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Abstract—The Representation Theorem for interval type-2
fuzzy sets (IT2 FSs), proposed by Mendel and John, states that
an IT2 FS is a combination of all its embedded type-1 (T1)
FSs, which can be non-convex and/or sub-normal. These non-
convex and/or sub-normal embedded T1 FSs are included in
developing many results for IT2 FSs, including the uncertainty
measures and linguistic weighted average. However, almost all
applications of fuzzy logic systems use only convex and normal
FSs. In this paper, we propose a Constrained Representation
Theorem for IT2 FSs using only convex and normal embedded
T1 FSs. We also apply it to computing the centroid of IT2 FSs,
the most important property and uncertainty measure of IT2
FSs. This Constrained Representation Theorem can serve as the
basis for developing many theoretical results, as the Mendel-John
Representation Theorem has done.

Index Terms—Representation Theorem, Constrained Repre-
sentation Theorem, interval type-2 fuzzy set, centroid, con-
strained centroid

I. INTRODUCTION

Interval type-2 fuzzy sets (IT2 FSs) and systems [9], [27]

have been gaining popularity rapidly in the last decade. The

Mendel-John Representation Theorem [12] for IT2 FSs has

played an important role. It states that the footprint of uncer-

tainty (FOU) of an IT2 FS is the union of all its embedded

type-1 (T1) FSs, including those that are non-convex and/or

sub-normal. This Representation Theorem implies that all

these embedded T1 FSs should be considered in deriving new

theoretical results for IT2 FSs [16]. In fact, it has been used in

defining uncertainty measures [21], [23], similarity measures

[17], [18], [23], [26], subsethood measures [17], [26], the

linguistic weighted average [13], [20], [22], [25], etc.

However, it must be noted that almost all applications of

fuzzy logic systems use only convex and normal FSs. So,

using non-convex and/or sub-normal embedded T1 FSs in

IT2 FSs and systems seems controversial. Some researchers

have noticed this problem and proposed to use constrained

embedded T1 FSs. Garibaldi [4] pointed out that “conven-

tional type-2 fuzzy sets also suffer from the problem that they

contain embedded sets that do not correspond to meaningful

concepts.” He gave two examples, as shown in Fig. 1, where

the FOU is obtained by blurring the mean of a Gaussian T1

FS. Consequently, the three Gaussian T1 FSs in Fig. 1(a)

are “meaningful” embedded T1 FSs, whereas the T1 FS

in Fig. 1(b) is “technically possible but meaningless.” He

then proposed “constrained type-2 fuzzy sets,” where only

meaningful T1 FSs are considered as embedded T1 FSs.

Aisbett et al. [1] also proposed the concept of “constrained

embedded membership function (MF),” which is essentially

the same as Garibaldi’s idea, i.e., all constrained embedded

MFs should assume similar meaningful functional form, and

generally they are convex and normal.
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Fig. 1. Illustration of (a) “meaningful” and (b) “meaningless” embedded T1
FSs.

The above two ideas are very useful when we know exactly

how an IT2 FS is constructed. For example, if we know an IT2

FS is obtained from blurring a baseline T1 Gaussian FS [4],

then all constrained embedded T1 FSs should have Gaussian

MFs. Or, if we know an IT2 FS is constructed from the

Interval Approach [7] or the Enhanced Interval Approach [2],



then all constrained embedded T1 FSs should have triangular

MFs. However, it is difficult to find “meaningful” constrained

embedded T1 FSs for an arbitrary IT2 FS without priori infor-

mation. Furthermore, sometimes it is impossible to cover the

entire FOU of an IT2 FS using only “meaningful” embedded

T1 FSs. An example is shown in Fig. 2. From the shape of the

FOU we expect that “meaningful” embedded T1 FSs would

have triangular or trapezoidal MFs. However, for any point

within the more darkly shaded area in Fig. 2, it is impossible

to find a normal triangle or trapezoid that passes through it,

i.e., the complete FOU cannot be covered by only normal

triangular or trapezoidal MFs.
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Fig. 2. A trapezoidal FOU which cannot be completely covered by
“meaningful” normal triangular or trapezoidal embedded T1 FSs.

