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a b s t r a c t 

We propose a practicable method for generating synthetic CT images from modified Dixon (mDixon) MR 

data for the challenging body section of the abdomen and extending into the pelvis. Attenuation cor- 

rection is necessary to make quantitatively accurate PET but is problematic withPET/MR scanning as MR 

data lack the information of photon attenuation. Multiple methods were proposed to generate synthetic 

CT from MR images. However, due to the challenge to distinguish bone and air in MR signals, most ex- 

isting methods require advanced MR sequences that entail long acquisition time and have limited avail- 

ablity. To address this problem, we propose a voxel-oriented method for synthetic CT generation using 

both the transfer and patch learning (SCG-TPL). The overall framework of SCG-TPL includes three stages. 

Stage I extracts seven-dimensional texture features from mDixon MR images using the weighted convolu- 

tional sum; Stage II enlists the knowledge-leveraged transfer fuzzy c-means (KL-TFCM) clustering as well 

as the patch learning-oriented semi-supervised LapSVM classification to train multiple candidate four- 

tissue-type-identifiers (FTTIs); Stage III synthesizes CT for new patients’ mDixon images using the candi- 

date FTTIs and voting principle. The significance of our method is threefold: (1) As the global model for 

patch learning, guiding by the referenced knowledge, KL-TFCM can credibly initialize MR data with over- 

coming the individual diversity. As the local complement, LapSVM can adaptively model each patch with 

low time and labor costs. (2) Jointly using the transfer KL-TFCM clustering and patch learning-oriented 

LapSVM classification, SCG-TPL is able to output accurate synthetic CT in the abdomen. (3) SCG-TPL syn- 

thesizes CT only using easily-obtainable mDixon MR images, which greatly facilitates its clinical practi- 

cability. Experimental studies on ten subjects’ mDixon MR data verified the superiority of our proposed 

method. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Providing superior soft tissue contrast and high anatomical res-

lution, Magnetic Resonance (MR) images have been widely ap-

lied in clinical care and medical research [49,50] . Different from

omputed Tomography (CT), MR does not use ionizing radiation

hich is particularly problematic for pediatric and pregnant pa-

ients. Positron Emission Tomography (PET) imaging is comple-
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entary to MR and is routinely used to image the 18 F-labeled

-fluoro-2-deoxy-D-glucose (FDG) distribution in cancer patients

here focal uptake of FDG visualizes neoplasmsf [37] . Indeed, their

ombined value has motivated the creation of PET/MR scanners,

hich combines the both advantages of PET and MR in a single

canner. A challenge of this relatively new type of hybrid scanner

s making the FDG PET images quantitatively accurate as the scan-

er lacks a CT which is the source of information for attenuation

orrection, the single largest correction of PET image reconstruc-

ion. Another high-value application of MR is for radiation treat-

ent planning (RTP). The soft tissue contrast of MR usually pro-

ides much better visualization of the tumors to be targeted for

https://doi.org/10.1016/j.patrec.2020.06.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2020.06.017&domain=pdf
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Fig. 1. The procedure illustration of PL. 
treatment than does CT. However, as noted in the PET/MR discus-

sion, MR lacks the photon attenuation information needed to cal-

culate the tissue radiation dose. Whereas CT is traditionally used

to provide this information, it would be ideal if it could be ob-

tained directly from MR. This would obviate CT scanning which re-

quires a different device and for which the patient position could

be not exactly the same as during the MR scan. Further, obviating

the CT scan could support an MR-only workflow which would en-

able patients to imaged and treated simultaneously using a linac-

MR system [13] . This could achieve precise tumor targeting, tak-

ing into account not only tumor shrinkage over the multi-day time

course of treatment but also taking into account changes in tu-

mor position caused by physiologic (cardiac, respirtatory) motion

[16,44] .However, MR and PET/MR are rarely used individually in

radiotherapy due to the lack of geometric integrity [41] and pre-

cision in mapping relative electron density (RED) [8] for dose cal-

culations. 

Both PET/MR and MR-only treatment are important advance-

ments in medicine [31] . In both, the primary problem technical to

be solved is the calculation of photon (gamma-or x-ray) radiation

absorption by tissue. So the synthesis of CT from MR is a very at-

tractive approach. The normal clinical processing can be used with

the substitution of a synthetic CT (sCT) in place of a measured

CT. To this end, multiple methods were proposed to generate syn-

thetic CT from given MR images, such as the atlas-based [14,15] ,

template-based [24] , and voxel-based methods [40] . 

