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Abstract—Interval type-2 fuzzy logic systems (IT2 FLSs) have
been successfully employed in many applications, and frequently
they outperform their type-1 (T1) counterparts. The reasons are
still under exploration. This paper points out two fundamental
differences between IT2 FLSs and traditional T1 FLSs: 1) Nov-
elty, meaning that the upper and lower membership functions of
the same IT2 FS may be used simultaneously in computing each
bound of the type-reduced interval; and, 2) adaptiveness, meaning
that the embedded T1 fuzzy sets used to compute the bounds of
the type-reduced interval change as input changes. Adaptiveness
has been explained in our previous studies; however, this is the
first time that novelty is discovered. Based on these fundamental
differences, we show that an IT2 FLS with Karnik-Mendel type-
reducer cannot be implemented by traditional T1 FLSs. We also
examine the reasonableness of five approximations to the Karnik-
Mendel algorithms using these two criteria. None of them can
simultaneously capture novelty and adaptiveness. The results in
this paper will help researchers understand the fundamentals of
IT2 FLSs.

Index Terms—Interval type-2 fuzzy logic system, type-1 fuzzy
logic system, type-reduction, Karnik-Mendel algorithms

I. INTRODUCTION

Interval type-2 fuzzy logic systems (IT2 FLSs) [16] have

been gaining popularity rapidly in the last decade. Many

applications, particularly those in control [7]–[9], [11]–[13],

[22], [29], [32], [33], image processing [2], [20], [21], and

speech recognition [15], [36], have demonstrated that IT2

FLSs can outperform their type-1 (T1) counterparts.

However, one concern of IT2 FLSs is their computational

cost, as there is no closed-form formula for computing the

output, and usually we rely on the iterative Karnik-Mendel

(KM) algorithms [10], [16]. There has been several approaches

to expedite this process, which can be grouped into four

categories:

1) More efficient implementations of the KM algorithms,

e.g., the Enhanced KM algorithms [18], [24], [25], a

fast recursive method for computing the generalized

centroid of IT2 FSs [14], an iterative algorithm with

stop condition for computing the generalized centroid1

[6], and an iterative algorithm with stop condition and

new initialization [?].

1Though the latter two algorithms [6], [14] were initially proposed for
computing the generalized centroid of IT2 FSs, they can also be used in
type-reduction of IT2 FLSs.

2) Approximations of the KM algorithms, e.g., the Un-

certainty Bounds method [35], which approximates the

interval output of the KM algorithms, the equivalent

membership grade methods [19], [30], which find an

embedded T1 fuzzy set (FS) to replace each IT2 FS,

and the linear combination methods [1], [4], which use

a linear combination of several T1 FLSs to approximate

the IT2 FLS.

3) Alternatives to the KM algorithms, e.g., Coupland and

John [3] used the join operation to combine the fired rule

consequents into a new IT2 FS and then computed its

geometric centroid as the output. Note that this method

only works when the rule consequents are IT2 FSs.

4) Simplified IT2 FLS structures, e.g., based on the ob-

servation [29], [32] that an IT2 fuzzy logic controller

tends to have a smoother control surface in the region

around the steady state (both the error and the change

of error approach 0), Wu and Tan [28], [33] proposed a

structure to use IT2 FSs only for this critical region and

T1 FSs for the rest. The simplified IT2 FLS achieved

similar performance as traditional IT2 FLSs, but the

computational cost was greatly reduced.

This paper focuses on the second category. Our previous

studies [26], [27] have shown that the approximations to the

KM algorithms are different from the original KM algorithms

in that, when the lower membership functions of the IT2

FSs do not cover the input domain completely, the original

KM algorithms may have jump discontinuities2, whereas the

approximations do not. This paper takes a closer look at these

approximations: Do they capture the essential characteristics

of the original KM algorithms? Particularly, can an IT2 FLS

with KM type-reducer be accurately implemented by a tradi-

tional T1 FLS or a linear combination of several traditional

T1 FLSs?

The rest of this paper is organized as follows: Section II

presents some background materials on IT2 FSs and FLSs,

and two examples to illustrate the operations of an IT2 FLS.

Section III points out two fundamental differences between

IT2 FLSs and T1 FLSs, and shows that IT2 FLSs with KM

2A function f(x) has a jump discontinuity at c if f(c) is defined but
lim

x→c+
f(x) 6= lim

x→c−
f(x), i.e., both f(c) and f(c + δ) are defined, but

f(c+ δ) does not approach f(c) as δ approaches 0.



type-reducer cannot be implemented by T1 FLSs. Section IV

introduces five existing approximations to the KM type-

reducer and examines their reasonableness using novelty and

adaptiveness. Finally, Section V draws conclusions.

