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The Word decoder is a very important approach for decoding in the Perceptual Computer. It
maps the computing with words (CWWs) engine output, which is a fuzzy set, into a word
in a codebook so that it can be understood. However, the Word decoder suffers from sig-
nificant information loss, i.e., the fuzzy set model of the mapped word may be quite differ-
ent from the fuzzy set output by the CWW engine, especially when the codebook is small.
In this paper we propose a Reconstruction decoder, which represents the CWW engine out-
put as a combination of two successive codebook words with minimum information loss
by solving a constrained optimization problem. The Reconstruction decoder preserves
the shape information of the CWW engine output in a simple form without sacrificing
much accuracy. It can be viewed as a generalized Word decoder and is also implicitly a
Rank decoder. Moreover, it is equivalent to the 2-tuple representation under certain con-
ditions. The effectiveness of the Reconstruction decoder is verified by three experiments.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Computing with words (CWW) [47,48] is ‘‘a methodology in which the objects of computation are words and propositions
drawn from a natural language’’. Usually the words and propositions are modeled by fuzzy sets (FSs) [46]. Many different ap-
proaches for CWW using FSs have been proposed so far [8,17,25,22,30,23,18,32,27,44,49,45,10,12,1,28,42,24]. According to
Wang and Hao [31], these techniques may be classified into three categories:

(i) The Extension Principle based models [1,22,20,3], which operate on the underlying FS models of the linguistic terms
using the Extension Principle [46]. Bonissone and Decker proposed the first such model in 1986 [1]. One of the latest
developments is the Perceptual Computer (Per-C) [20,22], depicted in Fig. 1. It consists of three components: encoder,
CWW engine and decoder. Perceptions (words) activate the Per-C and are the Per-C output (along with data); so, it is
possible for a human to interact with the Per-C using just a vocabulary. The encoder transforms words into FSs and
leads to a codebook – words with their associated FS models. Both type-1 (T1) and interval type-2 (IT2) FSs [19]
may be used for word modeling. The outputs of the encoder activate a CWW engine, where the FSs are aggregated
by novel weighted averages [39] or perceptual reasoning [38] according to the specific application. The output of
the CWW engine is one or more other FSs, which are then mapped by the decoder into a recommendation (subjective
judgment) with supporting data. Thus far, there are three kinds of decoders according to three forms of
recommendations:

(a) Word: To map a FS into a word, it must be possible to compare the similarity between two FSs. The Jaccard sim-

ilarity measure [37] can be used to compute the similarities between the CWW engine output and all words in the
codebook. Then, the word with the maximum similarity is chosen as the decoder’s output.
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Fig. 1. Conceptual structure of the Perceptual Computer.
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(b) Rank: Ranking is needed when several alternatives are compared to find the best. Because the performance of each
alternative is represented by a FS obtained from the CWW engine, a ranking method for FSs is needed. A centroid-
based ranking method for T1 and IT2 FSs is described in [37].

(c) Class: A classifier is necessary when the output of the CWW engine needs to be mapped into a decision category
[21]. Subsethood [33,22,29] is useful for this purpose. One first computes the subsethood of the CWW engine out-
put for each of the possible classes. Then, the final decision class is the one corresponding to the maximum
subsethood.
(ii) The symbolic model [4,43,6], which makes computations on the indices of the linguistic terms. It first constructs an
ordered linguistic term set, W ¼ fW1;W2; . . . ;WNg, where Wi < Wj if and only if i < j. Convex combination [4] is then
used to recursively aggregate the terms. For example, to aggregate Wi and Wj with weight a and b, respectively, it
computes
Wk ¼
aWi þ bWj

aþ b
; ð1Þ
where the term index k is determined as
k ¼ iþ round
b

aþ b
ðj� iÞ

� �
: ð2Þ
To aggregate Wi, Wj and Wp with weight a,b and c, respectively, i.e., to compute
Wk0 ¼
aWi þ bWj þ cWp

aþ bþ c
ð3Þ
it rewrites Wk0 as
Wk0 ¼
aþ b

aþ bþ c
� aWi þ bWj

aþ b
þ c

aþ bþ c
Wp ¼

aþ b
aþ bþ c

Wk þ
c

aþ bþ c
Wp ð4Þ
where Wk is the same as the one in (1) and k is computed by (2). Wk0 then becomes a two-term aggregation and k0 is com-
puted as
k0 ¼ kþ round
c

aþ bþ c
ðp� kÞ

� �
ð5Þ
Aggregations involving more terms are computed in a similar recursive way. The intermediate results are numeric values,
which must be approximated in each recursion to an integer in [1,N] (e.g., k and k0 above), which is the index of the asso-
ciated linguistic term.

(iii) The 2-tuple representation based model [8,9,16,5,6], which is an improvement over the symbolic model. It was first pro-
posed by Herrera and Martinez in 2000 [8] and followed by many others. Instead of representing the aggregation
result as a single integer term index in [1,N], it represents the result as a 2-tuple (Wn,a), where n is an integer linguis-
tic term index, and a 2 [�0.5,0.5) is a numeric value representing the symbolic translation, i.e., the translation from
the original result to the closest index label in the linguistic term set. More specifically, let W ¼ fW1;W2; . . . ;WNg
be a linguistic term set and b 2 [1,N] be a value representing the result of a symbolic aggregation operation, then
the 2-tuple representation (Wn,a) is computed as
n ¼ roundðbÞ ð6Þ
a ¼ b� n;a 2 ½�0:5; :5Þ ð7Þ
As a result, the 2-tuple model allows a continuous representation of the linguistic information in its domain. Several aggre-
gation operations using the 2-tuple representation, e.g., arithmetic mean, weighted average, ordered weighted average, have
been developed [8].

