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a b s t r a c t

Intelligent fault diagnosis is one critical topic of maintenance solution for mechanical systems. Deep
learning models, such as convolutional neural networks (CNNs), have been successfully applied to fault
diagnosis tasks and achieved promising results. However, one is that two datasets (in source and target
domains) of similar tasks are with different feature distributions because of different operational condi-
tions; another one is that insufficient or unlabeled data in real industry applications (target domains)
limit the adaptability of the source domain well-defined models. To solve the above problems, the con-
cept of transfer learning should be adopted for domain adaptation, in the meantime, a network performs
both supervised and unsupervised learning is required. Inspired by Wasserstein distance of optimal
transport, in this paper, we propose a novel Wasserstein Distance-based Deep Transfer Learning (WD-
DTL) network for both supervised and unsupervised fault diagnosis tasks. WD-DTL learns domain feature
representations (generated by a CNN based feature extractor) and minimizes distributions between the
source and target domains through an adversarial training process. The effectiveness of the proposed
WD-DTL is verified through 16 different transfer tasks. Results show that WD-DTL achieves the highest
diagnostic accuracies when compared to the existing Maximum Mean Discrepancy and CNN networks
in almost all transfer tasks.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Fault diagnosis aims to isolate faults on defective systems by
monitoring and analyzing machine status using acquired measure-
ments and other information, which requires experienced experts
with a high skill set. This drives the demand for artificial intelli-
gence techniques to make fault diagnosis decisions [1]. The deploy-
ment of a real-time fault diagnosis framework allows the
maintenance team to act in advance to replace or fix the affected
components, thus, to improve production efficiency and guarantee
operational safety.

Over the past decade, many advanced signal processing and
machine learning techniques have been used for fault diagnosis
[2]. Signal processing techniques such as wavelet [3] and Hilbert-
Huang transform [4] are adopt for feature extraction from faulty
vibration signals, and machine learning models are then applied
to automate the fault diagnosis procedure. In last few years, deep
learning models, such as deep belief networks [5], sparse auto-
encoder [6], and especially convolutional neural networks (CNN)
[7], have shown superior fitting and learning abilities in fault diag-
nosis tasks over ruled-based and model-based methods. However,
the above stated deep learning approaches suffer two difficulties:
1) Most of the approaches work well under the same hypothesis:
the datasets for source domain and target domain tasks are
required to be identically distributed. Thus, the adaptability of
the pre-trained network is limited when facing new diagnosis
tasks, where the different operational conditions and physical
characteristics of the new task might cause distribution difference
between the new dataset (target dataset) and the original dataset
(source dataset). As a result, for a new fault diagnosis task, the deep
learning model is commonly reconstructed from scratch, which
results in the waste of computational resources and training time;
2) Insufficient labeled or unlabeled data in target domain is
another common problem. In real industry situations, for a new
diagnosis task, it is extremely difficult to collect sufficient typical
samples to re-build a large-scale and high-quality dataset to train
a network.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.05.040&domain=pdf
https://doi.org/10.1016/j.neucom.2020.05.040
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Deep transfer learning (DTL) [8] aims to perform learning in a
target domain (with insufficient labeled or unlabeled data) by
leveraging knowledge from relevant source domains (with suffi-
cient labeled data), saving much expenditure on reconstructing a
new fault diagnosis model from scratch and recollecting sufficient
diagnosis labeled samples. Many successful approaches to DTL has
been seen in various fields, including pattern recognition [9], image
classification [10], and speech recognition [11].

Solutions to DTL can be roughly classified into three categories:
instance-based DTL, network-based DTL, and mapping-based DTL.
Instance-based DTL reweighs/subsamples a group of instances
from the source domain to match the distributions in the target
domain. Network-based DTL crops out part of the network pre-
trained in the source domain, which is transferred to be a part of
target networks for a relevant new task; see [12,13] for recent
examples of instance-based and network-based DTL, respectively.
However, the above approaches are not capable of learning a latent
representation from the deep architecture. Mapping-based DTL,
compared with other approaches to adapting deep models, has
shown excellent properties through finding a common latent
space, where the feature representations for source and target
domains are invariant. Tzeng et al. [14] proposed a CNN architec-
ture based network for domain adaptation, which introducing an
adaptation layer to learn the feature representations. Maximum
mean discrepancy (MMD) metric is used as an additional loss for
the overall structure to compute the distribution distance with
respect to a particular representation, which helps to select the
depth and width of the architecture as well as to regulate the loss
function during fine-tuning. Later, in [15,16], MMD was extended
to multiple kernel variance MMD (MK-MMD) and joint MMD
(JMMD) for better domain adaptation performance. However, the
limitation of MMD method for domain adaptation is that the com-
putational cost of MMD is quadratically increased with a large
number of samples when calculating the Integral Probability Met-
rics (IPMs) [17]. Recently, Ajovsky et al. [18] indicate that Wasser-
stein distance can be a new direction to find better distribution
mappings. Compared with other popular probability distances
and divergences, such as Kullback–Leibler (KL) divergence and
Jensen-Shannon (JS) divergence, [18] demonstrated that Wasser-
stein distance is a more sensible cost function when learning distri-
butions supported by low dimensional manifolds. Later on, [19,20]
proposed a new gradient penalty term for domain alignment critic
parameters to solve the gradient vanishing or exploding problems
in [18]. [21] extended [20] by using second-order terms in the form
of the graph between the domain representations. Hence, the
essence of our proposed approach is to adopt the Wasserstein dis-
tance to train a DTL model for intelligent fault diagnosis problem
which seeks to minimize the distributions between the source
domain and target domains. Our motivation for this work is to fig-
ure out how Wasserstein distance behaves in transfer learning due
to its excellent performance in the generative adversarial network
(GAN).