II. INTERVAL TYPE-2 FUZZY SETS AND SYSTEMS

A. Interval Type-2 Fuzzy Sets (IT2 FSs)

Definition 1: A type-1 fuzzy set X is comprised of a domain

DX of real numbers (also called the universe of discourse of

X) together with a membership function (MF) µ
X

: DX →
[0, 1], i.e.,

X =

∫

DX

µ
X
(x)/x. (1)

Here
∫

denotes the collection of all points x ∈ DX with

associated membership grade µ
X
(x). �

Definition 2: [16], [17] An IT2 FS X̃ is characterized by

its MF µX̃(x, u), i.e.,

X̃ =

∫

x∈DX̃

∫

u∈Jx⊆[0,1]

µX̃(x, u)/(x, u)

=

∫

x∈DX̃

∫

u∈Jx⊆[0,1]

1/(x, u)

=

∫

x∈DX̃




∫

u∈Jx⊆[0,1]

1/u



/

x (2)

where x, called the primary variable, has domain DX̃ ; u ∈
[0, 1], called the secondary variable, has domain Jx ⊆ [0, 1] at

each x ∈ DX̃ ; Jx is also called the support of the secondary

MF; and, the amplitude of µX̃(x, u), called a secondary grade

of X̃ , equals 1 for ∀x ∈ DX̃ and ∀u ∈ Jx ⊆ [0, 1]. �

An example of an IT2 FS, X̃ , is shown in Fig. 1. Observe

that unlike a T1 FS, whose membership for each x is a number,

the membership of an IT2 FS is an interval. Observe also that

an IT2 FS is bounded from the above and below by two T1

FSs, X and X , which are called upper membership function

(UMF) and lower membership function (LMF), respectively.

The area between X and X is the footprint of uncertainty.

An embedded T1 FS is any T1 FS within the footprint of

uncertainty. X and X are two such sets.
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Fig. 1. An IT2 FS. X (the LMF), X (the UMF), and the dotted curve are
three embedded T1 FSs.

B. Interval Type-2 Fuzzy Logic Systems (IT2 FLSs)

Fig. 2 shows the schematic diagram of an IT2 FLS. It is

similar to its T1 counterpart, the major difference being that

at least one of the FSs in the rule base is an IT2 FS. Hence,

the outputs of the inference engine are IT2 FSs, and a type-

reducer [10], [16] is needed to convert them into a T1 FS

before defuzzification can be carried out.
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Fig. 2. An IT2 FLS.

In practice the computations in an IT2 FLS can be sig-

nificantly simplified. Consider the rulebase of an IT2 FLS

consisting of N rules assuming the following form:

Rn: IF x1 is X̃n
1 and · · · and xI is X̃n

I , THEN y is Y n

n = 1, 2, ..., N

where X̃n
i (i = 1, . . . , I) are IT2 FSs, and Y n = [yn, yn] is

an interval, which can be understood as the centroid [10], [16]

of a consequent IT2 FS3, or the simplest TSK model. In many

applications we use yn = yn, i.e., each rule consequent is a

crisp number.

For an input vector x′ = (x′
1, x

′
2, ..., x

′
I), typical computa-

tions in an IT2 FLS involve the following steps:

1) Compute the membership of x′
i on each Xn

i ,

[µXn
i
(x′

i), µX
n

i
(x′

i)], i = 1, 2, ..., I , n = 1, 2, ..., N .

2) Compute the firing interval of the nth rule, Fn(x′):

Fn(x′) = [µXn
1
(x′

1)× · · · × µXn
I
(x′

I),

µX
n

1
(x′

1)× · · · × µX
n

I
(x′

I)]

≡ [fn, f
n
], n = 1, ..., N (3)

3) Perform type-reduction to combine Fn(x′) and the

corresponding rule consequents. There are many such

methods [16]. The most commonly used one is the

center-of-sets type-reducer:

Ycos(x
′) =

⋃

fn∈Fn(x′)
yn∈Y n

N∑
n=1

fnyn

N∑
n=1

fn

= [yl, yr] (4)

It has been shown that [16], [18], [25]:

yl = min
k∈[1,N−1]