Each category of models has its unique advantages and limitations. The Extension Principle based models can deal with
any underlying FS models for the words, but they are computationally intensive. Moreover, their results usually do not
match any of the initial linguistic terms, and hence an approximation process must be used to map the results back to
the initial expression domain. This results in loss of information and hence the lack of precision [31,2]. The symbolic models
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are much computationally simpler than the Extension Principle based models, but they do not directly take into account the
underlying vagueness of the words. In fact, they do not even need a FS model for each word. The only requirement is that the
linguistic terms are ordered. They also have the information loss problem because the intermediate results are rounded to
integer term indices. The 2-tuple representation based models can avoid the information loss problem, but generally they
have constraints on the shape of the underlying FS models for the linguistic terms, e.g., they need to have the same shape
and be equidistant [8].

There have been some hybrid approaches, which try to combine the advantages of different models but eliminate their
limitations. For example, there is a new version of 2-tuple linguistic representation model [31], which combines symbolic
models with the 2-tuple representation models to eliminate the ‘‘equal-distance’’ constraint. However, to the best of the
author’s knowledge, there has not been active research into the information loss problem of the Extension Principle based
models, which is the focus of this paper. Particularly, we focus on the Word decoder because it is the most widely used
decoding method. We propose a Reconstruction decoder for the Per-C, which can be used to replace the Word decoder with
smaller information loss.

The remainder of this paper is organized as follows: Section 2 introduces the details of the Reconstruction decoder, its
characteristics, and its relationship to the 2-tuple representation. Section 3 demonstrates the performance of the Reconstruc-
tion decoder through three experiments. Section 4 draws conclusions.
2. The Reconstruction decoder

The Reconstruction decoder is motivated by how a decimal number can be represented by two successive integers imme-
diately before and after it. For example, the decimal 4.2, which lies between two successive integers 4 and 5, can be repre-
sented as 4.2 = a � 4 + b � 5, where a = 0.8, b = 0.2. For numbers we always have a P 0, b P 0, and a + b = 1. In the
Reconstruction decoder we view each word Wn in the codebook as an ‘‘integer,’’ and the CWW engine output Y as a ‘‘deci-
mal.’’ The goal is to represent this ‘‘decimal’’ using two successive ‘‘integers’’ with minimum information loss.

So far almost all FS models used in CWW are normal trapezoidal FSs (triangular FSs are special cases of trapezoidal FSs),
no matter whether they are T1 or IT2 FSs. Additionally, the only systematic methods for constructing IT2 FSs from interval
survey data are the Interval Approach [14] and its enhanced version, the Enhanced Interval Approach [41], both of which
only output normal trapezoidal IT2 FSs. So, in this paper we focus on normal trapezoidal T1 and IT2 FSs. However, very re-
cently it has been shown [26] that FSs with spikes may be generated from some new aggregation functions, although the
inputs are still ordinary FSs. At the end of this section we will show how our method can be applied to subnormal FSs,
and FSs with arbitrary shapes.
2.1. The Reconstruction decoder for T1 FS Word Models

A normal trapezoidal T1 FS can be represented by four parameters, (a, b, c, d), as shown in Fig. 2. Note that a triangular T1
FS is a special case of the trapezoidal T1 FS when b = c. We denote the membership grade of x on a T21 FS Y as lY(x).

Assume the output of the CWW Engine is a trapezoidal T1 FS1 Y, which is represented by four parameters (a, b, c, d). Assume
also the codebook consists of N words, which have already been sorted in ascending order using the centroid based ranking
method [37]. The trapezoidal T1 FS model for the nth word is Wn, which is represented by four parameters (an, bn, cn, dn)
and whose centroid is wn, n = 1, 2, . . . , N. The basic idea of the Reconstruction decoder is to find a linear combination of two
successive codebook words to represent Y with minimum information loss, i.e.,
1 Stri
output
very hig

2 The
encoder
are som
than th
Y �W ð8Þ
where
W ¼ aWn0 þ bWn0þ1: ð9Þ
The first step is to determine n0, the location of the first word in (9). We compute the centroid of Y, y, and then identify an n0

such that
wn0 6 y 6 wn0þ1: ð10Þ
Essentially, (10) means that we rank {Wn} and Y together according to their centroids and then select the two words imme-
diately before and after2 Y.
ctly speaking, when trapezoidal T1 FSs are used in the CWW engine, e.g., the novel weighted averages [39,22] or Perceptual Reasoning [38,22], the
T1 FS Y is not perfectly trapezoidal, i.e., its waists are slightly curved instead of straight; however, the waists can be approximated by straight lines with
h accuracy. So, trapezoidal Y is used in the derivation for simplicity.

re may be a concern that Y is smaller than W1 or larger than WN so that we cannot find a n0 satisfying (10); however, this cannot occur in the Per-C if the
and the decoder use the same vocabulary and the novel weighted average [39,22] or Perceptual Reasoning [38,22] is used, because both CWW engines

e kind of weighted average, and it is well-known that the output of a weighted average cannot be smaller than the smallest input, and cannot be larger
e largest input either.



Fig. 2. A trapezoidal T1 FS, determined by four parameters (a, b, c, d).
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Having determined the two neighbors of Y, the next step is to determine the coefficients a and b so that there is minimum
information loss in representing Y as W. There can be different definitions of minimum information loss, e.g.,

(i) The similarity between Y and W is maximized. This definition is very intuitive, as the more similar Y and W are, the less
information loss there is when we represent Y by W.

(ii) The mean-squared error between the four parameters of Y and W is minimized. This definition is again very intuitive,
as generally a smaller mean-squared error means a larger similarity between Y and W, and hence less information loss.