This paper concerns the problem of DTL modeling to explore the
transferable features of fault diagnosis under different operating
conditions. In the source domain, a base CNN model is first trained
with sufficient data. Then, we build a Wasserstein distance-based
DTL (WD-DTL) to learn invariant features between the source
and target domains. A neural network is introduced (denoted by
domain alignment critic) to calculate the empirical Wasserstein
distance by maximizing domain alignment critic loss. After this
procedure, a classifier is introduced to optimize the CNN-based
feature extractor parameters by minimizing the estimated empiri-
cal Wasserstein distance. Through the above adversarial learning
process, the transferable features from a source domain where
faulty labels are known can be brought to diagnose a new but rel-
evant diagnosis task without any labeled sample. Experimental
results, through 16 transfer tasks, demonstrate the effectiveness
of the distance measurement method and the proposed DTL model.
This paper makes the following contributions: 1) Wasserstein dis-
tance is used as the distance measurement of domains in fault
diagnosis problems to explore better distribution mapping, 2) the
proposed WD-DTL framework could perform both unsupervised
and supervised transfer tasks. Consequently, for a new diagnosis
task, this is a novel approach which could contribute to solving
both unlabeled and insufficient labeled data in real industrial
applications, 3) the versatility of our WD-DTL approach is demon-
strated with transfer learning experiments, in terms of 3 different
transfer scenarios and 16 transfer tasks in total, and 4) the pro-
posed WD-DTL approach surpasses the existing MMD, CNN, and
other existing methods in almost all transfer tasks.

This paper is organized as follows. Section 2 reviews related
works including CNN for fault diagnosis and transfer learning. Sec-
tion 3 proposes our intelligent fault diagnosis framework by using
the transfer learning method. Experiment results and comparison
are given in Section 4. Finally, conclusion and future work are
drawn in Section 5.

The following notations will be used throughout this work: the
symbol R is the real number set, and the symbol Z is the positive
integer set. �ð Þs and �ð Þt represent the source and target domain
information respectively.
2. Related works

In this section, some related work on intelligent fault diagnosis
as well as CNN architecture are provided, and followed by a brief
introduction associated with transfer learning and Wasserstein
distance.
2.1. Convolutional neural networks

As the most well-known model in deep learning, in recent
years, CNN dominates the recognition and detection problems in
computer vision domain. The initial CNN architecture was pro-
posed by LeCun et al. in works [22,23], which was inspired by Wie-
sel and Hubel’s research works in cat recognition [24]. Main
characteristics of CNN are local connections, shared weights, and
local pooling [25]. The first two characteristics indicate the CNN
model requires fewer parameters to detect local information of
visual patterns than multilayer perceptron, while the last charac-
teristic offers shift invariance to the network. Typically, 1-D CNN
will be employed to this work to solve the bearing fault diagnosis
problem, which has been widely used with great success in the
study of speech recognition and document reading tasks.

In this work, a 1-D CNN model, as a base model, will be pre-
trained in the source domain. The CNN extracts and learns charac-
teristics of the task by stacking a series of layers with repeated
components, including convolutional layers (with activation func-
tion), pooling layers, and fully connected layers (with an output
classification layer) [26]. A typical CNN architecture is fed to a 1-
D input layer to accept source domain signal, convolutional layers
with rectified linear unit (ReLU) activation functions are followed
for feature extraction, max-pooling layers are used to down-
sample data size, and a fully connected layer combined with a soft-
max function is finally connected for classification (with pre-
defined labels). To minimize the loss function, model parameters
are tuned using Backpropagation algorithm [27] based on Adam
optimizer, until the predefined maximum number of iterations is
reached.
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2.2. Transfer learning

Transfer learning can be a novel tool to solve the basic problem
of unlabeled and insufficient data under diverse operating condi-
tions in the target domain of mechanical systems, by utilizing
the knowledge from source domain to improve the target domain
learning performance. Some notations and definitions of transfer
learning used in this work are first presented.

