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ABSTRACT The firefly algorithm has been successfully used in many optimization problems. However,
the standard firefly algorithm uses a fixed randomization parameter in the optimization, which emphasizes
more on exploration than exploitation, and hence impacts its convergence. This paper proposes a switch-
mode firefly algorithm, which first focuses on exploration and then switches to exploitation. A fixed
randomization parameter is used in exploration, and a gradually decreasing random randomization parameter
is used in exploitation. The condition for the switching from exploration to exploitation is identified
automatically. Extensive experiments on 15 benchmark functions were performed to verify the effectiveness
of the proposed approach.

INDEX TERMS Firefly algorithm, global optimization, switch-mode.

I. INTRODUCTION
Many real-world optimization problems are nonlinear, non-
convex, and high-dimensional, and the derivatives of the
objective function may not be computed easily [1], [2]. Thus,
traditional optimization techniques, including exhaustive grid
search, mathematical programming, and backpropogation,
may not be readily applicable. Nature-inspired metaheuris-
tic algorithms [3]–[5], including genetic algorithms [6], [7],
particle swarm optimization [8]–[10], ant colony optimiza-
tion [11], artificial bee [12], etc, have been proposed for such
problems and achieved great success in practice.

Generally, a metaheuristic algorithm considers the follow-
ing two objectives in its operation [13], [14]:

1) Exploration (diversification), which probes the entire
search space with the hope of finding all promising
regions. Its goal is to diversify the search in order to
avoid getting trapped in a local optimum.

2) Exploitation (intensification), which probes a local
region of the search space with the hope of improving
a promising solution that has already been identified
through exploration.

A goodmetaheuristic approach needs to have a well-balanced
tradeoff between exploration and exploitation.

By mimicking the communication behavior of fireflies,
in 2009 Yang [15] introduced a novel metaheuristic approach
called firefly algorithm (FA), which can find the global
and local optima of the objective function simultane-
ously [1]. So far, FA has found successful applications in a
variety of problem domains, including economic load dis-
patch [16], capacitated facility location [17], image com-
pression [18], dynamic economic dispatch [19], knapsack
problems [20], mobile robot path planning [21], RFID net-
work planning [22], hyperspectral image classification [23],
etc.

However, the standard firefly algorithm (SFA) used a fixed
randomization parameter in optimization, which emphasizes
more on exploration than exploitation [24]. Thus, its con-
vergence speed is slow, and can be easily trapped into local
optima. Multiple improvements to the SFA have been pro-
posed in the literature, e.g., FA using simulated annealing
step strategy (SAFA) [14], FA using chaotic sequence to
serve as the absorption coefficient (CFA) [16], wise-step FA
which taking the fireflies’ personal and global best positions
into consideration (WSSFA) [25], FA with variable strategy
step size (VSSFA) [26], FA with neighborhood attraction
(NAFA) [27], hybrid multi-objective FA (HMOFA) using a
random attractiveness β0 [28], etc.
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Algorithm 1 The Standard Firefly Algorithm (SFA) [15]

Input: f (x), the object function to be maximized;
n, the size of the firefly population;
γ , the light absorption coefficient;
α, the randomization parameter;
K , the maximum number of iterations.

Output: x∗, which maximizes f (x).
Generate the initial firefly population {xi}i=1,...,n;
Compute f (xi), i = 1, . . . , n;
Set k = 1;
while k ≤ K do

for i = 1, . . . , n do
for j = 1, . . . , n do

if f (xi) < f (xj) then
Move Firefly i to Firefly j according to
(1);
Compute the updated f (xi);

end
end

end
k = k + 1;

end
Return x∗ = arg max

i=1,...,n
f (xi).

Although there are a lot of variants of FA, most of them
have not fully considered the different characteristics of
different evolutionary stages. Intuitively, exploration should
play a more important role at the early stage of FA to iden-
tify promising search regions. As the evolutionary process
goes on, however, exploitation should be emphasized to fine
tune the solutions. In consideration of these characteristics,
this paper proposes a switch-mode FA (SMFA), which first
focuses on exploration, and then switches to exploitation.
A fixed randomization parameter is used in exploration, and
a gradually decreasing random randomization parameter is
used in exploitation. The condition for the switching from
exploration to exploitation is identified automatically. Exten-
sive experiments on 15 benchmark functions were performed
to verify the effectiveness of SMFA.

The remainder of this paper is organized as follows:
Section II introduces the SFA. Section III proposes the
SMFA. Section IV compares the performance of SMFA with
another six FA variants on 15 benchmark functions. Finally,
Section V draws conclusions.

II. THE STANDARD FIREFLY ALGORITHM (SFA)
Fireflies use light for communication. The SFA was inspired
by this phenomena, and it uses the following three simplified
assumptions [15]:

1) All fireflies are unisex and are attracted to each other.
2) The attractiveness is proportional to the brightness of

a firefly, and is inversely proportional to the distance.

FIGURE 1. Search trajectory of a firefly in the SMFA. (a) Exploration;
(b) Exploitation. The region in (b) is the red framed region in (a).