In this paper we propose a new Constrained Representation

Theorem for IT2 FSs. It is more constrained than the Mendel-

John Representation Theorem in that only convex and normal

embedded T1 FSs are considered. However, it is more general

than Garibaldi and Aisbett et al.’s idea in that we do not require

the embedded T1 FSs to have a specific shape like Gaussian,

triangular or trapezoid. The only requirements are convexity

and normality. In this way, we can overcome their limitation,

i.e., in our Constrained Representation Theorem the FOU of

any convex and normal IT2 FS can be fully covered by only

its convex and normal embedded T1 FSs. We also gave the

algorithm for computing the constrained centroid of IT2 FSs

using our Constrained Representation Theorem.

The rest of this paper is organized as follows: Section II

introduces background knowledge on IT2 FSs and the Mendel-

John Representation Theorem. Section III introduces the new

Constrained Representation Theorem for IT2 FSs. Section IV

presents the algorithm for computing the constrained centroid

of an IT2 FS and two examples. Finally, Section V draws

conclusions.

II. BACKGROUND KNOWLEDGE ON IT2 FSS AND THE

MENDEL-JOHN REPRESENTATION THEOREM

This section presents background knowledge on IT2 FSs

and the Mendel-John Representation Theorem.

A. Interval Type-2 Fuzzy Sets (IT2 FSs)

IT2 FSs are to-date the most widely used kind of type-2

FSs. An IT2 FS Ã is described as1

Ã =

∫

x∈X

∫

u∈Jx

1/(x, u) =

∫

x∈X

[∫

u∈Jx

1/u

]/
x, (1)

1This background material is taken from [11]. See also [9], [13].

where x is the primary variable, Jx, an interval in [0, 1], is

the primary membership of x, u is the secondary variable,

and
∫
u∈Jx

1/u is the secondary MF at x. Uncertainty about

Ã is conveyed by the union of all of the primary memberships,

called the footprint of uncertainty of Ã [FOU(Ã)], i.e.,

FOU(Ã) =
⋃

x∈X

Jx (2)

An IT2 FS is shown in Fig. 3. The FOU is shown as the

shaded region. It is bounded by an upper MF (UMF) µÃ(x)
and a lower MF (LMF) µ

Ã
(x), both of which are T1 FSs;

consequently, the membership grade of each element of an

IT2 FS is an interval [µ
Ã
(x), µÃ(x)].
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Fig. 3. An IT2 FS Ã. Ae is an embedded T1 FS defined in the Mendel-John
Representation Theorem.

Note that an IT2 FS can also be represented as

Ã = 1/FOU(Ã) (3)

with the understanding that this means putting a secondary

grade of 1 at all points of FOU(Ã).

B. Mendel-John Representation Theorem

Mendel and John [12] have presented a Representation

Theorem for general T2 FSs. Its special form for IT2 FS is

introduced in this subsection. First, some necessary definitions

are given.

Definition 1: [6] A T1 FS A is convex if and only if

µA(λx1 +(1−λ)x2) > min(µA(x1), µA(x2)) for ∀ x1, x2 ∈
X and λ ∈ [0, 1]. �

Definition 2: [13] A T1 FS A is normal if and only if

supx∈X µA(x) = 1. �

Definition 3: An IT2 FS Ã is convex and normal if and

only if its UMF is convex and normal, and its LMF is convex.

�

Ã in Fig. 3 is convex and normal.

Definition 4: For discrete universes of discourse X =
{x1, x2, . . . , xN} and discrete Jx, an embedded T1 FS Ae

has N elements, one each from Jx1
, Jx2

, . . . , JxN
, namely

u1, u2, . . . , uN , i.e.

Ae =

N∑

i=1

ui/xi ui ∈ Jxi
⊆ [0, 1]. � (4)



Note that if each Jxi
is discretized into Mi levels, there will

be a total of n
A
Ae, where

n
A
=

N∏

i=1

Mi. (5)

An example of Ae is shown in Fig. 3. Observe that it is not

necessarily convex and normal.