However, the diversity and real-time motion of human organs

and tissues directly cause some methods to fail, particularly im-

pacting some atlas-based and template-based methods [9,20] . In

addition, two aspects of limitations on synthetizing CT images are

worth being clarified as follows. One is from the perspective of

body sections. Most studies have focused on the brain or pelvis

(Andreasen et al., 2016; 12,19,27,28 ), and these body sections have

the common characteristics of relatively simple organs that are

relatively rigid. In contrast, the abdomen is a challenging body

section, and because of its complex anatomical structure and the

large amount of organ deformation caused by human respiration,

this body section is rarely studied. The other concerns the MR se-

quences involved. To capture the bone signal during MR imaging,

many existing methods made use of advanced sequences that re-

quire extra scanning time and are technically challenging for clinic

applications, such as ultrashort echo time (UTE) [26] and zero echo

time (ZTE) [7] . Not only does the abdomen contain vertebral bod-

ies (large bones), the often the imaging field of view extends into

the pelvis where there is the pelvic skeleton and top of the femurs.

In this context, our study attempts to present a novel, practi-

cable voxel-based synthetic CT generation method that is quali-

fied to effectively distinguish all of the tissue types in abdomen

only in terms of commonly-available mDixon MR images. We re-

fer to it as synthetic CT generation using both transfer [32,33] and

patch learning (SCG-TPL for short) [46] . SCG-TPL involves three

stages. The first is responsible for extracting effective texture fea-

tures on given mDixon MR images. The second figures out multi-

ple candidate four-tissue-type identifiers (FTTIs) by means of the

knowledge-leveraged transfer fuzzy c-means (KL-TFCM) [34] clus-

tering and the patch learning-oriented semi-supervised Laplacian

support vector machine (LapSVM) [5] classification. The third stage

synthesizes CT for new patients’ MR images according to the mul-

tiple candidate FTTIs and the voting principle. The contributions of

our study are mainly the following three points: 

(1) KL-TFCM is used as the global model for patch learning

throughout our SCG-TPL method. Assisting by the referenced

knowledge, KL-TFCM is capable of initializing the MR data

with overcoming the individual diversity. LapSVM is enlisted

to locally, precisely model each patch only with a small
quantity of manually-labeled tissue types. In this way, our

method has low time and labor costs. 

(2) Jointly using the transfer fuzzy clustering and patch

learning-oriented semi-supervised LapSVM classification,

SCG-TPL is able to output desirable synthetic CT in the chal-

lenging abdomen and extending into the pelvis. 

(3) SCG-TPL synthesizes CT only using easily-obtainable mDixon

MR images, which greatly facilitates its clinical practicability.

The rest of this manuscript is organized as follows. Related

ork, such as patch learning (PL), KL-TFCM, and LapSVM, are

riefly introduced in Section 2 . The proposed SCG-TPL method is

ntroduced in detail in Section 3 . Our experimental studies as well

s result analyses are presented in Section 4 . The conclusion is

iven in Section 5 . 

. Related work 

.1. Patch learning (PL) 

Patch learning [46] refers to a series of machine learning frame-

orks that jointly use one global model and multiple local models.

L supposes that most data work well with the global model. Ex-

eptions compose the so-called patches in each of which the par-

ial, affiliated data contribute much to the learning error of the

lobal model. 

PL proposes to model each patch adaptively. Generally, the lo-

al models are the complementary to the global one. As such, in-

orporating the power of both the global and patch-oriented local

odels, PL aims to achieve the overall high learning performance. 

Fig. 1 depicts the PL procedure. Fig. 2 depicts the distribution of

he dataset after applying global model. The rectangle presents the

hole dataset. If the data fall into the global area, use the global

odel. If the data fall into any patch, use thecorresponding patch

odel. Thus, we can determine which model should be used in

he whole procedure of patch learning.Specifically, PL consists of

he following four steps: 

1. Obtain a global model using all of the training data; 

2. Identify the data parts that present poor performance in the

global model as patches; 
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Fig. 2. The data distribution after applying the global model. 

Fig. 3. Illustration of work and data flows of SCG-TPL. 
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3. Determine the locally adaptive model for each patch; 

4. Handle new data: 1) using the global model if the data do not

belong to any patch; 2) using the adaptive local model if the

data fall into the corresponding patch. 

.2. KL-TFCM 

As is well-known, the effectiveness of fuzzy c-means (FCM)

4,35,45] is often significantly impacted by noise and outliers con-

ained in target data sets. To address this issue, we integrated the

ransfer learning [21,52] into the framework of classical fuzzy c-

eans (FCM) and proposed the KL-TFCM algorithm. 