∑k

n=1 f
n
yn +

∑N

n=k+1 f
nyn

∑k

n=1 f
n
+
∑N

n=k+1 f
n

≡

∑L

n=1 f
n
yn +

∑N

n=L+1 f
nyn

∑L

n=1 f
n
+
∑N

n=L+1 f
n

(5)

3The rule consequents can be IT2 FSs; however, when the popular center-
of-sets type-reduction method [16] is used, these consequent IT2 FSs are
replaced by their centroids in the computation; so, it is more convenient to
represent the rule consequents as intervals directly.



yr = max
k∈[1,N−1]

∑k

n=1 f
nyn +

∑N

n=k+1 f
n
yn

∑k

n=1 f
n +

∑N

n=k+1 f
n

≡

∑R

n=1 f
nyn +

∑N

n=R+1 f
n
yn

∑R

n=1 f
n +

∑N

n=R+1 f
n (6)

where the switch points L and R are determined by

yL 6 yl 6 yL+1 (7)

yR 6 yr 6 yR+1 (8)

and {yn}n=1,...,N and {yn}n=1,...,N have been sorted

in ascending order, respectively.

yl and yr can be computed by the KM algorithms

[10], [16] or Enhanced KM (EKM) algorithms [25]. The

main idea of the KM algorithms is to find the switch

points for yl and yr. Take yl as an example. yl is the

minimum of Ycos(x
′). Since yn increases from the left

to the right along the horizontal axis of Fig. 3(a), we

should choose a large weight (upper bound of the firing

interval) for yn on the left and a small weight (lower

bound of the firing interval) for yn on the right. The KM

algorithm for yl finds the switch point L. For n 6 L, the

upper bounds of the firing intervals are used to calculate

yl; for n > L, the lower bounds are used. This ensures

yl is the minimum.
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Fig. 3. Illustration of the switch points in computing yl and yr . (a)
Computing yl: switch from the upper bounds of the firing intervals to the
lower bounds; (b) Computing yr: switch from the lower bounds of the firing
intervals to the upper bounds.

4) Compute the defuzzified output as:

y =
yl + yr

2
. (9)

C. Examples of IT2 FLS

In this subsection, the mathematical operations in an IT2

FLS, introduced above, are illustrated using two examples.

Consider an IT2 FLS with two inputs (x1 and x2) and one

output (y). Each input domain consists of two IT2 FSs, shown

as the shaded areas in Fig. 4. The rulebase consists of the

following four rules:

R1 : IF x1 is X̃11 and x2 is X̃21, THEN y is Y 1.

R2 : IF x1 is X̃11 and x2 is X̃22, THEN y is Y 2.

R3 : IF x1 is X̃12 and x2 is X̃21, THEN y is Y 3.

R4 : IF x1 is X̃12 and x2 is X̃22, THEN y is Y 4.
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Fig. 4. MFs of the IT2 FLS. (a) Input MFs of x1; (b) Input MFs of x2.

The corresponding rule consequents are given in Table I.

TABLE I
RULEBASE AND CONSEQUENTS OF THE IT2 FLS.

x2
P
P
P
P

x1 X̃21 X̃22

X̃11 Y 1 = [y1, y1] = [−1,−0.9] Y 2 = [y2, y2] = [−0.6,−0.4]

X̃12 Y 3 = [y3, y3] = [0.4, 0.6] Y 4 = [y4, y4] = [0.9, 1]

Example 1: Consider an input vector x′ = (x′
1, x

′
2) =

(−0.3, 0.6), as shown in Fig. 4. The firing intervals of the

four IT2 FSs are:

[µX11
(x′

1), µX11
(x′

1)] = [0.4, 0.9] (10)

[µX12
(x′

1), µX12
(x′

1)] = [0.1, 0.6] (11)

[µX21
(x′

2), µX21
(x′

2)] = [0, 0.45] (12)

[µX22
(x′

2), µX22
(x′

2)] = [0.55, 1] (13)

The firing intervals of the four rules are shown in Table II.