To begin with, we define a domain and a task respectively.
Given a domain D in transfer learning defined as D ¼ X ;P Xð Þf g,
where P Xð Þ represents a marginal probability distribution of a fea-
ture space X . Given predefined source and target domain datasets
Xs and Xt , we have Xs;Xt 2 X . If Xs – Xs and/or P Xsð Þ – P Xt� �

, two
domains Ds and Dt are with different distribution.

In the meantime, a task T in transfer learning is defined as
T ¼ Y; r Xð Þf g, where Y represents a label space and r Xð Þ is a pre-
dictive function and r Xð Þ ¼ P YjXð Þ is a conditional probability
function. Since the classification categories are the same, source
and target domains have the same label space, Ys ¼ Yt . Then, we
give the definition of transfer learning.

Definition 1. (Transfer learning) Transfer learning is proposed with
the aim to learn a prediction function r Xð Þ : X�!Y for a learning
task T t by leveraging knowledge from source domain Ds and T s,
where Ds – Dt or T s – T t . In most of the cases, Ds contains a much
larger dataset than Dt (i.e., the cardinality of Ds is larger than that
of Dt).
2.3. Wasserstein distance

Wasserstein distance is recently proposed by researchers [18]
to tackle the training difficulty of generative adversarial networks
(GAN) when facing discontinuous mapping problem of other dis-
tances and divergences in the generator, such as Total Variation
(TV) distance and Kullback–Leibler (KL) divergence. As a promising
way to measure the distance between two distributions for GAN
training, Wasserstein distance could be applied to DTL for domain
adaptation.

Given a compact metric set H; Prob Hð Þ represents the space of
probability measures on set H. Wasserstein-1 distance (also called
Earth�Mover distance) is defined between two distributions
Ps;Pt 2 Prob Hð Þ:

W Ps;Pt� �
¼ inf

l2P Ps ;Ptð Þ
E hs ;htð Þ�l kh

s � htk
h i

ð1Þ

where l is a joint probability distribution andP Ps;Pt� �
denotes the

set H�H of all joint distributions l hs
; ht

� �
whose margins are Ps

and Pt respectively. Wasserstein-1 distance can be viewed as an
optimal transport problem, it aims to find an optimal transport plan

l hs
;ht

� �
. Intuitively, l hs

;ht
� �

indicates how much of ‘mass’ ran-

domly transported from one place hs over the domain of ht , with
the aim of transporting the distribution Ps into the distribution
Pt . Hence, Wasserstein-1 distance is the optimal transport plan
with the lowest transport cost.

3. Wasserstein distance based deep transfer learning (WD-DTL)

3.1. Problem formulation

Since it is difficult to retrofit enough sensors in packaged equip-
ment and industry labeling is often expensive, the challenge of
domain adaptation is that there is no or limited labeled high-
quality data can be collected in real industrial applications. For this
reason, supervised domain adaptation approach by fine-tuning the
pre-trained architecture to fit the new classification problem is not
feasible. To solve this problem, many existing domain adaptation
frameworks [17,15] use MMD to learn the invariant domain repre-
sentations, which minimizes the target loss by the source loss with
an additional maximum mean discrepancy metric. Our proposed
approach WD-DTL is a promising alternative for domain adapta-
tion by using the Wasserstein distance, which has been demon-
strated with gradient superiority than MMD [18], to minimize
the distributions between source domain and target domain.
Although Wasserstein distance with MLP has been seen in few
domain adaptation works in image classification tasks, to date
there is no attempt to adopt this technique into industry or manu-
facturing and there is no attempt to enhance this technique in deep
neural networks. It also has to be noted that we propose to use the
CNN architecture to generate features for measuring the Wasser-
stein distance in both domains. The excellent local feature detec-
tion ability of CNN in manufacturing has been explored in work
[28]. The problem with this work is formulated as follow:

The DTL with domain adaptation for fault diagnosis is an unsu-
pervised problem, thus, we first define a source domain dataset

with labels Ys ¼ ysi
� �Ns

i¼1 of sample Xs ¼ xsi
� �Ns

i¼1, where Ns 2 R num-
ber of samples in the source domain Ds. In the meantime, an unla-

beled target domain dataset Xt ¼ xti
� �Nt

i¼1 is defined in the target

domain Dt . In most cases, source domain samples are sufficient
enough to learn an accurate CNN classifier and with much larger
data size than the target domain, which means Ns � Nt . It is also
noted that data in source and target domains share the same fea-
ture space (Xs;Xt 2 X) but with different marginal distributions
(P Xsð Þ – P Xt� �

).
The objective of this work is to construct a transferable frame-

work, named WD-DTL, for the target task T t to minimize target
classification error Et% ¼ Pr xt ;ytð Þ�Dt r Xt� �

– yt
� 	

, with the help of
the knowledge from source domain task T s and the implementa-
tion of Wasserstein distance for domain adaptation.