One problem with the second approach is that it is difficult to find a set of parameters to define T1 FSs with arbitrary
shapes (e.g., not necessarily trapezoidal or Gaussian). On the other hand, the Jaccard similarity measure [37] can work for
any T1 FSs. So, in this paper we use the first definition.

Before being able to compute the similarity between Y and W, we first need to compute W ¼ aWn0 þ bWn0þ1. Because both
Wn0 and Wn0þ1 are normal trapezoidal T1 FSs, W is also a normal trapezoidal T1 FS; so, it can also be represented by four
parameters (aw,bw,cw,dw). Based on the Extension Principle [46] and the a-cut Representation Theorem [11], we have
aw ¼ aan0 þ ban0þ1 ð11Þ
bw ¼ abn0 þ bbn0þ1 ð12Þ
cw ¼ acn0 þ bcn0þ1 ð13Þ
dw ¼ adn0 þ bdn0þ1 ð14Þ
To solve for a and b, we consider the following constrained optimization problem:
arg maxa;b sðY ;WÞ
s:t: a P 0; b P 0

aþ b ¼ 1

ð15Þ
where
sðY;WÞ ¼
PI

i¼1 minðlY ðxiÞ;lWðxiÞÞPI
i¼1 maxðlYðxiÞ;lWðxiÞÞ

ð16Þ
is the Jaccard similarity measure between Y and W, and the constraints are motivated from the crisp case, as described at the
beginning of this section.

In summary, the procedure for the Reconstruction decoder for T1 FS word models is:

(1) Compute wn, the centroid of Wn, n = 1, . . . , N, and rank {Wn} in ascending order. This step only needs to be performed
once for a codebook, and it can be done offline.

(2) Compute y, the centroid of Y.
(3) Identify n0 according to (10).
(4) Solve the constrained optimization problem in (15) for a and b.
(5) Represent the decoding output as Y � aWn0 þ bWn0þ1.

2.2. The Reconstruction decoder for IT2 FS word models

In this paper a normal trapezoidal IT2 FS is represented by nine parameters shown in Fig. 3. Note that we use four param-
eters for the normal trapezoidal upper membership function (UMF), Y , similar to the T1 FS case; however, we need five
parameters for the trapezoidal lower membership function (LMF), Y, since usually it is subnormal and hence we need a fifth
parameter to specify its height.

Assume the output of the CWW Engine is a trapezoidal IT2 FS eY , which is represented by nine parameters (a, b, c, d, e, f, g,
i, h). Assume also the codebook consists of N words, which have already been sorted in ascending order using the centroid
based ranking method [37]. The IT2 FS for the nth word is fW n, which is represented by (an,bn,cn,dn,en, fn,gn, in,hn) and whose
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center of centroid [22] is wn, n = 1, 2, . . . , N. The basic idea of the Reconstruction decoder is again to find a combination of two
successive codebook words to represent eY with minimum information loss.

Similar to the T1 FS case, we first compute the center of centroid of eY ; y, and then identify the n0 such that
Fig.
wn0 6 y 6 wn0þ1: ð17Þ
We then solve the following constrained optimization problem for a and b:
arg maxa;b sðeY ;fW Þ
s:t: a P 0; b P 0

aþ b ¼ 1

ð18Þ
where
fW ¼ afW n0 þ bfW n0þ1: ð19Þ
and sðeY ;fW Þ is the Jaccard similarity measure between eY and fW :
sðeY ;fW Þ ¼
PI

i¼1 minðlYðxiÞ;lWðxiÞÞ þ
PI

i¼1 minðlY ðxiÞ;lW ðxiÞÞPI
i¼1 maxðlYðxiÞ;lWðxiÞÞ þ

PI
i¼1 maxðlYðxiÞ;lWðxiÞÞ

ð20Þ
Clearly, to solve (18), we need to be able to numerically represent fW in (19). Assume fW is represented by nine param-
eters (aw,bw,cw,dw,ew, fw,gw, iw,hw). We then compute the UMF and LMF of fW separately. The UMF computation is very sim-
ple. Because the UMFs of both fW n0 and fW n0þ1 are normal, similar to the T1 FS case, we have
aw ¼ aan0 þ ban0þ1 ð21Þ
bw ¼ abn0 þ bbn0þ1 ð22Þ
cw ¼ acn0 þ bcn0þ1 ð23Þ
dw ¼ adn0 þ bdn0þ1 ð24Þ
However, the computation of the LMF of fW is not so straightforward, because generally the LMFs of fW n0 and fW n0þ1 have

different heights, i.e., hn0 – hn0þ1. Based on the Extension Principle, the height of the LMF of fW should be equal to the smaller
one of hn0 and hn0þ1 (this fact has also been used in deriving the linguistic weighted averages [35,36]). Without loss of gen-

erality, assume hn0 6 hn0þ1. We then crop the top of the LMF of fW n0þ1 to make it the same height as the LMF of fW n0 , as shown

in Fig. 4. Representing the cropped version of the LMF of fW n0þ1 as ðen0þ1; f 0n0þ1; g
0
n0þ1; in0þ1;hn0 Þ, the LMF of fW is then computed

as:
ew ¼ aen0 þ ben0þ1 ð25Þ
fw ¼ afn0 þ bf 0n0þ1 ð26Þ
gw ¼ agn0 þ bg0n0þ1 ð27Þ
iw ¼ ain0 þ bin0þ1 ð28Þ
hw ¼minðhn0 ;hn0þ1Þ ð29Þ
In summary, the procedure for the Reconstruction decoder for IT2 FS word models is:

(1) Compute wn, the centers of centroid of fW n, n = 1, . . . , N, and rank ffW ng in ascending order. This step only needs to be
performed once for a codebook, and it can be done offline.

