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Abstract. Comparing the similarity between two fuzzy sets (FSs) is
needed in many applications. The focus herein is linguistic approximation
using type-1 (T1) FSs, i.e. associating a T1 FS A with a linguistic label
from a vocabulary. Because each label is represented by an T1 FS Bi,
there is a need to compare the similarity of A and Bi to find the Bi

most similar to A. In this paper, a vector similarity measure (VSM)
is proposed for T1 FSs, whose two elements measure the similarity in
shape and proximity, respectively. A comparative study shows that the
VSM gives best results. Additionally, the VSM can be easily extended
to interval type-2 FSs.

1 Introduction

Fuzzy sets (FSs), which handle uncertainties in a natural way, have been used
in numerous applications. The application of particular interest in this paper is
the linguistic approximation problem [1,2] using type-1 (T1) FSs 1, i.e. we have
a system whose inputs are linguistic labels modeled by T1 FSs, and after some
operations it outputs another T1 FS A, and, we want to map A to a linguistic
label in a vocabulary so that it can be understood linguistically. Because each
label in the vocabulary is represented by a T1 FS Bi, there is a need to compare
the similarity of A and Bi to find the Bi most similar to A.

Many similarity measures for T1 FSs have been introduced. According to Cross
and Sudkamp [4], they can be classified into four categories: (1) Set-Theoretic
Measures, (2) Proximity-Based Measures, (3) Logic-Based Measures, and
(4) Fuzzy-Valued Measures. Two similarity measures proposed particularly for
the linguistic approximation problem are Bonissone’s method [1,2] and Wenstøp’s
method [8]. In this paper, a vector similarity measure (VSM) for T1 FSs is pro-
posed. It is simpler than either of these two methods, and has better performance
on T1 FSs. Additionally, it can be easily extended to interval T2 FSs [9].

The rest of this paper is organized as follows: Section 2 reviews Bonissone’s
method and Wenstøp’s method for linguistic approximation using T1 FSs.
1 In this paper we call the original FSs introduced by Zadeh [10] in 1965 T1 FSs to

distinguish them from their extension, type-2 FSs, which were also introduced by
Zadeh [11] in 1975 to model more uncertainties.
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Section 3 proposes a VSM for the linguistic approximation problem. Section 4
compares the VSM with Bonissone’s method and Wenstøp’s method. Section 5
draws conclusions. Proofs of the theorems are given in Appendix A.

2 Existing Similarity Measures for Linguistic
Approximation

The literature on similarity measures for T1 FSs is quite extensive [4]. Two simi-
larity measures, Bonissone’s method and Wenstøp’s method, which are proposed
particularly for linguistic approximation, will be reviewed in this section.

2.1 Bonissone’s Linguistic Approximation Distance Measure

As mentioned in the Introduction, Bonissone’s [1, 2] linguistic approximation
distance measure was proposed to identify the linguistic label Bi which most
closely resembles a given FS A.

The first step of Bonissone’s method eliminates from further consideration
those linguistic labels determined to be very far away from A. For a given T1 FS
A, the distances between A and Bi, d1(A, Bi), are computed to identify M Bi

that are close to A (according to some tolerance parameter). Bonissone [2] first
computed four T1 FS features, centroid, cardinality, fuzziness and skewness, for
A and Bi, and then defined d1(A, Bi) as the weighted Euclidean distance between
the two four-dimensional points [(p1

A, p2
A, p3

A, p4
A)T and (p1

Bi
, p2

Bi
, p3

Bi
, p4

Bi
)T ]

represented by the values of the four features for each T1 FS, i.e.,

d1(A, Bi) =

⎡
⎣

4∑
j=1

w2
j (pj

A − pj
Bi

)2

⎤
⎦

1/2

. (1)

The weights2 wj (j = 1, 2, 3, 4) have to be pre-specified.
After pre-screening linguistic labels far away from A, Bonissone’s second step

uses the modified Bhattacharya distance [6] to discriminate between the M lin-
guistic labels close to A, i.e.,

d2(A, Bk) =

[
1 −

∫

X

(
μA(x)μBk

(x)
card(A) · card(Bk)

)1/2

dx

]1/2

k = 1, . . . , M (2)

The linguistic label corresponding to the smallest d2(A, Bk) is considered most
similar to A.