The algorithm of WD-DTL will be trained by three iterative
steps to achieve unsupervised or supervised diagnosis: a CNN-
based feature extractor will be pre-trained with the source domain
labeled dataset in Section 3.2; domain adaptation using Wasser-
stein distance between two different feature distributions through
adversarial training by employing a domain critic will be explained
in Section 3.3; and finally a classifier for classification is presented
in Section 3.4.

3.2. CNN based feature extractor

First of all, we propose to use CNN to train the domain data. A
CNN model is pre-trained with source domain labeled dataset Xs:

Convolution layer involves a filter w 2 Rk and a bias b 2 R, which
are applied to a filter size of k for calculating a new feature. An out-
put feature v i is obtained through the filter w and a non-linear ac-
tivation function C with the following expression:

v i ¼ C w � uj þ b
� �

ð2Þ

where uj 2 R1�k is the input data representing j-th sub-vector of the
source domain dataset Xs. ‘�’ denotes the convolution operation. The
non-linear activation function, such as hyperbolic tangent (tanh) or
rectified linear unit (ReLu), is applied to reduce the risk of vanishing
gradient which may impact the convergence of the optimization.
Hence, the feature map is defined as v ¼ v1;v2; . . . ; vL½ �, where
L ¼ pN � sð Þ=Icv þ 1 is the number of features and Icv 2 Z is the
stride for convolution.
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Max pooling layer is then applied over the feature map to extract
the maximum feature values bv i ¼ max

c¼1;...;b
vcþ i�1ð ÞIpl corresponding to

its filter size b and the stride size Ipl for max pooling. The idea is to
capture the maximum features over disjoint regions. Consequently,
the features within the small window are similar and therefore
illustrating the most important property of CNN.

By stacking multiple layers described above (with varying filter
size), a multi-layer structure is constructed for feature description.
The output features of the multi-layer structure are flattened and
pass to fully-connected layers for classification, resulting in
probability-distributed final outputs ~ysi over labels. For the pre-
trained CNN in the source domain, Softmax function [29] is selected
for classification over the final feature map.

To compute the difference between the predicted label, ~ysi , and
the ground truth, ysi , in the source domain, cross-entropy function
lc is used to compute the loss:

lc ¼
1
Ns

XNs

i¼1
� ysi log ~y

s
i � 1� ysi

� �
log 1� ~ysi

� �
: ð3Þ
3.3. Domain adaptation via Wasserstein distance

The next problem is to solve the distribution difference between
the source and target datasets. To tackle this problem, we utilize
Wasserstein-1 distance to learn invariant feature representations
in a common latent space between two different feature distribu-
tions through adversarial training.

The network structure before fully-connected layer of pre-
trained CNN model is used as the feature extractor to learn the
invariant feature representations from both domains. Given two
mini-batch of instances xsf gni¼1 and xtf gni¼1 from Xs and Xt for
n < Ns and Nt . Both instances are passed through a parameter func-
tion rf : X ! H (i.e., feature extractor) with corresponding network
parameter hf that directly generate source features hs ¼ rf xsð Þ and
target features ht ¼ rf xtð Þ. Let Ps and Pt be the distribution of hs

and ht respectively.
The aim of domain adaptation via Wasserstein distance [18] is

to optimize the parameter hf to reduce the distance between distri-
Fig. 1. WD-DTL framework of the fault diagnosis, which is comprised of three sub netw
representations via Wasserstein distance, and a classifier for classification. The two-stag
butions Ps and Pt . We introduce a domain alignment critic to learn
a solution rc : H ! R that maps the source and target features to a
real number, with corresponding parameters hc . However, the infi-
mum in Eq. (1) is highly intractable to handle directly. Thanks to
the Kantorovich-Rubinstein duality [30], the Wasserstein-1 dis-
tance can be computed by

W Ps;Pt� �
, sup
krck61

Ehs�Ps rc hs� �� 	
� Ehs�Pt rc hs� �� 	

ð4Þ

where the supremum is over all the 1-Lipschitz functions rc : H! R.
The empirical Wasserstein-1 distance can be approximately com-
puted as follow:

lwd ¼
1
Ns

X
xs2Xs rc rf xsð Þ

� �
� 1
Nt

X
xt2Xt rc rf xt

� �� �
ð5Þ

where lwd denotes the domain alignment critic loss between the
source data Xs and the target data Xt