FIGURE 2. The gradually decreasing random α. α0 = 1 was used.

The brightest firefly moves randomly since there is no
other brighter fireflies to attract it.

3) The brightness of a firefly is determined by the fitness
of the objective function.

Mathematically, the movement of Firefly i, attracted by
Firefly j, is computed as [15]:

xi = xi + β0e
−γ r2ij (xj − xi)+ αε (1)

where rij is the Euclidean distance between the two fireflies,
β0 is the attractiveness at r = 0, γ is a fixed light absorption
coefficient, α is a randomization parameter, and ε is a random
vector usually uniformly distributed in [−0.5, 0.5].

The pseudo-code of the SFA is shown in Algorithm 1.
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III. THE SWITCH-MODE FIREFLY ALGORITHM (SMFA)
This section introduces our proposed SMFA, whose pseudo-
code is given in Algorithm 2.

Algorithm 2 The Switch-Mode Firefly Algo-
rithm (SMFA)

Input: f (x), the object function to be maximized;
n, the size of the firefly population;
γ , the light absorption coefficient;
α0, the randomization parameter;
K , the maximum number of iterations;
K0, the maximum number of exploration

iterations;
η, the threshold for the change rate.

Output: x∗, which maximizes f (x).
Generate the initial firefly population {xi}i=1,...,n;
Compute f (xi), i = 1, . . . , n;
Set k = 1;
while k ≤ K do

for i = 1, . . . , n do
for j = 1, . . . , n do

if f (xi) < f (xj) then
if ḟ > η then

α = α0;
else

Compute α by (3);
end
Move Firefly i to Firefly j according to
(1);
Compute the updated f (xi);

end
end

end
k = k + 1;

end
Return x∗ = arg max

i=1,...,n
f (xi).

A. MODE SWITCH
As mentioned in the Introduction, all metaheuristic algo-
rithms need to consider the trade-off between exploration and
exploitation. Generally, at the beginning of the optimization,
exploration is more important, as we want to quickly and
coarsely explore the entire search space to identify the most
promising regions. After that, exploitation is used to examine
the promising regions more carefully to fine tune the solution.

Our proposed SMFA starts with exploration, using the SFA
with a fixed randomization parameter α. Then, it switches
to exploitation, using an FA with a gradually decreasing
random α (Section III-B). Fig. 1 illustrates this concept
using a real search trajectory generated by the SMFA, where
x = [x1, x2], and the ‘‘P’’ represents the global opti-
mum of the objective function. The firefly starts at the ‘‘*’’
position in Fig. 1(a). After several exploration iterations,

FIGURE 3. (a) Contour and the four global optima of f1; (b) contour and
the two global optima and two local optima of f2.

it reaches the ‘‘*’’ position in Fig. 1(a). Then the SMFA enters
the exploitation mode. The initial position of the firefly in
exploitation is represented by the ‘‘*’’ in Fig. 1(b), which
is the same as the ‘‘*’’ in Fig. 1(a) (note that the entire
region in Fig. 1(b) is corresponding to the red framed region
in Fig. 1(a); we enlarge that region to better visualize the
search trajectory in exploitation). After a few exploitation
iterations, the firefly reaches the ‘‘*’’ position in Fig. 1(b),
which is very close to the global optimum.

It is very important to determine when we should explic-
itly switch from exploration to exploitation. Let fk =
maxi=1,...,n f (xi) be the best fitness in the kth iteration.
We then compute ḟ , the change rate of fk , as:

ḟ =
fk − fk−1
fk−1 − fk−2

(2)

It is difficult to determine when the exact and best switching
time is. Thus, we use a simple heuristics, i.e., ḟ < η,
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FIGURE 4. Errors in 100 runs of the six algorithms. (a) The four global
optima for f1; (b) The two global optima and two local optima for f2.

to switch the search mode automatically. In words, it switches
to the exploitation mode when the exploration mode has not
improved the best fitness value significantly for a certain
period of time. A similar idea can be found in switching
PSO algorithms (e.g. [29]) while they divided the search
process into more modes and used more complex switching
conditions.

B. EXPLOITATION WITH GRADUALLY DECREASING
RANDOMIZATION PARAMETER
Randomization plays an important role in the SFA, because it
increases the diversity of the population. During exploration,
usually the randomization parameter α is set to a relative large
value, which enables the SFA to explore the search space
more quickly. However, a large α also results in slow conver-
gence in exploitation. To copewith this problem, the exploita-
tion mode of the SWFA uses a gradually decreasing

FIGURE 5. Errors in 100 runs of the six algorithms. (a) f3; (b) f4; (c) f5;
(d) f6; (e) f7; (f) f8.

random α:

α =
rα0

1+ e−a(k−c)
(3)
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where α0 is the randomization parameter in exploration, r is
a random number from a truncated normal distribution [30],
[31] N (0.5, 1) in (0, 1), a and c are parameters of the sigmoid
denominator, and k is the current iteration number.

Examples of
1

1+ e−a(k−c)
, r and α are shown in Fig. 2.