(2) Compute y, the center of centroid of eY .
(3) Identify n0 according to (17).
3. A normal trapezoidal IT2 FS. (a, b, c, d) determines a normal trapezoidal UMF, and (e, f, g, i, h) determines a trapezoidal LMF with height h.



Fig. 4. Illustration of how Wn0þ1, the LMF of fW n0þ1, is cropped to have height hn0 .
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(4) Solve the constrained optimization problem in (18) for a and b.
(5) Represent the decoding output as eY � afW n0 þ bfW n0þ1.

Matlab implementation of the Reconstruction decoder for both T1 and IT2 FSs can be found in [34].
2.3. The Reconstruction decoder for arbitrary FS shapes

We have explained the Reconstruction decoder for normal trapezoidal T1 and IT2 FS word models. Our method can also
be applied to T1 and IT2 FSs with arbitrary shapes. The procedure is essentially the same. The only step that becomes more
complex is the computation of W in (9) or fW in (19).

Consider W in (9) first. Because a + b = 1, we can rewrite W as
W ¼ aWn0 þ bWn0þ1

aþ b
ð30Þ
W in the above equation is very similar to a fuzzy weighted average (FWA) [13], whose standard representation is
E ¼ ABþ CD
Aþ C

ð31Þ
where A, B, C, D and E are all T1 FSs. To convert (30) into a FWA, we treat numbers a and b as special T1 FSs ~a and ~b, i.e.,
l~aðxÞ ¼
1; x ¼ a
0; otherwise

�
ð32Þ
and
l~bðxÞ ¼
1; x ¼ b

0; otherwise

�
ð33Þ
In terms of the 4-parameter representation, ~a ¼ ½a;a;a;a�, and ~b ¼ ½b; b; b; b�. Then
W ¼
~aWn0 þ ~bWn0þ1

~aþ ~b
ð34Þ
can be computed by a FWA procedure [13,22].
Similarly, to compute fW in (19), we can treat number a as a special IT2 FS ~~a, whose lower and upper membership func-

tions are both identical to ~a, and number b as a special IT2 FS ~~b, whose lower and upper membership functions are both iden-
tical to ~b. In terms of the 9-parameter representation, ~~a ¼ ½a;a;a;a;a;a;a;a;1�, and ~~b ¼ ½b; b; b; b; b; b; b; b;1�. Then fW in (19)
can be rewritten as
fW ¼
~~afW n0 þ ~~bfW n0þ1

~~aþ ~~b
ð35Þ
and computed as a linguistic weighted average [35,36].
2.4. Characteristics of the Reconstruction decoder

The Reconstruction decoder has the following advantages:
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(i) The Reconstruction decoder is a generalized Word decoder. Take the T1 FS case for example. If we want to represent
Y ¼ aWn0 þ bWn0þ1 by a single word in the codebook, then it is safe to choose Wn0 if a > b, or Wn0þ1 if a < b, because
this is almost always consistent with the Word decoder (see the experimental results in the next section). In the rare
case of inconsistency, sðY ;Wn0 Þ and sðY;Wn0þ1Þ are very close to each other, so mapping Y to Wn0 or Wn0þ1 does not
make much difference.

(ii) The Reconstruction decoder is implicitly a Rank decoder. Again take the T1 FS case for example. If we know that
Y1 ¼ a1Wn0 þ b1Wn0þ1;Y2 ¼ a2Wm0 þ b2Wm0þ1, and n0 < m0, then regardless of the values of a1, b1, a2 and b2, it must
be true that Y1 6 Y2 because Y1 6Wn0þ1 6Wm0 6 Y2. On the other hand, if we know
Y1 ¼ a1Wn0 þ b1Wn0þ1; Y2 ¼ a2Wn0 þ b2Wn0þ1 (note that Y1 and Y2 have the same n0), and a1 < a2, then we should have
Y1 > Y2. These properties are especially useful in distinguishing among highly similar Ys, which may be mapped into
the same word by the Word decoder.

(iii) The Reconstruction decoder preserves the shape information of the CWW engine output in a simple form with minimum
information loss. Usually the similarities between the original FSs and the reconstructed FSs are very close to 1. So,
if we want to use Y (or eY ) in future computations, we can always approximate it by W (or fW ) without sacrificing much
accuracy. Additionally, as s(Y,W) [or sðeY ;fW Þ] is always equal to or larger than the similarity between Y and the word
suggested by the Word decoder, replacing Y by W (or eY by fW ) almost always results in smaller information loss than
replacing it by the word suggested by the Word decoder.

However, we need to point out that a disadvantage of the Reconstruction decoder is its high computational cost in solving
the constrained optimization problem.

