifier parameters

Massive

labeled auxiliary

training examples

ACS to determine from

which classes the new

primary training examples

should be generated

Generate and add new

primary training examples

Terminate?
���

��

Output the optimal

parameters from TL

Fig. 1. Combining TL and ACS.

Experiment Setup

The data was drawn from a larger study in the Virtual
Reality Stroop Task (VRST) [4], where neural and
physiological measures were used to predict levels of
threat and task difficulty. The VRST is one module in
the VRCPAT, a battery of tests found in an adaptive
virtual environment, which consists of a virtual city,
a virtual vehicle checkpoint, and a virtual Humvee
driving scenario in simulated Iraqi and Afghani set-
tings [14].

The VRST involves the subject being immersed in a
virtual Humvee that travels down the center of a road
in a simulation environment with military relevant
events while Stroop stimuli appear on the windshield
(see Fig. 2). The VRST is a measure of executive
functioning and was designed to emulate the classic
Stroop test [15]. Like the traditional Stroop, the VRST
requires an individual to press one of three computer
keys to identify each of three colors, (i.e., red, green, or
blue). Unlike the traditional Stroop, the VRST adds a
simulation environment with military relevant events
in high and low threat settings. Participants interacted
with VRST through an eMagin Z800 head-mounted

display (HMD) and a Logitech Driving Force steering
wheel with accelerator and brake pedals. To increase
the potential for sensory immersion, a tactile trans-
ducer was built using a three foot square platform
with six Aura bass shaker speakers.

(a) (b)

(c)

Fig. 2. The Humvee Stroop scenarios. (a) Color nam-

ing; (b) Word reading; and, (c) Interference.

In this study participants rode in a simulated
Humvee through alternating zones of low threat (i.e.,
little activity aside from driving down a desert road)
and high threat (i.e., gunfire, explosions, and shouting
amongst other stressors). The VRST was employed to
manipulate levels of task difficulty. It consisted of 3
conditions: 1) word-reading, 2) color-naming, and 3)
interference. Each Stroop condition was experienced
once in a high threat zone and once in a low threat
zone. There are many different task difficulty levels
in VRST. In this study we chose the following three:

• Scenario I: Low threat, color naming.
• Scenario II: High threat, color naming.
• Scenario III: High threat, interference.

Each scenario consisted of 50 stimuli. Three colors
(Blue, Green, and Red) were used, and they were dis-
played randomly with equal probability. In Scenario I,
50 colored numbers were displayed one by one while
the subject was driving through a safe zone. Scenario
II was similar to Scenario I, except that the subject
was driving through an ambush zone. Scenario III
was similar to Scenario II, except that Stroop stimuli
instead of color naming stimuli were used. In terms
of task difficulty, the three scenarios are in the order
of I < II < III.

A total of 20 college-aged subjects participated in
the study. Two of the 20 subjects did not respond at
all in one of the three scenarios, and were excluded as
outliers. After informed consent was obtained, basic
demographic information was recorded. While expe-
riencing the VRST, participant neural and physiolog-
ical responses – Electrocardiographic activity (ECG),

4

Electrodermal activity (EDA), Electroencephalogra-
phy (EEG), and Respiration (RSP) – were recorded
using a Biopac 150 system. EEG was measured using
seven electrodes placed at locations Fp1, Fp2, Fz, Cz,
Pz, O1, and O2 according to the international 10-
20 system for EEG electrode placement. The EEG
signal was recorded at 512 Hz, and was referenced
to linked ear electrodes. EDA was measured using
Ag/AgCl electrodes placed on the index and middle
fingers of the non-dominant hand. ECG was recorded
with use of a Lead 1 electrode placement, with one
Ag/AgCl electrode placed on the right inner forearm
below the elbow, another in the same position on
the left inner forearm, and a third on the left inner
wrist to serve as a ground. Finally, RSP was recorded
with a transducer belt placed around widest area of
the rib cage. The University of Southern California’s
Institutional Review Board approved the study.

RESULTS

Each of the 18 subjects had 150 responses (50 for each
task difficulty level). The same 29 features as those in
[5] were used to classify the cognitive states, and they
are also shown in Table 1. Twenty-one features were
extracted from EEG, three from EDA, three from RSP,
and two from ECG. Feature extraction consisted of
segmenting the data into 3-second epochs that were
time locked from 1 second prior to the stimulus occur-
rence to 2 seconds after. EEG data was filtered using a
[1, 30] Hz bandpass filter, epoched into overlapping 1
second windows, and detrended. Spectral power was
then calculated in the theta [3.5, 7] Hz, alpha [7.5,
13.5] Hz, and beta [13.5, 19.5] Hz frequency bands
for each channel. The EDA features were the mean,
minimum, and maximum amplitude response in the
epoch window. Respiration was scored similarly, with
mean, minimum, and maximum amplitude in the
epoch window. ECG features consisted of the number
of heartbeats and the average inter-beat intervals (IBIs,
scored as the time difference in seconds between
successive R waves) in the epoched window. We
normalized each feature for each individual subject
to [0, 1].