Let X T = { x 1 , T , . . . , x N T , T } ∈ R 

N T ×d denote the data set in the tar-

et domain, where the example number is denoted as N T and the

ata dimension is denoted as d . Let U T = [ μij , T ] C T ×N T 
denotes the

 T × N T membership matrix in the target domain, with μij , T sig-

ifying the membership degree of x j ( j = 1 , . . . , N T ) belonging to

luster i (i = 1 , . . . , C T ) , where the cluster number is denoted by C T .

 T = [ v 1 , T , . . . , v C T , T ] 
T 

denotes the cluster prototype matrix in the
arget domain, with v j, T = [ v j1 , T , . . . , v jD , T ] 
T ( j = 1 , . . . , C T ) signify-

ng the j th cluster prototype (centroid). ˜ V S = [ ̃ v 1 , S , . . . , ̃  v C T , S ] 
T 

de-

otes the employed cluster representatives from the source domain

or the eventual knowledge utilization in the target domain, with

˜  j, S = [ ̃ v j1 , S , . . . , ̃  v jD , S ] 
T ( j = 1 , . . . , C T ) denoting the j th cluster repre-

entative in the source domain. 

Here we would like to clarify that ˜ V S can be the historical clus-

er prototypes (also called cluster centroids) V S of the source do-

ain if and only if the cluster numbers of the target and source

omains are the same. What needs to be further explained is that

oth cluster prototypes and cluster representatives represent the

luster centroids of the source domain during transfer learning.

ue to the existence of the case where the cluster numbers in the

ource and target domains are inconsistent, only part of the clus-

er centroids in the source domain are utilized as the prior knowl-

dge for the transfer leaning in the target domain. These partially

nvolved cluster centroids of the source domain are called as the

luster representatives in our study. 

The framework of KT-TFCM can be reformulated as 

in 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

J KT −TFCM 

( U T , V T ) = 

N T ∑ 

i =1 

C T ∑ 

j=1 

μm 

ij , T ‖ x i, T − v j, T || 2 

+ λ
C T ∑ 

j=1 

‖ v j, T −
∼
v j, S || 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

 . t . i ∈ [ 1 , N T ] , j ∈ [ 1 , C T ] , 

ij , T ∈ [ 0 , 1 ] , 

C T ∑ 

j=1 

μij , T = 1 

(1) 

here x i, T (i = 1 , . . . , N T ) ∈ X T , v j , T ∈ V T , ˜ v j, S ∈ ̃

 V S , and λ ≥ 0 is a

egularization coefficient. Parameter λ is the impact factor and de-

ermines the learning degree between the target and source do-

ains. Eq. (1) is a minimization problem, thus larger values of λ
ndicate that the target domain learn much from the source do-

ain, i.e., V T is V S . 

The update of the cluster centroid v j , TT and fuzzy membership

ij,T can be deducedusing the Lagrange optimization as follows 

 j, T = 

∑ N T 
i =1 

μm 

ij , T 
x i, T + λ˜ v j, S ∑ N T 

i =1 
μm 

ij , T 
+ λ

(2) 

ij , T = 

1 

∑ C T 
i =1 

(‖ 

x i, T −v j, T || 2 
‖ 

x i, T −v l , T || 2 
) 1 

m −1 

(3) 

.3. Laplacian support vector machine (LapSVM) 

LapSVM [5,48] , an extension of the traditional SVM, is a semi-

upervised classification algorithm based on the manifold regular-

zation [30] , studies how to use a small number of labeled samples

s well as numerous unlabeled samples to train classifiers, which is

n extension of the traditional SVM. LapSVM leverages the intrin-

ic geometry information of samples because of the introduction

f the manifold regularization term. 

Assume S = { x i , i = 1 , . . . , n } denotes a sample set, x i represents

he i th sample and n represents the number of samples. Suppose

hat L = { x i , i = 1 , . . . , m } represents the labeled samples, where

 represents the number of labeled samples; U = { x i , i = 1 , . . . , u }
epresents the unlabeled samples, where u represents the number

f unlabeled samples. Let y i represent the category of the i th sam-

le, y ∈ {-1, 1}. Then, the LapSVM framework can be represented
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Fig. 4. Illustration of generation of the prior referenced cluster centroids. 