2.5. Relationship to the 2-tuple representation

The Reconstruction decoder and the 2-tuple representation are closely related, as pointed out by the following3:

Theorem 1. When the codebook {Wn}n=1,2,. . .,N consists of equally spaced trapezoidal T1 FSs with the same shape, a 2-tuple
representation (Wm,a) can be converted to the Reconstruction decoder output using the following formula:
3 Her
ðWm;aÞ �
ð1� aÞWm þ aWmþ1; a P 0
�aWm�1 þ ð1þ aÞWm; a < 0

�
: ð36Þ
Proof. The 4-parameter representation of a trapezoidal T1 FS Wn in an equally spaced codebook can be written as
Wn � ½a1 þ ðn� 1Þd; b1 þ ðn� 1Þd; c1 þ ðn� 1Þd; d1 þ ðn� 1Þd�; n ¼ 1;2; . . . ;N ð37Þ
where (a1,b1,c1,d1) is the 4-parameter representation of W1, and d is the distance between two successive T1 FSs. A 2-tuple
representation (Wm,a) can be converted to the 4-parameter representation as
ðWm;aÞ � ½a1 þ ðmþ a� 1Þd; b1 þ ðmþ a� 1Þd; c1 þ ðmþ a� 1Þd; d1 þ ðmþ a� 1Þd� ð38Þ
When a P 0, (Wm,a) is between Wm and Wm+1. Substituting (37) into (1 � a)Wm + aWm+1 [the first row on the right hand side
of (36)], we have
ð1� aÞWm þ aWmþ1 � ð1� aÞ½a1 þ ðm� 1Þd; b1 þ ðm� 1Þd; c1 þ ðm� 1Þd; d1 þ ðm� 1Þd� þ a½a1 þmd; b1 þmd; c1

þmd; d1 þmd�
¼ ½a1 þ ðmþ a� 1Þd; b1 þ ðmþ a� 1Þd; c1 þ ðmþ a� 1Þd;d1 þ ðmþ a� 1Þd� � ðWm;aÞ
where the last equation makes use of (38). Thus the first row of (36) is proved.
When a < 0, (Wm,a) is between Wm�1 and Wm. Substituting (37) into �aWm�1 + (1 + a)Wm [the second row on the right

hand side of (36)], we have
�aWm�1 þ ð1þ aÞWm � �a½a1 þ ðm� 2Þd; b1 þ ðm� 2Þd; c1 þ ðm� 2Þd;d1 þ ðm� 2Þd� þ ð1þ aÞ½a1 þ ðm� 1Þd; b1

þ ðm� 1Þd; c1 þ ðm� 1Þd;d1 þ ðm� 1Þd�
¼ ½a1 þ ðmþ a� 1Þd; b1 þ ðmþ a� 1Þd; c1 þ ðmþ a� 1Þd; d1 þ ðmþ a� 1Þd� � ðWm;aÞ
Thus the second row of (36) is also proved. h

From Theorem 1, we can also derive the formula to transform a Reconstruction decoder output to a 2-tuple
representation:
e we only consider T1 FSs because the 2-tuple representation has been mainly used for T1 FSs.
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Fig. 5. Semantic representation of the unbalanced grading system in linguistic hierarchies [7].

Fig. 6. The 9-word codebook for the SJA.

Fig. 7. The 25 rule consequents of the SJA.

8 D. Wu / Information Sciences 255 (2014) 1–15



Fig. 8. Comparison of the Word decoder and Reconstruction decoder on the SJA using IT2 FSs. Black solid IT2 FSs are the outputs of Perceptual Reasoning.
Blue dotted IT2 FSs are the decoding results of the Word decoder. Red dashed IT2 FSs are the decoding results of the Reconstruction decoder. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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aWm þ bWmþ1 �
ðWm;aÞ; a < 0:5
ðWmþ1;a� 1Þ; a P 0:5

�
: ð39Þ
Of course, the codebook {Wn}n=1,2,. . .,N must consist of equally spaced trapezoidal T1 FSs with the same shape before the above
equation can be applied.

As most 2-tuple representations use codebooks consisting of equally spaced trapezoidal T1 FSs with the same shape, their
results can be completely duplicated using the Reconstruction decoder. However, the Reconstruction decoder is much more
general in the sense that it can also be applied to codebooks consisting of arbitrary FSs, both T1 and IT2. To the author’s
knowledge there has been only one effort [7] to make the 2-tuple representations applicable to nonuniform and nonsymmet-
ric T1 FSs (called unbalanced linguistic terms sets in [7]). For example, to handle the unbalanced grading system evaluation
term set {A, B, C, D, F} shown in the first row of Fig. 5, one first needs to construct linguistic hierarchies shown in the middle
three rows of Fig. 5, and then select individual FSs from different hierarchies to form the desired terms. This process is not
easy if the distances between the terms do not have very nice relationship (in the first row of Fig. 5
jDFj = 2jCDj = 4jBCj = 4jABj). Additionally, the resulting FSs still have many constraints, e.g., they must be triangular and their
support and apex are defined by the grids used in linguistic hierarchies. On the contrary, the Reconstruction decoder can be
easily applied to any codebook of arbitrary FSs without any constraints, as demonstrated next.
3. Experimental results

Three experiments were performed to verify the performance of the Reconstruction decoder. The results are presented in
this section.
3.1. Application to the social judgement advisor (SJA): IT2 FSs

In [40] we used the Per-C to construct a single-input social judgement advisor (SJA). In Chapter 8 of [22] we used the Per-C
to construct two single-input SJAs and a two-input SJA. In both works the Word decoder was employed. The two-input SJA
was used in this experiment to compare the performance of the Reconstruction decoder and the Word decoder.



Table 1
Experimental results for the SJA using IT2 FSs. For each row, fW ¼ afW n0 þ bfW n0þ1, where n0 is determined by (17).