2.2 Wenstøp’s Linguistic Approximation Method

Wenstøp [8], who considered the same problem as Bonissone, states: “a linguistic
approximation routine is a function from the set of fuzzy subsets to a set of
2 We show w2

j in (1), because this is the way the equation is stated in [2].
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linguistic values.” Wenstøp used two parameters of a T1 FS, its imprecision
(cardinality) and its location (centroid). The imprecision (p1) was defined as the
sum of membership values, whereas the location (p2) was defined as the center
of gravity. He then computed

dW (A, Bi) =
[
(p1

A − p1
Bi

)2 + (p2
A − p2

Bi
)2

]1/2
i = 1, . . . , N (3)

and chose Bi with the smallest d
W

(A, Bi) as the one most similar to A. Observe
that Wenstøp’s method is a simplified version of Bonissone’s first step.

3 The VSM for T1 FSs

In this section a VSM for T1 FSs is proposed. Four desirable properties a simi-
larity measure should possess are introduced first.

3.1 Four Desirable Properties of a Similarity Measure

The following four properties are proposed for a reasonable similarity measure
for T1 FSs.

1) The similarity between two T1 FSs is 1 if and only if they are exactly the
same.

2) If two T1 FSs intersect, there should be some similarity between them.
3) If two T1 FSs become more distant from each other, similarity between them

should decrease.
4) The similarity between two T1 FSs should be a constant regardless of the

order in which they are compared, i.e. s(A, B) = s(B, A).

Next a VSM which possesses these properties is proposed.

3.2 The VSM for T1 FSs

When the similarity of two T1 FSs A and B are compared, it is necessary to
compare their shapes as well as proximity; hence, a VSM, sv(A, B), with two
components is proposed,

sv(A, B) = (s1(A, B), s2(A, B))T
, (4)

where s1(A, B) ∈ [0, 1] is a similarity measure on the shapes of A and B, and
s2(A, B) ∈ [0, 1] is a similarity measure on the proximity of A and B. To define
sv(A, B), s1(A, B) and s2(A, B) must first be defined.

3.3 Definition of s1(A, B)

Because the proximity of A and B is considered in s2(A, B), when computing
s1(A, B) A and B are “aligned” so that their shapes can be compared. A rea-
sonable alignment method is to move one or both of A and B so that their
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centroids, c(A) and c(B), coincide (see Fig. 1). The two T1 FSs can be moved
to any location as long as c(A) and c(B) coincide; this will not affect the value
of s1(A, B). In this paper B is moved to A and called B′, as shown in Fig. 1.

Once the two T1 FSs are “aligned,” s1(A, B) is computed by Jaccard’s unpa-
rameterized ratio model of similarity 3 [5]:

s1(A, B) =
card(A ∩ B′)
card(A ∪ B′)

=

∫
X

min(μA(x), μB′ (x))dx∫
X max(μA(x), μB′ (x))dx

. (5)

Observe that s1(A, B) is a set-theoretic measure [4].

Theorem 1. (a) 0 ≤ s1(A, B) ≤ 1; (b) s1(A, B) = 1 ⇔ A = B′; and, (c)
s1(A, B) = s1(B, A).

Proof: See Appendix A.1. �

A B B

( )c A ( )c B

Fig. 1. An example of the VSM for T1 FSs. c(A) and c(B) are the centroids of A and
B, respectively. B′ is obtained by moving B so that c(B) coincides with c(A). Note
that the shaded region can also be obtained by moving c(A) to c(B).

3.4 Definition of s2(A, B)

s2(A, B) measures the proximity of A and B, and is defined as

s2(A, B) ≡ h(d(A, B)) (6)

where d(A, B) = |c(A) − c(B)| is the Euclidean distance between the centers
of the centroids of A and B (see Fig. 1), and h can be any function satisfying:
(1) lim

x→∞h(x) = 0; (2) h(x) = 1 if and only if x = 0; and, (3) h(x) decreases
monotonically as x increases.