We now comes to the optimization problem that finds the max-
imum of Eq. (5) while enforcing the Lipschitz constraint. Arjovsky
et al. [18] proposed a weight clipping method after each gradient
update to force the parameters hc inside a compact space. How-
ever, this method is time consuming when clipping parameter is
large and might result in vanishing gradients when the number
of layers is set too big. To solve this problem, distribution Pr is
defined along straight lines between pairs of points from the
source and target distribution Ps and Pt [20,19] and a gradient

penalty lgrad ¼ krhrc hð Þk2 � 1ð Þ2 is introduced to train the domain
alignment critic with respects to parameters hc , where the feature
representations h 2 Pr consist of the generated source and target
domain features (i.e., hs and ht), as well as points hr which are ran-
domly selected along the straight line between hs and ht pairs.

Due to the fact that the Wasserstein-1 distance is differentiable
and continuous almost everywhere, we here to train the critic till
optimally by solving the following optimization problem:

max
hc

lwd � qlgrad
� �

ð6Þ

where q is the balancing coefficient.
orks: a CNN based feature extractor, a domain alignment critic for learning feature
e adversarial training process is also illustrated.
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3.4. Classification with classifier

The above Section 3.3 proposed an unsupervised feature learn-
ing for domain adaptation, which may cause the learned feature
representations in both domains are not discriminative enough.
As stated in Section 3.1, our final objective is to develop an accu-
rate classifier, WD-DTL, for target domain Dt , which requires to
incorporate the labeled supervised learning of source domain data
(and target domain if available) into the invariant feature learning
problem. A classifier [31] (with two fully-connected layers) is then
employed into the representation learning approaches to further
reduce the distance between source and target feature distribu-
tions. In this step, parameters of domain alignment critic hc are
the ones trained in Section 3.3, while the parameters hf will be
modified to optimize the minimum operator.

Now the final objective function of the classification loss can be
expressed in terms of the cross-entropy loss lc of the classifier
according to Eq. (3) and the empirical Wasserstein distance lwd

which associated with domain discrepancy, i.e:

min
hd ;hf

lc þ kmax
hc

lwd � qlgrad
� 	
 �

ð7Þ

where hd denotes the parameters for the classifier and k is the
hyper-parameter that determines the extent of domain confusion.
We omit the gradient penalty lgrad (i.e., q ¼ 0) when optimizing
the minimum operator as it should not affect the representation
learning process.

3.5. WD-DTL approach

Hence, the overall framework of intelligent fault diagnosis
approach in this work is illustrated in Fig. 1 and a detailed algo-
rithm is summarized in Algorithm 1.

Algorithm 1 Training procedure of WD-DTL.

Require: source and target dataset: Xs and Xt; the learning
rate for domain alignment critic: a1; the learning rate for
classifier and feature learning: a2; the batch size: n; critic
training step: C; balance coefficients: q and k.

Require: initial CNN based feature extractor parameters: hf ;
initial domain alignment critic parameters: hc; initial
classifier parameters: hd.

1: while hf ; hc , and hd has not converged do

2: Sample xsi ; y
s
i

� �n
i¼1, a batch from source dataset Xs.

3: Sample xti
� �n

i¼1, a batch from target dataset Xt .
4: for i ¼ 0,. . ., C
5: hs  rf xsð Þ , ht  rf xtð Þ

6: h  hs; ht;hr
n o

7: lgrad  krhrc hð Þk2 � 1ð Þ2

8: hc  hc þ a1rhc lwd xs; xtð Þ � qlgrad hð Þ
� 	

9: end for
10: hd  hd � a2rhd lc xs; ysð Þ
11: hf  hf � a2rhf lc xs; ysð Þ þ klwd xs; xtð Þ½ �
12: end while
3.6. Gradient of the WD

Optimization algorithm is used to train the WD-DTL model to
minimize Eq. (7). When adopting the domain classifier, other dis-
tances such as KL, JS and TV losses will cause gradient vanishing
problem on low dimensional manifolds. On the other hand, Theo-
rem 1 in [18] proved that WD is a much more sensible cost func-
tion for the training of neural networks as it is continuous
everywhere, and differentiable almost everywhere. In this work,
according to Eq. (5), we could calculate the gradient of lwd with
respect to hf of one instance x by chain rule

@lwd

@hf
¼ @lwd

@rc

@rc
@rf

@rf
@hf

: ð8Þ

For an instance either in the source domain where xs � P Xsð Þ or
in the target domain where xt � P Xt� �

, we have that

@lwd

@hf
¼ @rc

@rf

@rf
@hf

ð9Þ

or

@lwd

@hf
¼ � @rc

@rf

@rf
@hf

ð10Þ

respectively. Therefore, stable gradients will be provided by the WD
wherever the instance is.
3.7. Compared with MMD

MMD is the most common seen distance measure used in exist-
ing transfer networks [32,17,15]. The MMD metric is a special case
of IPMs which measures the distance between two probability dis-
tributions via mapping the samples into a Reproducing Kernel Hil-
bert Space (denote by Hk) associated with a given kernel k : X �
X ! R. Therefore, via the kernel trick, the structure of MMD is sim-
pler than WD in where the domain alignment critic network is not
required to approximately maximum Eq. (6). The squared formula-
tion of MMD lMMD is that

l2MMD , kExs�P Xsð Þ / xsð Þ½ � � Ext�P Xtð Þ / xt
� �� 	

k2Hk
ð11Þ

where / xð Þ representing the features extracted before classification.
However, compared to Eq. (5) of WD, it implies that the computa-
tional cost of MMD will increase quadratically with the sample
number, which limits the applicability of MMD in many real life
applications with large data sets. This is another reason we use
WD as distance measure in our network.
4. Experiments

4.1. Data description

To validate the effectiveness of the proposed DTL method for
fault diagnosis problem, we introduce a benchmark bearing fault
dataset acquired by Case Western Reserve University (CWRU) data
center. An experiment test-bed (see Fig. 2) is used to conduct the
signals for the detection of defects on bearings. Four types of bear-
ing conditions are inspected, namely health condition, fault on
inner races, fault on outer races, and fault on rollers. All those sit-
uations are sampled with 12kHz frequency. Meanwhile, each fault
type is running with different levels of fault severity (0.007-inch,
0.014-inch, and 0.021-inch fault diameters). Each type of faulted
bearing was equipped with the test motor, which runs under four
different motor speeds (i.e., 1797rpm, 1772rpm, 1750rpm, and
1730rpm). Vibration signal of each experiment was recorded for
fault diagnosis.

Data pre-processing: Simple data pre-processing techniques are
applied to the bearing datasets:



Fig. 2. Experimental test-bed in Case Western Reserve University (CWRU) for
bearing fault diagnosis.
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1. To modify the faulty signal to a stationary process, we here
divide the samples to keep each sample has 2000 measure-
ments in both Ds and Dt .

2. Fast Fourier transform (FFT) computes the power spectrum in
the frequency domain of every sample.

3. Clip the left side of the power spectrum calculated by FFT as the
input for WD-DTL. Therefore, each input sample has 1000
measurements.

We proposed three transfer scenarios, including two unsuper-
vised scenarios and one supervised scenario (refer to Table 1), they
are:

1. Unsupervised transfer between motor speeds (US-Speed): For
this scenario, we test the data with 12kHz sampling frequency
acquired at the drive end of the motor, and ignore the level of
fault severities. Thus, we construct 4-way classification tasks
(i.e., health condition, and three fault conditions with faults
on inner race, outer race and roller), across 4 domains with dif-
ferent motor speeds: 1797rpm US Að Þð Þ, 1772rpm US Bð Þð Þ,
1750rpm US Cð Þð Þ, and 1730rpm US Dð Þð Þ. In total, for this sce-
nario, we evaluate our proposed method over 12 transfer tasks.

2. Unsupervised transfer between datasets at two sensor locations
(US-Location): For this scenario, we focus on domain adapta-
tion between different sensor locations but ignore the level of
fault severities and the differences in motor speeds. Again, we
construct 4-way classification tasks for health and three fault
conditions, across 2 domains (2 tasks) where vibration acceler-
ation data acquired by two sensors placed at the drive end
US Eð Þð Þ and fan end US Fð Þð Þ of the motor housing respectively.

3. Supervised transfer between datasets at two sensor locations
(S-Location): this scenario uses the same settings as the previ-
ous scenario US-Location, except for the specified change of
adding a small amount of labeled data (� 0:5%) of target
domain in source domain which aims to enhance the classifica-
tion performance.

To evaluate the efficiency of our proposed approachWD-DTL on
bearing fault diagnosis problem, other approaches are also tested
on the same dataset for comparison purpose:

	 CNN (no transfer): This model is the pre-trained network
described in Section 3.2, which is trained based on the labeled
source data and applied to test the classification result on the
target domain directly.
	 DAN: We follow the idea in work [15], which proposed a deep
adaptation network (DAN) for learning transferable features
via MMD in deep neural networks.
	 In addition, to evaluate the feature extraction ability of CNN
compared to the use of conventional statistical features, results
of traditional transfer learning methods using statistical (hand-
crafted) features [33], including transfer component analysis
(TCA) [34], joint distribution adaptation (JDA) [35], and CORrela-
tion ALignment (CORAL) [36], are also provided for comparison.