Touching/eye contact sðeY ;fW Þ a b sðeY ;fW n0 Þ sðeY ;fW n0þ1Þ

NVL/NVL 0.83 1 0 0.81 0.13
NVL/SS 0.85 0.39 0.61 0.50 0.73
NVL/MOA 0.88 0.56 0.44 0.45 0.52
NVL/CA 0.84 0.26 0.74 0.25 0.73
NVL/MAA 0.72 0.09 0.91 0.35 0.70
AB/NVL 0.75 1 0 0.72 0.42
AB/SS 0.86 0.73 0.27 0.60 0.41
AB/MOA 0.82 0.31 0.69 0.25 0.70
AB/CA 0.86 0.27 0.73 0.72 0.79
AB/MAA 0.73 0.16 0.84 0.38 0.70
SS/NVL 0.84 0.28 0.72 0.43 0.78
SS/SS 0.87 0.50 0.50 0.39 0.57
SS/MOA 0.83 0.46 0.54 0.76 0.72
SS/CA 0.92 0.87 0.13 0.88 0.39
SS/MAA 0.68 0 1 0.31 0.68
S/NVL 0.86 0.72 0.28 0.60 0.42
S/SS 0.81 0.23 0.77 0.22 0.75
S/MOA 0.96 0.14 0.86 0.75 0.94
S/CA 0.76 0.37 0.63 0.48 0.63
S/MAA 0.69 0.46 0.54 0.58 0.67
MOA/NVL 0.89 0.52 0.48 0.42 0.55
MOA/SS 0.81 0.21 0.79 0.21 0.77
MOA/MOA 0.95 0 1 0.72 0.95
MOA/CA 0.76 0.35 0.65 0.47 0.64
MOA/MAA 0.69 0.36 0.64 0.56 0.67
GA/NVL 0.89 0.38 0.62 0.33 0.65
GA/SS 0.91 0.30 0.70 0.76 0.83
GA/MOA 0.90 0.72 0.28 0.73 0.46
GA/CA 0.69 0.17 0.83 0.36 0.65
GA/MAA 0.74 0.30 0.70 0.60 0.59
CA/NVL 0.86 0.25 0.75 0.26 0.75
CA/SS 0.95 0.18 0.82 0.74 0.90
CA/MOA 0.84 0.55 0.45 0.59 0.54
CA/CA 0.64 0.07 0.93 0.31 0.64
CA/MAA 0.79 0 1 0.44 0.78
LA/NVL 0.93 0.46 0.54 0.82 0.82
LA/SS 0.95 0.92 0.08 0.91 0.39
LA/MOA 0.75 0.30 0.70 0.43 0.66
LA/CA 0.64 0.36 0.64 0.52 0.62
LA/MAA 0.87 0.53 0.47 0.36 0.13
MAA/NVL 0.93 0.59 0.41 0.65 0.52
MAA/SS 0.78 0.32 0.68 0.46 0.67
MAA/MOA 0.67 0.64 0.36 0.61 0.63
MAA/CA 0.76 0.10 0.90 0.53 0.73
MAA/MAA 1 0.30 0.70 0.18 0.26
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The two-input SJA is a fuzzy logic system describing the relationship between touching/eye contact and flirtation. It uses a
9-word codebook {None to Very Little (NVL), A Bit (AB), Somewhat Small (SS), Some (S), Moderate Amount (MOA), Good
Amount (GA), Considerable Amount (CA), Large Amount (LA), Maximum Amount (MAA)}, shown in Fig. 6. Five of them
(NVL, S, MOA, LA, and MAA) were used in a survey [15] to obtain the following 25 rules:

R1,1: IF touching is NVL and eye contact is NVL, THEN flirtation is eY 1;1.
..
.

R1,5: IF touching is NVL and eye contact is MAA, THEN flirtation is eY 1;5.
..
.

R5,1: IF touching is MAA and eye contact is NVL, THEN flirtation is eY 5;1.
..
.

R5,5: IF touching is MAA and eye contact is MAA, THEN flirtation is eY 5;5.

where the 25 consequent IT2 FSs are shown in Fig. 7.
The SJA can be used to indicate the flirtation level linguistically given the linguistic description of touching and eye con-

tact levels. It makes use of Perceptual reasoning (PR) [38,22], whose details are not relevant to this paper and hence are
omitted.



Fig. 9. Comparison of the Word decoder and Reconstruction decoder on the SJA using T1 FSs. Black solid T1 FSs are the outputs of Perceptual Reasoning,
which are the same as the black UMFs in Fig. 8. Blue dotted T1 FSs are the decoding results of the Word decoder. Red dashed T1 FSs are the decoding results
of the Reconstruction decoder. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In the experiment we used Touching = {NVL, AB, SS, S, MOA, GA, CA, LA, MAA} and Eye Contact = {NVL, SS, MOA, CA,
MAA}4. Their full combination has 45 input pairs. We used PR to compute the output IT2 FSs for these 45 cases, which are
shown as the black solid IT2 FSs in Fig. 8. The Word decoder and the Reconstruction decoder were then used separately to de-
code these 45 IT2 FSs. The results from the Word decoder are shown as the blue dotted IT2 FSs in Fig. 8, and the results from the
Reconstruction decoder are shown as the red dashed IT2 FSs. Recall that the Word decoder maps each PR result, eY , into a single
word fW 0 in the codebook. The name of that word is indicated in the title of each subfigure. For example, the title of the first
subfigure, NVL/NVL ? NVL, means that when Touching is NVL and Eye Contact is NVL, the Word decoder maps the PR result
into the word NVL.

The Jaccard similarities between eY and the reconstructed IT2 FS fW ; sðeY ;fW Þ, are shown in the second column of Table 1.
Observe that 5 of the 45 similarities are larger than or equal to 0.95, 10 similarities are larger than or equal to 0.9, 28 sim-
ilarities are larger than or equal to 0.8, and all 45 similarities are larger than 0.6.