Fig. 5. Illustration of the work and data flows for generating the FTTI with an ex- 

ample subject. 
as 

f ∗ = min 

f∈ H k 

m ∑ 

i =1 

max ( 1 − y i f ( x i ) , 0 ) ±

+ γA ‖ f ‖ 

2 
A + γI ‖ f ‖ 

2 
I 

(4)

where f = [ f (x i ) , x i ∈ S] 
T 

is an n -dimensional column vector in the

training dataset. ‖ · ‖ 2 A is the ambient norm defined in the regen-

erative nuclear Hilbert space (RKHS), and H k is the RKHS related

to the kernel function. Parameter γ A controls the complexity of

‖ f ‖ 2 A in RKHS. ‖ f ‖ 2 I is the regularization term maintaining the in-

ner manifold structure of the sample distribution. Parameter γ I is

the weight of the function in the low-dimensional manifold, which

controls the complexity of the inner geometry function. By calcu-

lating the Lagrange multiplier, we obtain the classifier as follows. 

f ∗ = 

n ∑ 

i =1 

α∗
i K ( x i , x ) (5)

where α∗
i 

is the Lagrange multiplier and K is the kernel matrix.

Solving the Lagrange multiplier yields 

α∗ = ( 2 γA I + 2 γI KL ) 
−1 J T L Y β∗ (6)

where I is the identity matrix and L is the Laplacian matrix.

Y ∈ R 

m × m is a diagonal matrix composed of identification sam-

ples y i , i = 1 , . . . , m . J L ∈ R 

m × n is a block matrix [ I O ] formed by la-

beled samples and unlabeled samples. β is also the Lagrange mul-

tiplier: 

β∗ = max 
β∈ R m 

∑ 

β i − 1 

2 

βT Qβ

Q = Y J L K ( 2 γA + 2 γI KL ) 
−1 J T L Y 

s . t . 

m ∑ 

i =1 

βi y i = 0 , 

0 ≤ βi ≤ 1 , i = 1 , . . . , m 

(7)

3. The proposed SCG-TPL method 

The proposed SCG-TPL method overall includes three stages, as

shown in Fig. 3 . The first is the MR image data preparation stage to

extract seven-dimensional features from given MR images. The sec-

ond conducts transfer clustering as well as patch learning-oriented

semi-classification to establish several candidate four-tissue-type-

identifiers (FTTIs) via given training subjects. The last generates

synthetic CTs for new patients according to the candidate FTTIs and

voting principle. Next, we describe each stage in detail. 

3.1. MR image data preparation 

Feature extraction is of vital importance to our proposed SCG-

PL method. Considering the potential uncertainty (e.g., environ-

mental noise and organ motion) during acquiring MR images, we

adopt the strategy of weighted convolutional sum to extract local

texture features from the MR images. As we previously introduced

in [11] , four different types of MR images: fat, water, in-phase (IP)

and opposed-phase (OP) were available for each subject. Thus, sim-

ilar to what we did in [51] , we first concurrently extract the tex-

ture features using the weighted convolutional sum from the four

MR images of each subject. Then, the spatial information of voxels

is also included in our current study to further augment the voxel

features. One can refer to [51] for the details. As such, eventually,

we can constitute the seven-dimensional MR feature data for the

matching MR volume of each subject. 

In addition, to overcome the individual diversity when hand-

ing different subjects’ data, our method needs the referenced, prior

knowledge, i.e., referenced class prototypes of bone, air, fat tissue
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Fig. 6. Performance curves of the four methods. 
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Fig. 7. The histograms of metrics for all methods. 
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nd soft tissue, to assist the KL-TFCM clustering on target datasets.

o this end, several historical patients’ pairwise, registered CT-

R images are necessary. Suppose there are l historical patients

vailable, the process for generating the prior knowledge can be

ketched in Fig. 4 . Specifically, on each historical patient’s CT im-

ge, we obtain the positions of all bone tissue with the Hounsfield

nit (HU) value � 300. Then, mapping theseobtained bone positions

nto the patient’ MR images (IP, OP, fat, and water images), we con-

equently get the positions of all leftover tissues, i.e., fat, air, and

oft tissue. On the seven-dimensional MR feature data of these po-

itions, we run the classical FCM algorithm to get the three cluster

entroids (namely, cluster prototypes). Here, depending on some

linical experience and referenced values from existing literature

38] , we know the correspondence between cluster centroids and

issue types with regard to air, fat, and soft tissue, respectively

1,3,17,18,23,42] . To embody the overall properties over different

atients, the average values of the l calculated cluster centroids re-

arding bone, air, fat, and soft tissue are enlisted as the final refer-

nced knowledge for transfer learning in KL-TFCM. 