This work will mainly focus on the comparison between those
deep transfer learning methods (DAN and WD-DTL) and CNN.

4.2. Implementation details

Tensorflow [37] is used as the software framework for all our
experiments using deep learning flow, and those models are all
trained with Adam optimizer. We test each approach for five times
over 5000 iterations and record the best result of each test. We
take the averages and 95% confidential interval of classification
accuracy for comparison. The sample size for motor speed tasks
Að Þ; Bð Þ; Cð Þ, and Dð Þ are 1026, 1145, 1390, and 1149 respectively.
The sample size for different sensor location tasks Eð Þ and Fð Þ are
3790 and 4710 respectively. The batch size n is fixed be fixed at
32 for all experiments.

CNN: Our CNN architecture is comprised of two convolutional
layers (Conv1� Conv2), two max-pooling layers (Pool1� Pool2),
and two fully-connected layers (FC1� FC2). The activation func-
tion in the output layer is Softmax while ReLu is used in convolu-
tional layers. The neuron number in FC1 and FC2 are 128 and 4,
respectively. Filters, kernel size, and stride of each layer can refer
to Table 2. To achieve a fair comparison cross different methods,
we fine-tune the CNN base models which achieve their best valida-
tion accuracies before transfer.

DAN: The convolutional layers (Conv1� Conv2) of the CNN net-
work is used to be the feature extractor. Then, to minimize the
domain distance between the source and target domains, FC1 is
used as the hidden layer for adaptation. The final representations
of the hidden layer in both domains are embedded in RKHS to
reduce the MK-MMD distance. The final objective function is the
combination of the MK-MMD loss and the classification loss. The
parameter settings of MMD can refer to [15], and best classification
accuracies are obtained for transfer scenarios by tuning the balanc-
ing coefficient for the discrepancy loss.

WD� DTL: WD-DTL method has been summarized in Fig. 1 and
Algorithm 1. Similar to DAN, convolutional layers (Conv1-Conv2)
are used to extract features. The nodes of hidden layers in the
domain alignment critic network are set to 128 and 1, respectively.
The training step C is set to 10. The learning rates for the classifier
and the domain alignment critic are a1 ¼ 10�3 and a2 ¼ 2� 10�4

respectively. The gradient penalty q is set to 10. Balance coefficient
k for optimizing the minimum operator is 0.1 and 0.8 for motor
speed transfer and sensor location transfer, respectively.

In terms of the traditional transfer learning methods TCA, JDA
and CORAL, the regularization term k is chosen from {0.001 0.01
0.1 1.0 10 100}. SVM is used in TCA and CORAL for classification.

4.3. Results and discussion

The results of transfer tasks for WD-DTL, DAN, CNN, and other
conventional approaches are compared in Table 3. For the transfer
task with unlabeled data set in target domain (i.e., scenario US-
Speed and US-Location), we can observe that WD-DTL signifi-
cantly outperforms CNN with a large margin, which achieves
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approximately 13.6% and 25% increases in average accuracies for
motor speed and sensor location transfer tasks, respectively. In
addition, the WD-DTL transfer accuracies are better than most
of the DAN results (average 5% increase), except transfer task
US Dð Þ ! US Að Þwhich results in less than 1% accuracy difference.
Furthermore, the WD-DTL significantly increases diagnosis accu-
racies of both supervised and unsupervised tasks, when com-
pared to conventional transfer learning methods TCA, JDA, and
CORAL, except the unsupervised task US Fð Þ ! US Eð Þ for JDA.

To summarize the results, we can make the following obser-
vations: 1) WD-DTL achieves the best transfer accuracies with
95.75% average score, confirming the effectiveness of Wasser-
stein distance in learning transferable features using CNN-
based model; 2) Without domain adaptation, CNN method
already has the ability to achieve good classification perfor-
mance for the motor speed transfer tasks, due to its excellent
feature detection ability; 3) The accuracies of CNN, DAN and
WD-DTL on transfer tasks of scenario US-Location are not better
than the transfer tasks of scenario US-Speed, due to the charac-
teristics of signals obtained at different sensor location (Fan End
and Drive End) are more different than the difference between
motor speeds; and 4) The proposed WD-DTL approach shows a
good ability to solve supervised problem with a small number
of labeled data. Supervised transfer tasks S(E)! S(F) and S(E)
! S(F) are carried out using only 0.5% sample size of the unsu-
pervised case, but achieve as good as performance compared
to the unsupervised case while using 100% unlabeled sample.
Further analysis of the effect of sample size for both supervised
and unsupervised transfer learning will be shown in
Section 4.4.2.
4.4. Empirical analysis

4.4.1. Feature visualization
To further evaluate the transfer performance of the proposed

WD-DTL framework, t-distributed stochastic neighbor embed-
ding (t-SNE) is employed to perform the nonlinear dimensional-
ity reduction for network visualization. For comparison purpose,
CNN and DAN transfer results for same tasks are also provided.