From the KM algorithms, we find that L = 1 and R = 3. So,

yl =
f
1
y1 + f2y2 + f3y3 + f4y4

f
1
+ f2 + f3 + f4

(14)

=
0.405× (−1) + 0.22× (−0.6) + 0× 0.4 + 0.055× 0.9

0.405 + 0.22 + 0 + 0.055
= −0.7169

yr =
f1y1 + f2y2 + f3y3 + f

4
y4

f1 + f2 + f3 + f
4



=
0× (−0.9) + 0.22× (−0.4) + 0× 0.6 + 0.6× 1

0 + 0.22 + 0 + 0.6
= 0.6244

Finally, the crisp output of the IT2 FLS, y, is:

y =
yl + yr

2
=

−0.7169 + 0.6244

2
= −0.0463. �

Example 2: Consider another input vector x′ = (x′
1, x

′
2) =

(0.3, 0.6), as shown in Fig. 5. The firing intervals of the four

IT2 FSs are:

[µX11
(x′

1), µX11
(x′

1)] = [0.1, 0.6] (15)

[µX12
(x′

1), µX12
(x′

1)] = [0.4, 0.9] (16)

[µX21
(x′

2), µX21
(x′

2)] = [0, 0.45] (17)

[µX22
(x′

2), µX22
(x′

2)] = [0.55, 1] (18)
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Fig. 5. Inputs in Example 2.

The firing intervals of the four rules are shown in Table III.

From the KM algorithms, we find that L = 2 and R = 3. So,

yl =
f
1
y1 + f

2
y2 + f3y3 + f4y4

f
1
+ f

2
+ f3 + f4

(19)

=
0.27× (−1) + 0.6× (−0.6) + 0× 0.4 + 0.22× 0.9

0.27 + 0.6 + 0 + 0.22
= −0.3963

yr =
f1y1 + f2y2 + f3y3 + f

4
y4

f1 + f2 + f3 + f
4

=
0× (−0.9) + 0.055× (−0.4) + 0× 0.6 + 0.9× 1

0 + 0.055 + 0 + 0.9
= 0.9194

Finally, the crisp output of the IT2 FLS, y, is:

y =
yl + yr

2
=

−0.3963+ 0.9194

2
= 0.2615. �

III. CAN AN IT2 FLS BE IMPLEMENTED BY TRADITIONAL

T1 FLSS?

Observe from (9), and also the two examples, that the

output of an IT2 FLS is the average of two “T1 FLSs”.

However, these two “T1 FLSs” are fundamentally different

from traditional T1 FLSs, for the following reasons:

1) Novelty: Take yl in (14) as an example. The firing levels

of the four rules are f
1
, f2, f3 and f4, respectively,

which are computed from different lower and upper

MFs, as shown in the first part of Table IV, and Fig. 6(a).

Observe that both the upper and lower MFs of X̃11 are

used in computing yl, and they are used in different

rules: The UMF of X̃11 is used in computing f
1
, the

firing level of Rule R1, whereas the LMF of X̃11 is used

in computing f2, the firing level of Rule R2. Similarly,

the upper and lower MFs of X̃21 are used simultaneously

in different rules for computing yl. Observe also from

the second part of Table IV and Fig. 6(b) that the upper

and lower MFs of X̃21 and X̃22 are used simultaneously

in different rules for computing yl. This novelty is

impossible for a traditional T1 FLS, where the same

MFs are always used in computing the firing levels of

all rules.

2) Adaptiveness: Comparing the two parts of Table IV,

and the two sub-figures in Fig. 6, we observe that when

the input (x′
1, x

′
2) changes from (−0.3, 0.6) to (0.3, 0.6),

different embedded T1 FSs are used in computing the

four firing levels and hence yl, which has been discov-

ered in [31]. This adaptiveness is again impossible for

a traditional T1 FLS.

TABLE IV

THE EMBEDDED T1 FSS FROM WHICH THE FOUR FIRING LEVELS IN (14)

AND (19) ARE OBTAINED.

X̃11 X̃12 X̃21 X̃22

UMF LMF UMF LMF UMF LMF UMF LMF

f
1 √ √

Equation (14) f2
√ √

(x′

1
, x′

2
) = (−0.3, 0.6) f3

√ √

f4
√ √

f
1 √ √

Equation (19) f
2 √ √

(x′

1
, x′

2
) = (0.3, 0.6) f3

√ √

f4
√ √

We consider the novelty and adaptiveness as two funda-

mental differences between IT2 FLSs and T1 FLSs. Though

they are illustrated by specific examples, the conclusion can

be extended to arbitrary IT2 FLSs.

Theorem 1: yl in (5) cannot be implemented by a traditional

T1 FLS. �

Proof: In this proof we make use of the following two facts:



TABLE II
FIRING INTERVALS OF THE FOUR RULES IN EXAMPLE 1.