The corresponding a and b for constructing fW are given in the third part of Table 1, and the Jaccard similarities between eY
and fW n0 and fW n0þ1 are shown in the fourth part. The output of the Word decoder is fW n0 if sðeY ;fW n0 Þ > sðeY ;fW n0þ1Þ, and fW n0þ1

otherwise, where n0 is determined by (17). Observe that sðeY ;fW Þ is always larger than or equal to the larger one of sðeY ;fW n0 Þ
and sðeY ;fW n0þ1Þ, which means the information loss of the Reconstruction decoder is always smaller than or equal to that of
the Word decoder. The mean similarity from the Word decoder is 0.6949, and the mean similarity from the Reconstruction
decoder is 0.8211, which represents a 18% improvement over the Word decoder. To examine whether the performance
improvement is statistically significant, we performed paired t-test on these 45 pairs of sðeY ;fW Þ and sðeY ;fW 0Þ using
a = 0.05. It gives df = 44, t = 5.72, and p < 0.0001, which means the performance improvement of the Reconstruction decoder
over the Word decoder is statistically significant.

It is also interesting to examine whether the Reconstruction decoder preserves the order of similarity, i.e., if
sðeY ;fW n�1Þ > sðeY ;fW nþ1Þ, then we would expect that a > b, and vice versa. We call this property consistency. Cases with incon-
sistency are marked in bold in Table 1. Observe that only five of the 45 cases have inconsistency, and for all these five cases,
sðeY ;fW n0 Þ and sðeY ;fW n0þ1Þ are close to each other. So mapping eY to fW n0 or fW n0þ1 does not make much difference.

As it is mentioned in Section 2.4, the Reconstruction decoder also implies the ranking of the outputs, so it is able to dis-
tinguish between cases that a Word decoder cannot. For example, observe from the first row of Fig. 8 that, when Touching is
4 We could have used Eye Contact = {NVL, AB, SS, S, MOA, GA, CA, LA, MAA} but in this case there would be 81 different combinations of Touching/Eye Contact
pairs. The subfigures in Fig. 8 would be too small, and Table 1 would be too long to fit into one page.



Table 2
Experimental results for the SJA using T1 FSs. For each row, W ¼ aWn0 þ bWn0þ1, where n0 is determined by (10).

Touching/eye contact s(Y,W) a b sðY;Wn0 Þ sðY ;Wn0þ1Þ

NVL/NVL 0.96 0.94 0.06 0.90 0.17
NVL/SS 0.88 0.34 0.66 0.62 0.81
NVL/MOA 0.91 0.55 0.45 0.50 0.56
NVL/CA 0.85 0.26 0.74 0.26 0.76
NVL/MAA 0.75 0.33 0.67 0.39 0.70
AB/NVL 0.85 0.17 0.83 0.19 0.77
AB/SS 0.89 0.73 0.27 0.65 0.43
AB/MOA 0.85 0.34 0.66 0.29 0.72
AB/CA 0.85 0.33 0.67 0.73 0.78
AB/MAA 0.76 0.36 0.64 0.41 0.71
SS/NVL 0.88 0.19 0.81 0.54 0.85
SS/SS 0.87 0.51 0.49 0.43 0.60
SS/MOA 0.82 0.2 0.8 0.21 0.76
SS/CA 0.94 0.95 0.05 0.93 0.42
SS/MAA 0.71 0.27 0.73 0.34 0.68
S/NVL 0.90 0.68 0.32 0.61 0.46
S/SS 0.84 0.24 0.76 0.24 0.76
S/MOA 0.97 0.15 0.85 0.78 0.94
S/CA 0.78 0.53 0.47 0.51 0.68
S/MAA 0.73 0 1 0.62 0.73
MOA/NVL 0.90 0.51 0.49 0.47 0.59
MOA/SS 0.84 0.21 0.79 0.23 0.77
MOA/MOA 0.97 0.03 0.97 0.76 0.97
MOA/CA 0.78 0.51 0.49 0.50 0.69
MOA/MAA 0.72 0 1 0.61 0.72
GA/NVL 0.88 0.38 0.62 0.36 0.70
GA/SS 0.91 0.30 0.70 0.77 0.85
GA/MOA 0.91 0.80 0.20 0.79 0.51
GA/CA 0.71 0.36 0.64 0.38 0.66
GA/MAA 0.82 0.24 0.76 0.60 0.71
CA/NVL 0.87 0.25 0.75 0.27 0.78
CA/SS 0.94 0.19 0.81 0.77 0.90
CA/MOA 0.85 0.65 0.35 0.64 0.60
CA/CA 0.67 0.28 0.72 0.32 0.63
CA/MAA 0.88 0.89 0.11 0.82 0.05
LA/NVL 0.94 0.45 0.55 0.83 0.85
LA/SS 0.97 0.93 0.07 0.93 0.43
LA/MOA 0.77 0.46 0.54 0.47 0.70
LA/CA 0.67 0 1 0.56 0.67
LA/MAA 0.93 0.55 0.45 0.42 0.15
MAA/NVL 0.95 0.67 0.33 0.71 0.57
MAA/SS 0.81 0.49 0.51 0.51 0.71
MAA/MOA 0.71 0.18 0.82 0.63 0.7
MAA/CA 0.86 0.03 0.97 0.56 0.86
MAA/MAA 1 0.30 0.70 0.21 0.33
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NVL, Eye Contact at two different levels (MOA and CA) are mapped into the same word S by the Word decoder, so it is impos-
sible to distinguish between the two cases. When the Reconstruction decoder is used, the output for NVL/MOA is recon-
structed as 0.56SS+0.44S, and the output for NVL/CA is reconstructed as 0.26SS+0.74S. So we know that the output for
NVL/MOA is smaller than the output for NVL/CA, which is reasonable.
3.2. Application to the SJA: T1 FSs

We also tested the performance of the Reconstruction decoder on the SJA for T1 FSs, which were chosen as the UMFs of
the corresponding IT2 FSs in the previous subsection. The experimental procedure was the same. In short, we applied both
the Reconstruction decoder and the Word decoder to each black UMF in Fig. 8, and the codebook consisted of the nine UMFs
in Fig. 6. The results are shown in Fig. 9 and Table 2.