Observe that α is a gradually decreasing random number,
which enables the SWFA to focusmore andmore on exploita-
tion as k increases. First, the proposed adjustment strategy
maintains a gradually decreasing trend in α which is crucial to
the convergence of the firefly population. Second, the random
α brings a certain degree of diversity which helps explore
the search space more sufficiently and avoid local optima
as much as possible. The product of a random number r
(from a truncated normal distribution) and a monotonically
decreasing function

α0

1+ e−a(k−c)
is a random function (see

the third subfigure in Fig. 2), whose mean equals half of the
corresponding value of the original monotonically decreasing
function and standard deviation gradually decreases with
time. Experiments showed that r greatly improves the FA
algorithm performance.

IV. EXPERIMENTS
In this section, the performance of SWFA is compared with
another six approaches in the literature:
• The standard firefly algorithm (SFA) [14].
• The simulated annealing strategy firefly algorithm
(SAFA) [14].

• The firefly algorithm with chaos (CFA) [32].
• The wise step strategy firefly algorithm (WSSFA) [25].
• The variable step size firefly algorithm (VSSFA) [26].
• The firefly algorithm with neighborhood attraction
(NAFA) [27].

A. EXPERIMENT SETUP
Three types of benchmark functions were used: 1) multi-
modal functions to verify the ability of SWFA to find all
global and local optima simultaneously; 2) low-dimensional
maximization problems; and, 3) high-dimensional minimiza-
tion problems. Table 1 summarizes the 15 benchmark func-
tions.

We used γ = 1 and β0 = 1 for all algorithms, and the
population size n = 35 for f1 and f2, and n = 20 for all
other functions. To validate that SMFA converges faster, or,
in other words, SMFA can find a better solution when given
a fixed amount of search time, each algorithm was run only
T seconds, where T = 0.03 for f1 and f2, T = 0.05 for f3 to
f8, and T = 3 for f9 to f15. Additional parameters of SFA and
SAFA can be found in [14], WSSFA in [25], CFA in [32], and
VSSFA in [26]. For SMFA, we chose η = 0.1. For (3), we set
a = −0.1, c = 15, and α0 was chosen according to the range
of the corresponding search space (1 for f1 − f3, f13 and f14,
2 for f4 − f7 and f10, 4 for f8, 10 for f9, 20 for f11 and f12, and
0.2 for f15).
We ran each algorithm for each benchmark function

100 times, and used boxplots to show the errors between the

FIGURE 6. Errors in 100 runs of the six algorithms. (a) f9; (b) f10; (c) f11;
(d) f12; (e) f13; (f) f14; (g) f15.

found optima and the true global optima. All simulationswere
performed using MATLAB 2016a on a Windows machine
with an Intel core i3 2.00G HZ CPU and 4GB RAM.
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TABLE 1. The 15 benchmark functions. ‘‘*’’ means a local optimum. d = 30 in f9 − f15.

TABLE 2. Mean errors of different FAs on the 15 benchmark functions.

B. EXPERIMENTAL RESULTS
According to [14], FA can find all global and local optima
simultaneously. Multimodal functions f1 and f2 were used to
verify this. f1 has four global optima, as shown in Fig. 3(a).
f2 has two global optima and two local optima, as shown
in Fig. 3(b). Fig. 4 shows the errors between the true optima
and the found optima for f1 and f2. To plot, e.g., the boxplot
for Global Optimum 1 of f1, we first find all fireflies within
the bottom left quadrant of the search space, and then identify
their maximum. Fig. 4 shows that generally SMFA gave
solutions closer to the global and local optima than the other
six algorithms. Furthermore, the outputs of SMFA were also
more consistent, as the heights of its boxes were generally
smaller.

Next, the six algorithms were compared on six low-
dimensional maximization functions (f3− f8). The results are
shown in Fig. 5, and the mean and standard deviation of the

errors are shown in Tables 2 and 3. Again, SMFA gave overall
better and more consistent results.

Finally, the six algorithms were compared on seven
high-dimensional minimization functions (f9 − f15). The
results are shown in Fig. 6 and Tables 2 and 3. Once
again, SMFA gave overall better and more consistent
results.

In summary, extensive experiments showed that our pro-
posed SMFA can indeed find multiple global and local
optima simultaneously, and its solutions are better and more
consistent than those from six other FA variants in the
literature.

V. CONCLUSIONS
In this paper, we have proposed SMFA, which explic-
itly switches from exploration to exploitation in the
search process to facilitate high-performance global

54182 VOLUME 6, 2018



J. Huang et al.: Switch-Mode Firefly Algorithm for Global Optimization

TABLE 3. Standard deviations of the errors of different FAs on the 15 benchmark functions.

optimization. A fixed randomization parameter is used in
exploration, whereas a gradually decreasing random random-
ization parameter is used in exploitation. The condition for
switching from exploration to exploitation is identified auto-
matically. Extensive experiments on 15 benchmark functions
verified the effectiveness of the proposed approach. Because
of its reliable performance and easy implementation, SMFA
is a promising approach in real-world optimization problems.
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