Mendel-John Representation Theorem for IT2 FSs: As-

sume that primary variable x of an IT2 FS Ã is sampled at N
values, x1, x2, . . . , xN , and at each of these values its primary

memberships ui is sampled at Mi values, ui1, ui2, . . . , uiMi
.

Let Aj
e denote the jth embedded T1 FS for Ã. Then Ã is

represented by (3), in which2

FOU(Ã) =

n
A⋃

j=1

Aj
e

=
⋃

x∈X

{
µ
Ã
(x), . . . , µÃ(x)

}

≡
⋃

x∈X

[
µ
Ã
(x), µÃ(x)

]
. � (6)

In other words, this Representation Theorem states that the

FOU of an IT2 FS is the union of all its embedded T1 FSs,

including those that are non-convex and/or sub-normal. This

implies that all these embedded T1 FSs should be considered

in deriving theoretical results for IT2 FSs [16], e.g., uncer-

tainty measures [21], [23], similarity measures [17], [18], [26],

subsethood measures [17], [26], and the linguistic weighted

average [13], [20], [22]. However, almost all applications

of fuzzy logic systems use only convex and normal FSs;

so, including non-convex and sub-normal embedded T1 FSs

seems controversial. A Constrained Representation Theorem is

proposed in the next section, where only convex and normal

embedded T1 FSs are considered.

III. CONSTRAINED REPRESENTATION THEOREM FOR

CONVEX AND NORMAL IT2 FSS

In this section we propose a Constrained Representation

Theorem for convex and normal IT2 FSs based on only convex

and normal embedded T1 FSs (constrained embedded T1 FSs).

We consider only convex and normal IT2 FSs, which are used

in almost all applications of IT2 fuzzy logic systems.

Constrained Representation Theorem for Convex and

Normal IT2 FSs: The FOU of a convex and normal IT2 FS

is the union of all its convex and normal embedded T1 FSs.

�

For this Constrained Representation Theorem to be correct,

we need to verify that the union of all convex and normal

embedded T1 FSs can cover the entire FOU of a convex and

normal IT2 FS, as indicated by the following:

2Although there are a finite number of embedded T1 FSs, it is customary

to represent FOU(Ã) as an interval set [µ
Ã
(x), µ

Ã
(x)] at each x. Doing

this is equivalent to discretizing with infinitesimally many small values and
letting the discretizations approach zero.

Lemma 1: The FOU of a convex and normal IT2 FS can be

completely covered by only its convex and normal embedded

T1 FSs. �

Proof: Consider an arbitrary point (p, h) within the FOU of

a convex and normal IT2 FS, whose UMF has apex interval

[a, b], as shown in Fig. 4. We need to show that there is at

least one convex and normal embedded T1 FS passing through

(p, h). There can be only two cases:

1) p < b, as shown in Fig. 4(a): We can construct a convex

and normal embedded T1 FS Ae, which starts from the

LMF and then switches to the UMF at x = p.

2) p > b, as shown in Fig. 4(b): We can construct a convex

and normal embedded T1 FS Ae, which starts from the

UMF and then switches to the LMF at x = p.

In summary, for an arbitrary point within the FOU of a convex

and normal IT2 FS, we can find at least one convex and normal

embedded T1 FS which passes through it. So, the FOU of a

convex and normal IT2 FS can be completely covered by only

its convex and normal embedded T1 FSs. �
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Fig. 4. Illustration of convex and normal embedded T1 FSs which pass
through (p, h). (a) p < b; (b) p > b.

IV. CONSTRAINED CENTROID OF IT2 FSS USING THE

CONSTRAINED REPRESENTATION THEOREM

Centroid [5] may be the most important property of an IT2

FS. In this section we give the algorithm for computing the

constrained centroid of an IT2 FS based on the Constrained

Representation Theorem.