.2. Constructing candidate four-tissue-type-identifiers (FTTIs) 

Our objective is to generate accurate synthetic CT from given

R images in the challenging abdomen body section and extend-
ng into the pelvis. In [36] we proposed to use a systematic, five-

hase-interlinked method to achieve this goal. Inspired by patch

earning, here we attempt to put forward a simplified approach.

o this end, several subjects’ mDixon MR images are needed to

et several candidate FTTIs. Let’s suppose m training subjects are

vailable in this stage. In our designed SCG-TPL method, KL-TFCM

s employed as the global model to implement patch learning. That

s, KL-TFCM is capable of measuring which partitions of data have

atisfactory clustering effectiveness and which should be treated as

he patches that need to be individually optimized using the cor-

esponding local models. 

Taking one subject as the example, we explain our process. On

ne subject’s MR feature data, after running KL-TFCM, we find that

nly the obtained fat and soft tissue groups are generally satisfac-

ory, but not the others, due to the fact that mDixon sequences are

roficient in exhibiting fat and soft tissues. Particularly, we found

hat voxels between air and bone cannot be incorrectly grouped

y KL-TFCM [6,29] , and similar situations happen on quite a few

oxels between bone and soft tissue (e.g., cartilage looks like soft

issue). This means that “bone VS air” and “bone VS soft tissue”

hould be regarded as two patches in our study. 

Consequently, LapSVM is enlisted as the locally modeling

ethod in our design as it can figure out insightful classifiers with

 very small quantity of labeled examples. Therefore, for the patch
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Fig. 8. Synthetic CT images of a representative subject (Sub 8) using four methods. 
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Table 1 

Parameters involved in SCG-TPL. 

Parameters Sugges

Regularization parameter λ in KL-TFCM in (1) λ = 50

Regularization parameter γ A , γ I in LapSVM in (4) Determ

cross-v

N l and N u denote the data sizes of the labeled data 

and unlabeled data in the two patch models of 

SCG-TPL, respectively. N l can be divided into N l -1 

and N l -2 , representing the labeled data sizes in 

patch model-1 and patch-model-2, respectively, 

and similarly with Nu -1 and Nu -2. 

N l - 1 = 

Nu -1 =
Nu -1 =
Nu -2 =

Parameter ss is the sampling data size in the 

patches. Parameter k is to select k nearest 

neighbors in KNN. 

Similarly, ss consists of ss -1 and ss -2, and k 

consists of k -1 and k -2. 

ss -1 = 

k -1 = 3

ss -2 = 

k -2 = 7
f “bone VS air”, with manually labeling a few bone and air ex-

mples and using LapSVM, we are able to establish the two-class

lassifier to reliably distinguish the bone and air; likewise, for the

atch of “bone VS soft tissue”, we train the two-class classifier to

ifferentiate the bone and soft tissue. 

So far, in summary, for this subject’s MR feature data, we first

now voxels belonging to the fat and soft tissue by means of the

lobal KL-TFCM model, and then in terms of the two local patch

odels, we can obtain the precise air and bone tissues as well as

ome remaining soft tissuethat was initially, mistakenly grouped

nto bone. As such, we figure successfully out the FTTI for this sub-

ect. Fig. 5 intuitively depicts this procedure. 

Onall of the m training subjects, we can achieve m FTTIs. These

re the base of our SCG-TPL method. Via them, and using the vot-

ng strategy, we are able to reliably predict the tissue types of vox-

ls in new patients’ MR images. 

Considering the large amount of MR data even in one patch, it

s infeasible to directly take the entire data as the input to the lo-

al model, becausethe time consumption is considerable. Thus, we

dvise the “sampling + K-nearest neighbors (KNN)” mechanism to

ccelerate the process, i.e., randomly sampling the entire data for

nalysis in the beginning and using KNN to propagate the analysis

esults of the sampled subset to the whole data in the end. 

Suppose the sampling size is denoted by ss and the choice of

he nearest neighbors is denoted by k . As we have two patch mod-

ls, we use ss -1 and k -1 to signify the parameters associated with

odel 1 and ss -2 and k -2 with Model 2. 

.3. Generating synthetic CT images through multiple FTTIs 

We organically assemble the identification results of multiple

TTLs via the strategy of voting to decide the tissue types of voxels

n new patients’ MR data. Then, with assigning appropriate CT val-

es to corresponding tissue types, we can synthesize the CT image

or the given MR images. In our study, the CT values of bone, air,

at, and soft tissue are set to 380, −700, −98, and 32, respectively

38] . 