Rule No.: Firing Interval → Rule Consequent

R1 : [f1, f
1
] = [µX11

(x′

1
) · µX21

(x′

2
), µ

X11
(x′

1
) · µ

X21
(x′

2
)] → [y1, y1] = [−1,−0.9]

= [0.4× 0, 0.9× 0.45] = [0, 0.405]

R2 : [f2, f
2
] = [µX11

(x′

1
) · µX22

(x′

2
), µ

X11
(x′

1
) · µ

X22
(x′

2
)] → [y2, y2] = [−0.6,−0.4]

= [0.4× 0.55, 0.9× 1] = [0.22, 0.9]

R3 : [f3, f
3
] = [µX12

(x′

1
) · µX21

(x′

2
), µ

X12
(x′

1
) · µ

X21
(x′

2
)] → [y3, y3] = [0.4, 0.6]

= [0.1× 0, 0.6× 0.45] = [0, 0.27]

R4 : [f4, f
4
] = [µX12

(x′

1
) · µX22

(x′

2
), µ

X12
(x′

1
) · µ

X22
(x′

2
)] → [y4, y4] = [0.9, 1]

= [0.1× 0.55, 0.6× 1] = [0.055, 0.6]

TABLE III
FIRING INTERVALS OF THE FOUR RULES IN EXAMPLE 2.

Rule No.: Firing Interval → Rule Consequent

R1 : [f1, f
1
] = [µX11

(x′

1
) · µX21

(x′

2
), µ

X11
(x′

1
) · µ

X21
(x′

2
)] → [y1, y1] = [−1,−0.9]

= [0.1× 0, 0.6× 0.45] = [0, 0.27]

R2 : [f2, f
2
] = [µX11

(x′

1
) · µX22

(x′

2
), µ

X11
(x′

1
) · µ

X22
(x′

2
)] → [y2, y2] = [−0.6,−0.4]

= [0.1× 0.55, 0.6× 1] = [0.055, 0.6]

R3 : [f3, f
3
] = [µX12

(x′

1
) · µX21

(x′

2
), µ

X12
(x′

1
) · µ

X21
(x′

2
)] → [y3, y3] = [0.4, 0.6]

= [0.4× 0, 0.9× 0.45] = [0, 0.405]

R4 : [f4, f
4
] = [µX12

(x′

1
) · µX22

(x′

2
), µ

X12
(x′

1
) · µ

X22
(x′

2
)] → [y4, y4] = [0.9, 1]

= [0.4× 0.55, 0.9× 1] = [0.22, 0.9]
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Fig. 6. The embedded T1 FSs used in (a) Equation (14), where (x′
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) = (−0.3, 0.6), and (b) Equation (19), where (x′
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) = (0.3, 0.6).



1) Fact 1: The rule firing levels used in the KM algorithms

are the bounds of the firing intervals. For an upper

bound, all involved embedded T1 FSs must be UMFs,

and for a lower bound, all involved embedded T1 FSs

must be LMFs. There is no mixture of UMFs and LMFs

in computing the firing level of any rule.

2) Fact 2: f
1

and fN are always used for computing yl
in (5), though we are not sure about whether the upper

or lower firing levels should be used for the rest of the

rules. For f
1
, all involved embedded T1 FSs must be

UMFs. For fN , all involved embedded T1 FSs must be

LMFs.

We consider two cases separately:

1) Rules R1 and RN share at least one IT2 FS X̃i. In this

case, according to Fact 2, for Rule R1 X i must be used,

whereas for Rule RN , Xi must be used. This novelty

cannot be implemented by a traditional T1 FLS.

2) Rules R1 and RN do not have any IT2 FS in com-

mon, (e.g., for yl in (14), R1 involves X̃11 and X̃21,

whereas R4 involves X̃12 and X̃22). This case is more

complicated than the previous one. We prove it by

contradiction. Assume yl in (5) can be implemented by

a traditional T1 FLS, where the same T1 MFs are used

in computing all firing levels, e.g., if the UMF of X̃11

is used in computing the firing level of Rule R1, it must

also be used in computing the firing levels of all other

rules involving X̃11.