In [5] we have reported that when we trained a
SVM classifier on 17 subjects and tested it on the
remaining subject, the average classification rate was
36.9%, close to random guess. We also trained a kNN
classifier on 17 subjects and tested it on the remaining
subject. The average classification rate was 35.8%,
again close to random guess. Next we show how
classification performance can be improved using our
proposed approaches and a few user-specific training
examples.

In kNN classification we set the maximum num-
ber of user-specific training examples to 25, i.e., the
algorithms terminated when 25 user-specific training
examples were generated. The Euclidean distance was

used. We studied each subject separately, and for each
subject l0 = 3 (so that there is at least one user-specific
training example for each class). We used li = {1, 2, 3}
for ∀i, i.e., in the first experiment, only one user-
specific training example was generated in each it-
eration; in the second experiment, two user-specific
training examples were generated in each iteration;
and in the third experiment, three user-specific train-
ing examples were generated in each iteration. After
Iteration i, the kNN classification performance was
evaluated using the remaining 150−

∑i−1

j=0
lj responses

from the same subject. We repeated the experiment
100 times (each time the l0 initial training examples
were chosen randomly) for each subject and li, and
then report the average performances of the four algo-
rithms. It is necessary to repeat the experiment many
times to make the results statistically meaningful be-
cause there are two forms of randomness: 1) a subject
generally had different responses at the same task
difficulty level (class label), so for the same sequence
of class labels the training examples were different;
and, 2) the new class label was generated according to
a probability distribution instead of deterministically.

The average performances of the four algorithms
for li = {1, 2, 3} on the 18 subjects are shown in Fig. 3.
The performances on individual subjects are shown in
Fig. 4 for li = 1. Observe from Fig. 3 that:

1) TL outperformed the baseline approach. The
performance improvement is generally larger
when the number of user-specific training ex-
amples is small. As the number of user-specific
training examples increases, the performances of
TL and the baseline converge, i.e. the effect of
auxiliary training data decreases as the number
of user-specific training data samples increases.

2) ACS outperformed the baseline approach, and
when the number of user-specific training ex-
amples increased the performance improvement
of ACS became larger than the performance
improvement of TL over the baseline.

3) TL+ACS outperformed the other three ap-
proaches. It inherited both TL’s superior perfor-
mance for small number of user-specific training
examples and ACS’s superior performance for
large number of user-specific training examples,
and showed improved performance overall.

To show that the performance differences among
the four algorithms are statistically significant, we
performed paired t-tests to compare their average
performances, using α = 0.05. The results showed that
except for TL+ACS vs ACS for li = 3, the perfor-
mance difference between all other pair of algorithms
is statistically significant (Table 2).

As the ultimate goal of the improved algorithms
is to learn an optimal classifier using a minimum
number of user-specific training examples, it is also
interesting to study how many user-specific training

5

TABLE 1
The 29 features used by the kNN classifier.

EEG
SCL RSP ECG FP1 FP2 Fz Cz Pz O1 O2

SCLmin SCLmax SCLmean RSPmin RSPmax RSPmean Heartbeat IBI θ α β θ α β θ α β θ α β θ α β θ α β θ α β

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.7558

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7313

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8

0.9

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.7702

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8409

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.6987

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8022

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6006

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6
0.6444

0.9517

4 10 20 25

0.3288

0.4

0.5
0.5425

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6123

0.9517

4 10 20 25

0.3288

0.4

0.5

0.5974

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.661

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8

0.8511

0.9517

4 10 20 25

0.3288

0.4

0.5

0.6

0.7

0.8

0.8649

0.9517

Fig. 4. Performance comparison of the four kNN classifiers on the 18 subjects when only one user-specific
training example was generated in each iteration. ——: Baseline; – - – -: TL; - - - -: ACS; – – –: TL+ACS.

TABLE 2
Paired t-test results (α = 0.05) for kNN classification. The df for li = 1 is 21 because there are 22 different

numbers of user-specific training examples in this case (4, 5, ..., 25). The df for li = 2 is 10 because there are 11

different numbers of user-specific training examples in this case (5, 7, ..., 25). The df for li = 3 is 6 because
there are 7 different numbers of user-specific training examples in this case (6, 9, ..., 24).