. Experimental results 

.1. Setup 

In this section, we assess the effectiveness of the proposed

CG-TPLmethod for generating synthetic CT images. Ten subjects

ere recruited using a protocol approved by the University Hospi-

als Cleveland Medical Center Institutional Review Board. To obtain

airs of aligned MR and CT images, OpenREGGUI, an open-source
ted settings Trial ranges 

0 λ∈ {100, 

200,300,400,500,600,700,800,900,1000} 

ined by 10-fold 

alidation 

γ A ∈ {1e-8, 1e-6, 1e-4, 1e-2, 1e0, 

1e1, 1e2, 1e3} 

γ I ∈ {1e-8, 1e-6, 1e-4, 1e-2, 1e0, 

1e1, 1e2, 1e3} 

400 

 1600 

 400 

 1600 

N l ∈ {100, 200, 300,400, 500, 600} 

N u ∈ {1900, 1800, 1700,1600, 1500, 

1400} 

3e4 

 

3e4 

 

ss ∈ {1e4, 2e4, 3e4, 4e4, 5e4, 6e4} 

k ∈ {1, 3, 5, 7, 9} 
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Table 2 

Performance comparison of synthetic CT image generation by the proposed SCG-TPL and other methods. 

Sub 

MAPD RMSE R 

SCG-TPL AW KL-TFCM SVM 

∗ SCG-TPL AW KL-TFCM SVM 

∗ SCG-TPL AW KL-TFCM SVM 

∗

1 Mean 93.44 150.45 159.03 106.99 155.50 233.49 232.66 196.11 0.75 0.35 0.61 0.58 

Std. 0.10 0.00 1.02E-02 0.91 0.12 0.00 1.06E-02 0.76 3.50E-04 0.00 7.39E-06 1.00E-04 

2 Mean 73.47 142.80 118.61 87.09 136.97 228.49 195.37 174.73 0.78 0.25 0.64 0.60 

Std. 0.05 0.00 1.01E-02 0.12 0.07 0.00 1.44E-02 0.05 2.31E-04 0.00 2.83E-05 1.33E-03 

3 Mean 81.12 168.21 132.40 104.29 137.54 261.03 203.73 199.81 0.85 0.36 0.74 0.66 

Std. 0.08 0.00 1.04E-02 0.56 0.13 0.00 1.29E-02 0.09 2.93E-04 0.00 1.83E-05 2.55E-03 

4 Mean 61.09 129.55 109.33 71.95 116.68 200.63 183.42 148.70 0.80 0.36 0.65 0.66 

Std. 0.05 0.00 6.71E-03 0.15 0.10 0.00 8.93E-03 0.08 4.72E-04 0.00 1.89E-05 1.50E-03 

5 Mean 76.11 145.55 134.66 89.11 137.97 224.10 211.00 173.06 0.78 0.38 0.63 0.62 

Std. 0.09 0.00 2.15E-02 0.44 0.15 0.00 2.84E-02 0.19 3.99E-04 0.00 6.28E-05 1.78E-03 

6 Mean 93.38 149.09 156.06 111.41 157.72 219.24 234.04 194.02 0.72 0.29 0.60 0.60 

Std. 0.15 0.00 8.54E-03 1.17 0.23 0.00 9.09E-03 1.05 5.55E-04 0.00 4.99E-06 3.76E-04 

7 Mean 89.14 154.07 145.65 104.36 153.37 235.96 218.67 189.16 0.76 0.22 0.67 0.63 

Std. 0.14 0.00 1.73E-02 1.16 0.19 0.00 1.87E-02 0.98 3.86E-04 0.00 1.70E-05 6.50E-04 

8 Mean 77.69 152.41 125.46 95.92 138.86 227.09 206.18 176.67 0.77 0.34 0.60 0.64 

Std. 0.10 0.00 9.63E-03 0.83 0.17 0.00 9.23E-03 0.60 3.68E-04 0.00 6.89E-06 3.06E-04 

9 Mean 73.41 139.04 131.68 95.06 125.36 222.99 200.55 184.73 0.82 0.33 0.66 0.59 

Std. 0.07 0.00 6.74E-03 0.43 0.13 0.00 6.96E-03 0.19 4.26E-04 0.00 9.54E-06 3.37E-03 