The Jaccard similarities between Y and the reconstructed IT2 FS W, s(Y,W), are shown in the second column of Table 2.
Observe that 6 of the 45 similarities are larger than or equal to 0.95, 15 similarities are larger than or equal to 0.9, 33 sim-
ilarities are larger than or equal to 0.8, and all 45 similarities are larger than 0.65.

The corresponding a and b for constructing W are given in the third part of Table 2, and the Jaccard similarities between Y
and Wn0 and Wn0þ1 are shown in the fourth part. The output of the Word decoder is Wn0 if sðY;Wn0 Þ > sðY;Wn0þ1Þ, and Wn0þ1

otherwise, where n0 is determined by (10). Observe that s(Y,W) is always larger than or equal to the larger one of sðY ;Wn0 Þ
and sðY;Wn0þ1Þ, which means the information loss of the Reconstruction decoder is always smaller than or equal to that of
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Fig. 10. The 7-term codebook (black solid lines) used in the evaluation and the CWW Engine outputs, X1-X4 (red dashed lines). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Evaluations of the four candidates against the four criteria [8].

x1 x2 x3 x4

p1 VL M M L
p2 M L VL H
p3 H VL M M
p4 H H L L

Table 4
Selection results using four different methods.

Method X1 X2 X3 X4 Selections

Word decoder M M L M x1, x2, x4

Reconstruction decoder M .5L + .5M .75L + .25M .25L + .75M x1

Symbolic representation M M L M x1, x2, x4

2-Tuple representation (M,0) (M,�.5) (L,�.25) (M,�.25) x1
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the Word decoder. The mean similarity from the Word decoder is 0.7333, and the mean similarity from the Reconstruction
decoder is 0.8500, which represents a 16% improvement over the Word decoder. To examine whether the performance
improvement is statistically significant, we performed paired t-test on these 45 pairs of s(Y,W) and s(Y,W0) using a = 0.05.
It gives df = 44, t = 5.73, and p < 0.0001, which means the performance improvement of the Reconstruction decoder over
the Word decoder is statistically significant.

We also studied inconsistency, as introduced in the previous experiment. Cases with inconsistency are marked in bold in
Table 2. Observe that only five of the 45 cases have inconsistency, and for all these five cases, sðY ;Wn0 Þ and sðY;Wn0þ1Þ are
very close to each other. So mapping Y to Wn0 or Wn0þ1 does not make much difference.
3.3. Group decision making using T1 FSs

In this subsection we use the group decision making example introduced in [8] to compare the four decoders introduced
in this paper: the Word decoder, the Reconstruction decoder, the symbolic representation, and the 2-tuple representation.

In this example [8], a consulting company is helping another company select its computing system from four candidates:
x1-UNIX, x2-WINDOWS, x3-AS/400, and x4-VMS. The consulting company has four departments to evaluate each candidate
from four different perspectives: p1-Cost, p2-System, p3-Risk, and p4-Technology. The evaluations are assessed using the
equally-spaced 7-term codebook shown in Fig. 10. The evaluation results are shown in Table 3. The four evaluations for each
candidate are then weighted equally to obtain the overall score of that candidate.

When the Per-C approach is used, the CWW Engine is a special fuzzy weighted average, and the outputs, X1–X4, are shown
as the red dashed lines in Fig. 10. Observe that in this special case X1–X4 assume the same shape as the codebook words.
When the Word Decoder is used, X1–X4 are mapped into the four words shown in the first row of Table 4. Observe that
X1, X2 and X4 are mapped into the same word M, so they are not distinguishable by the Word decoder.5 The results for the
Reconstruction decoder are shown in the second row of Table 4. Observe that the words for X1–X4 are different. Using the results
presented in Section 2.4, it is easy to conclude that X1 is the best, which is correct. The results for the symbolic and 2-tuple rep-
resentations are shown in the last two rows of Table 4, and the detailed computations can be found in [8]. Similar to the Word
decoder, the symbolic representation cannot distinguish among X1, X2 and X4. The 2-tuple representation suggests that x1 is the
best, which is also correct.
5 We suggest a Rank decoder for this application [22]. The Word decoder is used here just to illustrate its difference from other approaches. It was also used
in [8] under a different name.
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In summary, this example demonstrates that the Reconstruction decoder and the 2-tuple representation are better able to
distinguish among similar outputs than the Word decoder and the symbolic representation. This is not surprising, as we have
shown that the Reconstruction decoder and the 2-tuple representation are equivalent when the codebook consists of equally
spaced trapezoidal T1 FSs with the same shape, which is true in this example.
4. Conclusions

The Word decoder is a very important approach for decoding in the Per-C. It maps the CWW engine output, a FS, into a
word in a codebook so that it can be understood. However, it suffers from significant information loss, i.e., the FS of the
mapped word may be quite different from the FS output by the CWW engine, especially when the codebook is small. In this
paper we have proposed a Reconstruction decoder for the Per-C, which represents the CWW engine output as a combination
of two successive codebook words with minimum information loss by solving a constrained optimization problem. The
Reconstruction decoder preserves the shape information of the CWW engine output in a simple form without sacrificing
much accuracy. It can be viewed as a generalized Word decoder and is also implicitly a Rank decoder. Moreover, it is equiv-
alent to the 2-tuple representation under certain conditions. The effectiveness of the Reconstruction decoder has been ver-
ified by three experiments.
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