TL vs Baseline ACS vs Baseline TL+ACS vs Baseline TL+ACS vs TL TL+ACS vs ACS
li df t p df t p df t p df t p df t p

1 21 2.66 <0.05 21 6.16 <0.05 21 7.95 <0.05 21 9.49 <0.05 21 2.13 <0.05
kNN 2 10 3.36 <0.05 10 5.62 <0.05 10 6.98 <0.05 10 8.15 <0.05 10 2.69 <0.05

3 6 3.00 <0.05 6 5.25 <0.05 6 5.69 <0.05 6 7.42 <0.05 6 2.15 =0.08

6

4 10 20 25
0.3288

0.4

0.5

0.6

0.7

0.76

Number of user−specific training examples

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

TL+ACS

ACS

TL

Baseline

(a)

5 10 20 25
0.3288

0.4886

0.6

0.7

0.76

Number of user−specific training examples

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

TL+ACS

ACS

TL

Baseline

(b)

6 10 20 24
0.3288

0.5237

0.6

0.7

0.76

Number of user−specific training examples

C
la

ss
if

ic
at

io
n

 a
cc

u
ra

cy

TL+ACS

ACS

TL

Baseline

(c)

Fig. 3. Average performance of the four kNN classi-
fiers on the 18 subjects. (a) One user-specific training

example was generated in each iteration; (b) Two user-
specific training examples were generated in each it-

eration; (c) Three user-specific training examples were

generated in each iteration.

examples can be saved by using the three improved
algorithms, compared with the baseline approach.
For each subject, we first find the best performance
achieved by the baseline method, which is also the
performance when the number of user-specific train-
ing examples is 25. We then find Np′

, the minimum
number of user-specific training examples TL+ACS

(or TL, or ACS) needs to achieve the same or better
performance. Finally, 25−Np′

is the number of user-
specific training examples saved by using an im-
proved algorithm. These numbers for the 18 subjects
are shown in Fig. 5 for li = {1, 2, 3}. Observe that
generally TL can save a small number of user-specific
training examples, and the savings of TL+ACS and
ACS over the baseline approach are large for most
subjects.

2 4 6 8 10 12 14 16 18
0

5

10

15

Subject index

N
u
m

b
er

 o
f

sa
v
ed

 e
x
am

p
le

s

TL+ACS

ACS

TL

(a)

2 4 6 8 10 12 14 16 18
0

5

10

15

Subject index

N
u
m

b
er

 o
f

sa
v
ed

 e
x
am

p
le

s

TL+ACS

ACS

TL

(b)

2 4 6 8 10 12 14 16 18
0

5

10

15

Subject index

N
u
m

b
er

 o
f

sa
v
ed

 e
x
am

p
le

s

TL+ACS

ACS

TL

(c)

Fig. 5. Performance improvements of TL, ACS, and
TL+ACS over the baseline approach, in terms of the

number of user-specific training examples saved to
achieve the best baseline performance. (a) li = 1; (b)

li = 2; (c) li = 3.

DISCUSSIONS

We have demonstrated through a kNN classifier that
TL and ACS can each help learn an improved classi-
fier given the same number of user-specific training
examples, and their combination can achieve even
larger performance improvement. So, for same level

7

of classification accuracy, TL+ACS may require a
smaller number of user-specific training examples.
This will reduce the data acquisition effort to cus-
tomize an automatic task difficulty recognition sys-
tem, and hence increase its usability and popularity.

Returning to the VE application introduced in the
Introduction, here is a scenario of how TL+ACS

could be used in automatic cognitive state classifica-
tion. The VE maintains a database with many different
subjects and their physiological responses at different
cognitive states. A new user can build his/her profile
for automatic cognitive state recognition by taking
a few tests online. Assume there are c classes of
cognitive states. The VE first displays c tests, one from
each class. The physiological responses from the user,
along with selected “good” auxiliary training exam-
ples from the subject database, are then used by TL to
identify the optimal parameters for the classifier. The
TL module also computes the classification accuracy
from cross-validation using these optimal parameters.
If the classification accuracy is not satisfactory, the
ACS module then determines from which cognitive
class the next test should be displayed. The VE gen-
erates the corresponding test and records the user’s
physiological responses during the test. Hence a new
user-specific training example is obtained and added
to the user-specific training example database. The TL

module is used again to select the optimal parameters
for the classifier and compute the cross-validation
accuracy. If the accuracy is satisfactory, then the VE
configures the classifier using the optimal parame-
ters and stops training; otherwise, it calls the ACS

module to generate another new user-specific training
example from the user and iterates the process. The
advantage is that, without TL+ACS, the user may
need to finish 25 tests to build a reliable classifier,
but with TL+ACS, maybe only 15 tests are enough.
So, TL+ACS can save the user’s time to customize
an automatic cognitive state recognition system. More
importantly, this will increase the user’s interest in
using such a system, because generally people do
not like to take long tests or perform time-consuming
calibrations even they are very simple.