10 Mean 86.48 153.00 165.00 112.76 148.43 225.90 238.20 197.52 0.76 0.37 0.64 0.60 

Std. 0.13 0.00 1.18E-02 1.08 0.19 0.00 1.33E-02 0.74 6.45E-04 0.00 1.30E-05 1.89E-03 

Average Mean 80.53 148.42 137.79 97.89 140.84 227.89 212.38 183.45 0.78 0.32 0.64 0.62 

Std. 10.26 10.27 18.24 12.69 13.23 15.11 18.17 15.67 0.04 0.05 0.04 0.03 

p-value 1.34E-09 5.74E-12 1.88E-09 1.56E-09 8.90E-11 3.93E-12 3.84E-11 3.79E-11 1.71E-13 1.30E-08 2.98E-12 1.74E-13 

i  

t  

t  

t

 

t  

m  

w  

t  

c  

d  

n  

t  

i  

t  

m

 

m  

t  

u

 

T  

g  

s

 

e  

w  

o  

s  

s  

o

 

w  

M

4

m  

i  

s  

j  

s  

o  

a  

t  

s  

s

 

t  

p  

s  

m  

fi  

o  

o  

w  

a  

S

4

 

v  

S  

v  

a  

A  

m

 

o  

h  

d  

p  

a

 

t  

p  

m  

o  
mage registration package [22] , was used in our study to perform

he deformable registration.Therefore, we have ten sets of regis-

ered MR and CT images of the abdomen for study and we name

hem as Sub1 to Sub10. 

Three existing methods were compared with our method, i.e.,

he all-water method (AW) [2] , KL-TFCM and SVM 

∗. In the AW

ethod, all the voxels within the body are directly viewed as

ater, which is considered a common approximation in radiation

reatment. KL-TFCM applies historical cluster centroids to assist

lustering target MR feature data and the achieved 4 clusters are

irectly regarded as the types of voxels of the abdomen.SVM 

∗ de-

otes the alternative method in which the supervised SVM, i.e.,

he conventional SVM [39] , is used to construct the patch model

n comparison with LapSVM recruited in our method. This implies

hat SVM 

∗ utilizes only a few labeled examples to train the patch

odel without using any unlabeled data. 

Furthermore, to fairly evaluate the effectiveness of involved

ethods, three common metrics-mean absolute prediction devia-

ion (MAPD), root mean square error (RMSE), and R 10,43] -were

sed throughout our experiments. 

The proposed SCG-TPL involves several parameters, as listed in

able 1 . To optimize the effect of these parameters, we used the

rid search [25] and 10-fold cross-validation [47] to ultimately as-

ign appropriate values to each parameter. 

It is worth clarifying that we adopted the leave-one-out strat-

gy to generate synthetic CT image for each of the subjects. That is,

e treat one subject as the new patient (the test subject) and the

ther leftover as the training subjects. Each result of generating the

ynthetic CT image of the new patient was assembled from the re-

ults of the nine remaining subjects’ FTTIs, which excludes the one

f the test subject itself. 

Our experimental studies were carried out using a computer

ith an Intel i5–4570 3.20 GHz CPU, and 8 GB of RAM running

icrosoft Windows 10 (64 bit), and MATLAB 2017a. 

.2. Results 

We separately executed the SCG-TPL, AW, KL-TFCM, and SVM 

∗

ethods on the MR feature data from the ten subjects. Each exper-

ment was repeated 20 times. As listed in Table 2 , the means and
tandard deviations of validity metrics are calculated on each sub-

ect regarding these methods, and the average of the means and

tandard deviations are also reported. To indicate the performance

f synthetic generation intuitively, the curves of the MAPD, RMSE

nd R metrics to ten subjects are shown in Fig. 6 and the his-

ograms are further supplemented in Fig. 7 to intuitively demon-

trate these performance comparisons. In Fig. 8 , we display the

ynthetic CT images of the four methods on Subject 8. 

Then, we evaluated the robustness of SCG-TPL against core sys-

em parameters. We analyzed the two parameters: ss and k . As

reviously mentioned, due to the existing two patch models, we

ubdivided ss and k into ss 1, ss 2, k 1, and k 2 for different patch

odels, i.e., ss 1 and k 1 for Patch 1 and ss 2 and k 2 for Patch 2. We

rst assigned the suggested values to these parameters and then

n each patch and towards each subject we gradually changed one

f the two parameters’ values with keeping the other fixed. Mean-

hile, the validity metrics, MAPD, RMSE and R, were recalculated

ccordingly. Fig. 9 shows the parameter robustness curves of the

CG-TPL method. 