In this second case, it is always possible to find a

Rule Rk such that Rules R1 and Rk share at least one

common IT2 FS X̃i, and Rules Rk and RN share at

least one common IT2 FS X̃j (e.g., for yl in (14), Rules

R1 and R2 share X̃11, and Rules R2 and R4 share

X̃22). According to Fact 2, Xi must be used in Rule

R1 for computing f
1
. If yl can be implemented by a

traditional T1 FLS, then Xi must also be used in Rule

Rk. According to Fact 1, Xj must also be used for

Rule Rk. For a traditional T1 FLS, this means Xj must

also be used in Rule RN , which is a contradiction with

Fact 2. So, again yl in (5) cannot be implemented by a

traditional T1 FLS. �

Theorem 2: yr in (6) cannot be implemented by a tradi-

tional T1 FLS. �

The proof is very similar to that for Theorem 1, so it is

omitted.

Base on Theorems 1 and 2, we can easily reach the

following conclusion:

Theorem 3: An IT2 FLS using the KM type-reducer cannot

be implemented by a traditional T1 FLS or a linear combina-

tion of several traditional T1 FLSs. �

Theorem 3 may help understand why IT2 FLSs can outper-

form T1 FLSs. There has been several attempts to answer this

fundamental question. The earliest argument is that, because

of the footprint of uncertainty, an IT2 FS has more degrees

of freedom than a T1 FS (i.e., more parameters are needed

to describe an IT2 FS than a T1 FS); hence, IT2 FLSs have

the potential to outperform T1 FLSs. Wu and Tan [29], [32]

and Jammeh et al. [9] have shown that an IT2 fuzzy logic

controller can outperform its T1 counterpart because it gives

a smoother control surface, especially in the region around the

steady state (both the error and the change of error approach

0). Wu and Tan [31] also showed that an IT2 FS is equivalent

to a group of T1 FSs (instead of one T1 FS), and which T1 FS

should be used depends on the input to the IT2 FLS. Du and

Ying [5] showed that an IT2 fuzzy-PI (or the corresponding

PD) controller is equivalent to a nonlinear PI (or PD) controller

with variable gains and control offset. Wu and Tan [34] further

showed that when the baseline T1 FLS implements a linear

PI control law and the IT2 FSs of an IT2 FLS are obtained

from the symmetrical perturbation of T1 FSs, the IT2 FLS

implements a variable gain PI controller near the origin, and

the variable gains depend on the inputs. They also gave the

closed-form solution of the equivalent PI gains near the origin.

More recently, Wu [23] used P-map to visualize the difference

between a T1 FLS and an IT2 FLS obtained from perturbing

the T1 FLS. He showed that the perturbation results in globally

smaller proportional gains, and hence the IT2 FLS is slower

than the baseline T1 FLS. Theorem 3 suggests that an IT2

FLS can implement more complex mappings than traditional

T1 FLSs: when there is no FOU, an IT2 FLS collapses to a

T1 FLS; with FOU, an IT2 FLS can implement a mapping

that cannot be obtained from a traditional T1 FLS.

IV. REASONABLENESS OF THE FIVE APPROXIMATIONS TO

THE KM TYPE-REDUCER

As mentioned in the Introduction, there are several approx-

imations to the KM type-reducer. With the two fundamental

differences between IT2 FLSs and T1 FLSs, and Theorems 1-

3, in mind, it is interesting to examine their reasonableness.

But first, these approximations are introduced in more details.

A. The Five Approximations

The five approximations [1], [4], [19], [30], [35] to the KM

type-reducer are:

1) The Uncertainty Bound (UB) Method: The UB type-

reducer, proposed by Wu and Mendel [35], computes

the output of the IT2 FLS by (9), but,

yl =
y
l
+ yl

2
(20)

yr =
y
r
+ yr

2
(21)

where

yl = min{y(0), y(N)} (22)

y
r
= max{y(0), y(N)} (23)

y
l
= yl −

∑N

n=1(f
n
− fn)

∑N

n=1 f
n ∑N

n=1 f
n

∑N

n=1 f
n(yn − y

1
)
∑N

n=1 f
n
(yn − yn)

∑N

n=1 f
n(yn − y1) +

∑N

n=1 f
n
(yn − yn)

(24)



yr = y
r
+

∑N

n=1(f
n
− fn)

∑N

n=1 f
n ∑N

n=1 f
n

∑N

n=1 f
n
(yn − y1)

∑N

n=1 f
n(yn − yn)

∑N

n=1 f
n
(yn − y1) +

∑N

n=1 f
n(yn − yn)

(25)

in which

y(0) =

∑N

n=1 f
nyn

∑N

n=1 f
n

(26)

y(N) =

∑N

n=1 f
n
yn

∑N

n=1 f
n (27)

y(N) =

∑N

n=1 f
nyn

∑N

n=1 f
n

(28)

y(0) =

∑N

n=1 f
n
yn

∑N

n=1 f
n (29)

The UB method explicitly considers the case that the

rule consequents are intervals [yn, yn]. For the other four

methods introduced below, yn = yn ≡ yn is used.