CONCLUSIONS

Automatic cognitive state recognition is very impor-
tant for military training, rehabilitation, soldier safety,
and mission success. However, individual differences
make it difficult to develop a generic cognitive state
recognition algorithm whose model parameters fit all
subjects. It is hence important to customize the recog-
nition algorithm for each individual user by adapting
its parameters using some user-specific training exam-
ples. However, collecting user-specific data is time-
consuming and may also affect the user’s interest
in using the recognition system. In this paper we
have shown how TL and ACS, and especially their

combination, can help learn an optimal classifier using
a minimum number of user-specific (user-specific)
training examples. TL exploits the information con-
tained in auxiliary training examples, and ACS opti-
mally selects the new training examples to generate
online. Our approaches can reduce the data acquisi-
tion effort in customizing a cognitive state recognition
system, improving its usability and popularity.

ACKNOWLEDGMENT

The data was collected under project “Psychophysio-
logical Interface for Neurocognitive Assessment Using
Virtual Environments” W911NF-09-2-0048 (T.D. Par-
sons, 2009-2012). The research was not supported by
any funding.

REFERENCES

1. J. Saxton, L. Morrow, A. Eschman, G. Archer, J. Luther, and
A. Zuccolotto, “Computer assessment of mild cognitive impair-
ment,” Postgraduate medicine, vol. 121, no. 2, pp. 177–185, 2009.

2. F. D. Rose, B. M. Brooks, and A. A. Rizzo, “Virtual reality
in brain damage rehabilitation: Review,” CyberPsychology &
Behavior, vol. 8, no. 3, pp. 241–262, 2005.

3. A. Henderson, N. Korner-Bitensky, and M. Levin, “Virtual
reality in stroke rehabilitation: A systematic review of its
effectiveness for upper limb motor recovery,” Topics in Stroke
Rehabilitation, vol. 14, no. 2, pp. 52–61, 2007.

4. T. D. Parsons, C. Courtney, B. Arizmendi, and M. Dawson,
“Virtual reality Stroop task for neurocognitive assessment,”
Studies in Health Technology and Informatics, vol. 143, pp. 433–
439, 2011.

5. D. Wu, C. G. Courtney, B. J. Lance, S. S. Narayanan, M. E.
Dawson, K. S. Oie, and T. D. Parsons, “Optimal arousal identifi-
cation and classification for affective computing: Virtual Reality
Stroop Task,” IEEE Trans. on Affective Computing, vol. 1, no. 2,
pp. 109–118, 2010.

6. V. Vapnik, The Nature of Statistical Learning Theory. Berlin:
Springer-Verlag, 1995.

7. B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern
Classification Techniques. Los Alamitos, CA: IEEE Computer
Society Press, 1991.

8. D. Wu, B. J. Lance, S. S. Narayanan, and T. D. Parsons,
“Collaborative filtering for brain-computer interaction using
transfer learning and active class selection,” Proc. of the IEEE,
2012, submitted.

9. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Trans. on Knowledge and Data Engineering, vol. 22, no. 10, pp.
1345–1359, 2010.

10. S. Varma and R. Simon, “Bias in error estimation when us-
ing cross-validation for model selection,” BMC Bioinformatics,
vol. 7, no. 91, 2006.

11. D. Wu and T. D. Parsons, “Inductive transfer learning for
handling individual differences in affective computing,” in
Affective Computing and Intelligent Interaction, Memphis, TN,
October 2011.

12. R. Lomasky, C. E. Brodley, M. Aernecke, D. Walt, and M. Friedl,
“Active class selection,” in Proc. 18th European Conference on
Machine Learning, Warsaw, Poland, September 2007, pp. 640–
647.

13. D. Wu and T. D. Parsons, “Active class selection for arousal
classification,” in Affective Computing and Intelligent Interaction,
Memphis, TN, October 2011.

14. T. D. Parsons and A. A. Rizzo, “Affective outcomes of virtual
reality exposure therapy for anxiety and specific phobias: A
meta-analysis,” Journal of Behavior Therapy and Experimental
Psychiatry, vol. 39, pp. 250–261, 2008.

15. J. Stroop, “Studies of interference in serial verbal reactions,”
Journal of Experimental Psychology, vol. 18, pp. 643–661, 1935.