A. (Unconstrained) Centroid Based on the Mendel-John Rep-

resentation Theorem

The centroid c(A) of a T1 FS A is defined as

c(A) =

∑N
i=1 xiµA(xi)∑N

i=1 µA(xi)
. (7)



Definition 5: [21] The (unconstrained) centroid C(Ã) of

an IT2 FS Ã, computed based on the Mendel-John Repre-

sentation Theorem, is the union of the centroids of all its

(unconstrained) embedded T1 FSs Ae, i.e.,

C(Ã) ≡
⋃

∀Ae

c(Ae) = [cl(Ã), cr(Ã)], (8)

where
⋃

is the union operation, and

cl(Ã) = min
∀Ae

c(Ae) (9)

cr(Ã) = max
∀Ae

c(Ae). � (10)

It has been shown [3], [5], [8], [9], [14] that cl(Ã) and

cr(Ã) can be expressed as

cl(Ã) = min
k∈[1,N−1]

∑k
i=1 xiµÃ(xi) +

∑N
i=k+1 xiµÃ

(xi)
∑k

i=1 µÃ(xi) +
∑N

i=k+1 µÃ
(xi)

(11)

≡

∑L
i=1 xiµÃ(xi) +

∑N
i=L+1 xiµÃ

(xi)
∑L

i=1 µÃ(xi) +
∑N

i=L+1 µÃ
(xi)

(12)

cr(Ã) = max
k∈[1,N−1]

∑k

i=1 xiµÃ
(xi) +

∑N

i=k+1 xiµÃ(xi)
∑k

i=1 µÃ
(xi) +

∑N

i=k+1 µÃ(xi)

(13)

≡

∑R

i=1 xiµÃ
(xi) +

∑N

i=R+1 xiµÃ(xi)
∑R

i=1 µÃ
(xi) +

∑N

i=R+1 µÃ(xi)
. (14)

Switch points L and R, as well as cl(Ã) and cr(Ã), are

traditionally computed by the KM or EKM algorithms [5],

[9], [24]. Recently a much more efficient algorithm and its

Matlab implementation were given in [19].

The main idea of the KM algorithms is to find the switch

points for cl(Ã) and cr(Ã). Take cl(Ã) as an example. cl(Ã)
is the minimum of C(Ã). So, we should choose a large weight

[i.e., µÃ(xi)] for small xi and a small weight [i.e., µ
Ã
(xi)] for

large xi. The KM algorithm for cl(Ã) finds the switch point

L. For i 6 L, µÃ(xi) is used to calculate cl(Ã); for i > L,

µ
Ã
(xi) is used. This ensures cl(Ã) is the minimum.

B. Constrained Centroid Based on the Constrained Represen-

tation Theorem

In this subsection we introduce the algorithm for computing

the constrained centroid of an IT2 FS based on the Constrained

Representation Theorem.

Definition 6: The constrained centroid Cc(Ã) of an IT2 FS

Ã is the union of the centroids of all its convex and normal

embedded T1 FSs Acn
e , i.e.,

Cc(Ã) ≡
⋃

∀Acn
e

c(Acn
e ) = [ccl (Ã), c

c
r(Ã)], (15)

where
⋃

is the union operation, and

ccl (Ã) = min
∀Acn

e

c(Acn
e ) (16)

ccr(Ã) = max
∀Acn

e

c(Acn
e ). � (17)

Similar to the unconstrained case, for ccl (Ã) we still need a

large weight for small xi and a small weight for large xi, i.e.,

the corresponding embedded T1 FS must still switch from the

UMF to the LMF at some point. However, since Acn
e must be

convex and normal, we have two constraints:

1) Because Acn
e must be normal, at least one point on it

must have membership grade 1. So, the switch point Lc

must satisfy xLc > a, where a is the left-most apex of

the UMF of Ã, as shown in Fig. 5.