Theorem 2. s2(A, B) ∈ [0, 1], and s2(A, B) = 1 if and only if c(A) = c(B).

Proof: Theorem 2 is obvious from (6) and the above constraints on h(x). �
An example of s2(A, B) is

s2(A, B) = e−rd(A,B), (7)

3 It is called coefficient of similarity by Sneath in [7]. The term index of communality
has also been used [4].
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where r is a positive constant. s2(A, B) is chosen as an exponential function
because we believe the similarity between two FSs should decrease rapidly as
the distance between them increases.

3.5 On Converting sv(A, B) to a Scalar Similarity Measure ss(A, B)

sv(A, B) enables us to separately quantify the similarity of two features, shape
and proximity. In linguistic approximation sv(A, Bi) (i = 1, 2, . . . , N) need to be
ranked to find the Bi most similar to A. This can be achieved by first converting
the vector sv(A, Bi) to a scalar similarity measure ss(A, Bi) and then ranking
ss(A, Bi) (i = 1, 2, . . . , N).

In this paper, the scalar similarity between two T1 FSs A and B is computed
as the product of their similarities in shape and proximity 4, i.e.

ss(A, B) = s1(A, B) × s2(A, B) (8)

Properties of ss(A, B) include:

Theorem 3. (a) A = B ⇔ ss(A, B) = 1; (b) ss(A, B) > 0; (c) ss(A, B) >
ss(A, C) if B and C have the same shape and C is further away from A than B
is; and, (d) ss(A, B) = ss(B, A).

Proof: See Appendix A.2. �
Theorem 3 shows that ss(A, B) satisfies the four properties stated in Section 3.1.

4 Comparisons

4.1 Comparison with Bonissone’s Linguistic Approximation
Distance Measure

Both sv(A, B) and Bonissone’s method consider the shapes and proximity of A
and B. The main differences between them are:

(1) sv(A, B) is a one-step method, whereas Bonissone’s method is a two-step
method.

(2) sv(A, B) considers two features of A and B (shape and proximity). In Bonis-
sone’s first step, four features (centroid, cardinality, fuzziness and skewness)
are considered, and in his second step, only one feature is considered (the
modified Bhattacharya distance).

(3) sv(A, B) measures the similarity between A and B, i.e. a larger sv(A, B)
means A and B are more similar. On the other hand, Bonissone’s method
measures the distance (or difference) between A and B, i.e. a larger d2(A, B)
means A and B are less similar.

4 Recently, Bonissone, et al. [3] defined a similarity measure as a weighted minimum of
several sub-similarity measures. Although similar to our idea, their objective is quite
different from our objective; hence, their similarity measure is not used in this paper.



580 D. Wu and J.M. Mendel

4.2 Comparison with Wenstøp’s Linguistic Approximation Method

Wenstøp’s linguistic approximation method is quite similar to the VSM method
in that both of them use the centroid and cardinality. The differences are:

(1) The VSM computes the similarity between two T1 FSs, whereas Wenstøp’s
method computes the difference between two T1 FSs.

(2) The VSM first aligns A and B and then computes the cardinalities of A∩B
and A ∪ B, whereas Wenstøp’s method computes cardinalities of A and B
directly.

(3) The VSM can be used for T1 FSs of any shapes, whereas, as shown in
[8], the two parameters in Wenstøp’s method are insufficient criteria for
satisfactory linguistic approximation. As a further refinement, he includes
other characteristics of FSs, e.g. non-normality, multi-modality, fuzziness
and dilation [8].

4.3 Examples

For T1 FSs shown in Fig. 2, the results of Bonissone’s linguistic approximation
distance measure, Wenstøp’s linguistic approximation measure and the VSM
are shown in Table 1. The domain of x was discretized into 201 equally-spaced
points in all three methods, and r ≡ 4/|X | (|X | is the length of the support
of A ∪ B) in the VSM [see (7)]. Note that all Bk (k = 1, 2, 3, 4) are assumed
to survive Bonissone’s first step, hence (2) was used to compute Bonissone’s
distance measure. Observe that all methods indicate B2 is more similar to A
than is B1, which seems reasonable. When B3 and B4 are considered, Bonissone’s
measure indicates that they have the same similarity to A 5, and Wenstøp’s
measure indicates that B4 is more similar to A than B3 is. Both results seem
counter-intuitive, because B3 should be more similar to A than B4 is, as indicated
by the VSMs.