2) The Wu-Tan (WT) Method: Wu and Tan [30] pro-

posed a closed-form type-reduction and defuzzification

method by making use of the equivalent T1 membership

grades [31]. The basic idea is to first find an equivalent

T1 membership grade µXn
i
(xi) to replace each firing

interval [µXn
i
(xi), µX

n

i
(xi)], i.e.,

µXn
i
(xi) = µX

n

i
(xi)− hn

i (x)[µX
n

i
(xi)− µXn

i
(xi)]

(30)

where hn
i (x) is a function of the inputs x, and is

different for different IT2 FSs. Then, the firing strengths

of the rules become point (instead of interval) numbers

computed from these µXn
i
(xi), and the output of the IT2

FLS is then computed as

y =

∑N

n=1 f
nyn

∑N

n=1 f
n

. (31)

3) The Nie-Tan (NT) Method: Nie and Tan [19] proposed

another closed-form type-reduction and defuzzification

method, where the output of an IT2 FLS is computed

as:

y =

∑N

n=1(f
n + f

n
)yn

∑N

n=1(f
n + f

n
)

. (32)

Observe that the NT method is a special case of the WT

method when hn
i (x) = 0.5.

4) The Du-Ying (DY) Method: Du and Ying [4], [5]

proposed a different closed-form type-reduction and de-

fuzzification method. It first computes the crisp outputs

obtained by all possible combinations of the lower and

upper firing levels, i.e.,

ym =

∑N

n=1 f
n∗

yn
∑N

n=1 f
n∗

, m = 1, 2, ..., 2N (33)

where fn∗

∈ {fn, f
n
}. The final defuzzified output is

then computed as the average of all these 2N ym, i.e.,

y =
1

2N

2N∑

m=1

ym. (34)

5) The Begian-Melek-Mendel (BMM) Method: Begian,

Melek and Mendel [1] proposed another closed-form

type-reduction and defuzzification method for TSK IT2

FLSs, i.e.,

y = α

∑N

n=1 f
nyn

∑N

n=1 f
n

+ β

∑N

n=1 f
n
yn

∑N

n=1 f
n (35)

where α and β are adjustable coefficients.

B. Reasonableness of the Five Approximations

We check the reasonableness of the five approximations

to the KM type-reducer using novelty, adaptiveness, and

Theorem 3. The observations are:

1) The NT method, DY method, and BMM method use

a traditional T1 FLS or a linear combination of sev-

eral traditional T1 FLSs to approximate the KM type-

reducer. According to Theorem 3, they cannot accurately

duplicate the output of IT2 FLSs with KM type-reducer.

2) The WT method explicitly captures adaptiveness in the

sense that the embedded T1 FSs used to construct the T1

FLS change as input changes. However, whether there

exists a group of hn
i (x) to also capture the novelty is an

open problem.

3) For the UB method, y
l

and yr involve complex combi-

nations which cannot be decomposed into traditional T1

FLSs, thus the results in this paper cannot be directly

applied to it. yl and y
r

exhibit limited adaptiveness as

yl can be chosen from y(0) and y(N), and y
r

can be

chosen from y(0) and y(N). However, these terms do

not incorporate novelty.

V. CONCLUSIONS

In this paper, we have pointed out two fundamental differ-

ences between IT2 FLSs and traditional T1 FLSs: 1) Novelty,

meaning that the UMF and LMF of the same IT2 FS may

be used simultaneously in computing each bound of the

type-reduced interval; and, 2) adaptiveness, meaning that the

embedded T1 FSs used to compute the bounds of the type-

reduced interval change as input changes. Adaptiveness has

been discovered in our previous studies; however, this is the

first time that novelty is brought to our attention. We have

also showed that an IT2 FLS with KM type-reducer cannot

be implemented by traditional T1 FLSs. Finally, we have also

examined the reasonableness of five approximations to the KM

algorithms using novelty and adaptiveness. None of them can

simultaneously capture novelty and adaptiveness. The results

in this paper will help researchers understand the fundamentals

of IT2 FLSs.
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