2) Acn
e must also be convex. If c 6 a, as shown in

Fig. 5(a), the convexity requirement is automatically

satisfied when the normality constraints is satisfied,

because all Acn
e in the KM algorithm starts from the

left-most point on the UMF, stays on the UMF until it

reaches or passes the point (a, 1), and then switches to

and stays on the LMF. However, if c > a and the switch

point is between a and c, as shown in Fig. 5(b), then

the MF of Acn
e between a and c must be raised to h,

the height of the LMF, to ensure that it is convex.
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Fig. 5. µ′

Ã
(x), the LMF that should be used in the KM algorithm for

computing cc
l
(Ã). (a) c 6 a; (b) c > a.

Though these two constraints seem complex, they can be

simultaneously satisfied by smartly redefining the LMF of Ã
and then using it in the KM algorithm or its more efficient

implementations. From the above analysis we know that when

c 6 a, convexity is automatically satisfied when normality is

satisfied, so we only need to worry about normality. If we

re-define the LMF as

µ′

Ã
(xi) =

{
µÃ(xi), xi 6 a
µ
Ã
(xi), xi > a

(18)

as shown in Fig. 5(a), then point (a, 1) is guaranteed to be

included in all embedded T1 FSs, and hence all embedded T1

FSs are convex and normal.



When c > a, we can re-define the LMF as

µ′

Ã
(xi) =





µÃ(xi), xi 6 a
h, a < xi < c
µ
Ã
(xi), xi > c

(19)

as shown in Fig. 5(b). The motivation for defining µ′

Ã
(xi) =

µÃ(xi) for xi 6 a in (19) is to ensure that the point (a, 1)
is included in every embedded T1 FS, i.e., every embedded

T1 FS is normal. The motivation for defining µ′

Ã
(xi) = h for

a < xi < c is to ensure that every embedded T1 FS is also

convex.

In summary, the following algorithm can be used to compute

ccl (Ã):

1) If c 6 a, then re-define the LMF using (18); otherwise,

re-define the LMF using (19).

2) Use the re-defined LMF and the original UMF in the

KM algorithm or its more efficient implementations to

compute ccl (Ã).

Similarly, to compute ccr(Ã), a small weight should be

used for small xi and a large weight for large xi, i.e., the

corresponding Acn
e should still switch from the LMF to the

UMF at some point. However, since this Acn
e must be convex

and normal, we again have two constraints:

1) Because Acn
e must be normal, at least one point on it

must have membership grade 1. So, the switch point Rc

must satisfy xRc 6 b, where b is the right-most apex of

the UMF of Ã, as shown in Fig. 6.

2) Acn
e must also be convex. When d > b, as shown in

Fig. 6(a), the convexity requirement is automatically

satisfied when normality is satisfied, because all Acn
e in

the KM algorithm starts from the LMF and then switches

to the UMF at or before the point (b, 1). When d < b
and the switch happens between d and b, as shown in

Fig. 6(b), the LMF between d and b must be raised to

h, the height of the LMF, to ensure that it is convex.

Again, the two requirements can be simultaneously satisfied

by smartly redefining the LMF of Ã and then using it in the

KM algorithm or its more efficient implementations. From

the above analysis we know that when d > b, convexity is

automatically satisfied when normality is satisfied, so we only

need to worry about normality. If we re-define the LMF as

µ′′

Ã
(xi) =

{
µ
Ã
(xi), xi < b

µÃ(xi), xi > b
(20)

as shown in Fig. 6(a), then the point (b, 1) is guaranteed to

be included in all embedded T1 FSs, and hence all embedded

T1 FSs are convex and normal.

When d < b, we can re-define the LMF as

µ′′

Ã
(xi) =






µ
Ã
(xi), xi 6 d

h, d < xi < b
µÃ(xi), xi > b

(21)

as shown in Fig. 6(b). The motivation for defining µ′′

Ã
(xi) =

µÃ(xi) for xi > b is to ensure that the point (b, 1) is

included in every embedded T1 FS, i.e., every embedded T1
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Fig. 6. µ′′

Ã
(x), the LMF that should be used in the KM algorithm for

computing ccr(Ã). (a) d > b; (b) d < b.

FS is normal. The motivation for defining µ′′

Ã
(xi) = h for

d < xi < b is to ensure that every embedded T1 FS is also

convex.