.3. Experimental analysis and discussion 

In Fig. 6 , the performance curves show the trends of metric

alue changes between different subjects. Obviously, the proposed

CG-TPL method has lower values of mean absolute prediction de-

iation (MAPD), lower values of root mean square error (RMSE),

nd higher correlation (R) values than the other three methods:

W, KL-TFCM and the SVM 

∗. Therefore, our SCG-TPL method has

ore satisfactory performance of synthetic CT generation. 

In Fig. 7 , we utilize the histograms to demonstrate the results

f the four involved methods more visually. In the histograms, the

eights indicate the mean values and the error bars show the stan-

ard deviations. All of the results of three metrics show that our

roposed SCG-TPL method appears the best performance as well

s comparable stableness against the other three. 

Results shown above indicate that our study successfully solves

he challenging problem of synthetic CT generation on abdomen-

elvis with commonly-available mDixon MR images. Our SCG-TPL

akes great improvements compared to the three existing meth-

ds according to the experimental results, both in terms of the
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Fig. 9. Parameter robustness of the SCG-TPL method. (a1)~(a3) ss1 vs. MAPD, RMSE and R. (b1)~(b3) k1 vs. MAPD, RMSE and R. (c1)~(c3) ss2 vs. MAPD, RMSE, R. (d1)~(d3) 

k2 vs. MAPD, RMSE, R. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u  

s  

s

 

w  

S  

k  

n

5

 

i  

a  

a  

u  

g  

s  

t  

i  

d  

t  

T  

e

D

validity metrics and the generated synthetic CT images. As listed

in Table 2 , the proposed SCG-TPL method generally appears lower

MAPD and RMSE values as well as higher R scores than the other

three methods, including AW, KL-TFCM and SVM 

∗. The average

value of the MAPD of our proposed SCG-TPL is 80.53 ± 10.26,

which is significantly better than the 148.42 ± 10.27 result of AW,

the 137.78 ± 18.22 result of KL-TFCM and the 97.89 ± 12.69 re-

sult of SVM 

∗. Furthermore, we calculated p-values by a paired two-

tailed t-test and α = 0.05. The p-values are far less than 0.05, which

also supports the significance of the improvement of our method. 

Our proposed SCG-TPL also greatly improves the quality of the

synthetic CT images. From Fig. 8 , it is distinct that the synthetic

CT image generated by KL-TFCMmixes large amounts of soft tissue

and bone as well as a few areas of air and bone. The image quality

generated by SVM 

∗ is slightly higher than that of KL-TFCM, because

the mixing of air and bone is reduced, but the edges of soft tissue

are still mixed with bone. Obviously, the synthetic CT generated by

our SCG-TPL largely improves the quality and shows relatively clear

and clean edges for each tissue type. 

In SCG-TPL, KL-TFCM is used as the global model for patch

learning. Assisting by the referenced knowledge, KL-TFCM is ca-

pable of effectively initializing the MR data with overcoming the

individual diversity. Different from SVM 

∗ in which the traditional

SVM is used to model patches, we recruit LapSVM to locally,

precisely model each patch only with a small quantity of man-

ually labeled examples, which greatly saves us time and labor-

consuming, without any performance degradation. As such, jointly
sing the KL-TFCM clustering and patch learning-oriented LapSVM

emi-supervised classification, our SCG-TPL can output desirable

ynthetic CT in the challenging abdomen. 

Last, as shown in Fig. 9 the fluctuation range of MAPD values is

ithin 0.2% when ss-1 and ss-2 vary in the reasonable trial ranges.

imilarly, the fluctuation range of MAPD is within 1%when k-1 and

-2 change in the trial ranges. These prove good parameter robust-

ess of our method. 

. Conclusion 

We study the complex abdominal body section in medical

maging to generate synthetic CT images with mDixon MR im-

ges only. Patching learning incorporating transfer learning is used,

nd the SCG-TPL method is proposed and evaluated. KL-TFCMis

sed to act as the global model during SCG-TPL works which,

uiding by the historical knowledge, is capable of stably, macro-

copically grouping the MR image data into several tissue clus-

ers and thereby recognizing the patches. Then, LapSVM, employ-

ng a few manually labeled examples as well as many unlabeled

ata, is enlisted to establish the local model matching each patch

o complement the global model. In this way, our proposed SCG-

PL method creates accurate abdominal synthetic CT generation via

asily-obtainable mDixon MR images only. 
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