Table 1. Comparisons of similarity measures for T1 FSs A and Bk (k = 1, . . . , 4)
shown in Fig. 2

Measure k = 1 k = 2 k = 3 k = 4

d2(A, Bk) 0.2472 0.1617 1 1

dW (A, Bk) 28.5679 16.6650 38.6805 37.5736

ss(A, Bk) 0.6368 0.7208 0.0086 0.0013

5 If one FS must be chosen from Bk (k = 1, 2, 3, 4) so that it is most similar to A, then
B3 and B4 may be removed during Bonissone’s first step because they are too far
away from A; however, if only B3 and B4 are available and one of them must be chosen
so that it is more similar to A, Bonissone’s method will have a problem because both
B3 and B4 survive in the first step, and in the second step d2(A, B3) = d2(A, B4).
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Fig. 2. T1 FSs used in the comparative study

5 Conclusions

A vector similarity measure for T1 FSs has been proposed in this paper. It is
easy to understand, and its two components enable us to consider the similarity
between shapes and proximity separately and explicitly. The VSM is simpler than
two existing linguistic approximation methods, and yet a comparative study
showed that it has better performance. Additionally, the VSM can be easily
extended to interval T2 FSs [9].
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A Proof of Theorems

A.1 Proof of Theorem 1

Proof of (a). Because

0 ≤ min(μA(x), μB′(x)) ≤ max(μA(x), μB′ (x)) (9)

it follows that

0 ≤
∫

X

min(μA(x), μB′ (x))dx ≤
∫

X

max(μA(x), μB′ (x))dx (10)

Consequently,

s1(A, B) =

∫
X min(μA(x), μB′ (x))dx∫
X

max(μA(x), μB′ (x))dx
∈ [0, 1]. (11)

Proof of (b). A = B′ means μA(x) = μB′(x). Substituting these two equations
into (5),

s1(A, B) =

∫
X μA(x)dx∫
X

μA(x)dx
= 1, (12)

which proves the necessity of Theorem 1(b).
To prove the sufficiency of the result, observe that s1(A, B) = 1 means

∫

X

min(μA(x), μB′(x))dx =
∫

X

max(μA(x), μB′ (x))dx (13)

(13) holds if and only if

μA(x) = μB′(x) ∀x ∈ X. (14)

(14) means A = B′.

Proof of (c). s1(A, B) = s1(B, A) is obvious because the min and max opera-
tors in (5) do not concern the order of μA(x) and μB′(x), i.e. min(μA(x), μB′(x))
= min(μB′(x), μA(x)) and max(μA(x), μB′ (x)) = max(μB′(x), μA(x)). �

A.2 Proof of Theorem 3

Proof of (a). Sufficiency: A = B means s1(A, B) = 1 and s2(A, B) = 1; hence,
ss(A, B) = 1.

Necessity: ss(A, B) = 1 if and only if s1(A, B) = 1 and s2(A, B) = 1.
s1(A, B) = 1 means the shapes of A and B are the same, and s2(A, B) = 1
means the distance between A and B is zero. Consequently, A = B.
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Proof of (b). Observe that s1(A, B) > 0 and s2(A, B) > 0. Consequently,
ss(A, B) > 0.

Proof of (c). B and C have the same shape means

s1(A, B) = s1(A, C). (15)

C is further away from A than B means

s2(A, B) > s2(A, C). (16)

Hence,

s1(A, B) × s2(A, B) > s1(A, C) × s2(A, C), (17)

i.e. ss(A, B) > ss(A, C).

Proof of (d). Because neither s1(A, B) nor s2(A, B) concern the order of A and
B, i.e. s1(A, B) = s1(B, A) and s2(A, B) = s2(B, A), it follows that ss(A, B) =
ss(B, A). �
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