In summary, the following algorithm can be used to compute

ccr(Ã):

1) If d > b, then re-define the LMF using (20); otherwise,

re-define the LMF using (21).

2) Use the re-defined LMF and the original UMF in the

KM algorithm or its more efficient implementations to

compute ccr(Ã).

C. Some Properties of the Constrained Centroid

Because the (unconstrained) centroid of an IT2 FS is

computed from its all possible embedded T1 FSs, regardless

of whether they are convex and/or normal, whereas the con-

strained centroid is computed from only convex and normal

embedded T1 FSs, the following result is true without proof:

Theorem 1: The constrained centroid computed based on

the Constrained Representation Theorem is included in the

(unconstrained) centroid computed based on the Mendel-John

Representation Theorem. �

Another important property about the unconstrained cen-

troid computed from the Mendel-John Representation Theo-

rem is that cl(Ã) → xL and cr(Ã) → xR when N → ∞ [15].

However, this property no longer holds for the constrained

centroid.

D. Examples

Two examples are provided in this subsection to demon-

strate the difference between the unconstrained centroid and

the constrained centroid.

Example 1: Consider the trapezoidal FOU shown in

Fig. 7(a). The domain of x, [0, 6], was discretized into 1000

equally-spaced points in the computation, i.e. N = 1000.

We obtained C(Ã) = [2.67, 4.57] and Cc(Ã) = [2.79, 4.56].



Observe that Cc(Ã) ⊂ C(Ã), which is consistent with Theo-

rem 1. Observe also from Fig. 7 that the embedded T1 FSs in

the constrained and unconstrained cases are quite different.
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Fig. 7. The embedded T1 FSs determining (a) cl(Ã) (red dashed curve) and

cc
l
(Ã) (blue solid curve); and, (b) cr(Ã) (red dashed curve) and ccr(Ã) (blue

solid curve).

Example 2: Consider the Gaussian IT2 FS shown in

Fig. 8(a), where the UMF is defined by exp(−x2/2), and

the LMF is defined by 0.5 exp(−x2/2). Note that the IT2

FS is symmetrical about 0. So, according to the theoretical

result in [10], C(Ã) must also be symmetrical about 0. In

the computation the interval [−3, 3] was discretized into 1000

equally-spaced points, i.e. N = 1000. The centroids are

C(Ã) = [−0.2737, 0.2737] and Cc(Ã) = [−0.2637, 0.2637].
Observe that:

1) C(Ã) is symmetrical about 0, as suggested by the

theoretical result in [10].

2) Cc(Ã) is also symmetrical about 0. By following the

proof in [10], we should also be able to prove that

when an IT2 FS is symmetrical about m, its constrained

centroid is also symmetrical about m.

3) Cc(Ã) ⊂ C(Ã), which is consistent with Theorem 1.

4) The embedded T1 FSs in the constrained and uncon-

strained cases are quite different, as shown in Fig. 8.

V. CONCLUSIONS

The Mendel-John Representation Theorem for IT2 FSs

states that an IT2 FS is a combination of all its embed-

ded T1 FSs, which can be non-convex and/or sub-normal.

These non-convex and/or sub-normal embedded T1 FSs are

included in developing many results for IT2 FSs, including

the uncertainty measures and linguistic weighted average.

However, almost all applications of fuzzy logic systems use

only convex and normal FSs. In this paper, we have proposed

a Constrained Representation Theorem for IT2 FSs using only

convex and normal embedded T1 FSs. We also applied it
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Fig. 8. The embedded T1 FSs determining (a) cl(Ã) (red dashed curve) and

cc
l
(Ã) (blue solid curve); and, (b) cr(Ã) (red dashed curve) and ccr(Ã) (blue

solid curve).

to computing the centroid of IT2 FSs, the most important

property and uncertainty measure of IT2 FSs. Our Constrained

Representation Theorem can serve as the basis for developing

many theoretical results, as the Mendel-John Representation

Theorem has done.
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