For transfer tasks between motor speeds, i.e., scenario US-
Speed, we randomly choose task US Cð Þ ! US Að Þ to visualize
the learned feature representations under different motor
speeds. Fig. 3 shows the comparison results. It can be observed
that the clusters in Fig. 3(c) formed by our proposed WD-DTL
are better separated than the CNN network result in Fig. 3(a)
(no transfer case) and the DAN domain adaptation result in
Fig. 3(b). For example, in Fig. 3(a) with CNN approach, three
types of fault features are inspected with large overlapped areas,
and some outer-race faults (yellow color with label 2) fall into
other fault types. Similarly, in Fig. 3(b) with DAN approach,
outer-race faults is also hardly be separated from other fault
types. With our WD-DTL approach, four conditions are clearly
separated into different clusters. More importantly, we can
observe the obvious improvement of domain adaptation due to
the source and target domain features are almost mixed into
the same cluster.
ble 2
rameters in the CNN model.

Layer Filters Kernel size Stride

Conv1 8 1 � 20 2
Pool1 – 1 � 2 2
Conv2 16 1 � 20 2
Pool2 – 1 � 2 2



Table 3
Performance of transfer tasks (Accuracy %).

TCA JDA CORAL CNN DAN WD-DTL

US(A)!US(B) 26.55 65.07 (
 7.55) 59.18 82.75 (
 6.77) 92.97 (
 3.88) 97.52 (
 3.09)
US(A)!US(C) 46.80 51.31 (
 1.56) 62.14 78.65 (
 4.54) 85.32 (
 5.26) 94.43 (
 2.99)
US(A)!US(D) 26.57 57.70 (
 8.59) 49.83 82.99 (
 5.89) 89.39 (
 4.37) 95.05 (
 2.12)
US(B)!US(A) 26.63 71.19 (
 1.21) 53.57 84.14 (
 6.63) 94.43 (
 2.95) 96.80 (
 1.10)
US(B)!US(C) 26.60 69.80 (
 5.67) 57.28 85.41 (
 9.44) 90.43 (
 4.62) 99.69 (
 0.59)
US(B)!US(D) 26.57 88.50 (
 1.96) 60.53 86.09 (
 4.63) 87.37 (
 5.42) 95.51 (
 2.52)
US(C)!US(A) 26.63 56.42 (
 2.52) 54.03 76.50 (
 3.76) 89.88 (
 1.57) 92.16 (
 2.61)
US(C)!US(B) 26.66 69.18 (
 1.90) 76.66 82.75 (
 5.51) 92.93 (
 1.57) 96.03 (
 6.27)
US(C)!US(D) 46.75 77.45 (
 0.83) 70.34 87.04 (
 6.81) 90.66 (
 5.24) 97.56 (
 3.31)
US(D)!US(A) 46.74 61.72 (
 5.48) 59.78 79.23 (
 6.96) 90.88 (
 1.82) 89.82 (
 2.41)
US(D)!US(B) 46.79 74.03 (
 0.86) 59.73 79.73 (
 5.49) 87.91 (
 2.42) 95.16 (
 3.67)
US(D)!US(C) 26.60 65.24 (
 4.18) 63.02 80.64 (
 4.23) 92.94 (
 3.96) 99.62 (
 0.80)

Average 33.32 67.35 (
 3.53) 56.01 82.10 (
 5.89) 90.42 (
 3.59) 95.75 (
 2.62)

US(E)!US(F) 19.05 57.35 (
 0.47) 47.97 39.07 (
 2.22) 56.89 (
 2.73) 64.17 (
 7.16)
US(F)!US(E) 20.45 66.34 (
 4.47) 39.87 39.95 (
 3.84) 55.97 (
 3.17) 64.24 (
 3.87)

Average 19.75 61.85 (
 2.47) 43.92 39.51 (
 3.03) 56.43 (
 2.95) 64.20 (
 5.52)

S(E)!S(F) 20.43 65.48 (
 0.57) 51.77 54.04 (
 7.67) 59.68 (
 4.61) 65.69 (
 3.74)
S(F)!S(E) 19.02 59.07 (
 0.56) 47.88 50.47 (
 5.74) 58.78 (
 5.67) 64.15 (
 5.52)
Average 19.73 62.28 (
 0.57) 49.83 52.26 (
 6.71) 59.23 (
 5.14) 64.92 (
 4.63)
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For transfer tasks between different sensor locations, t-SNE
results of transfer task US Eð Þ ! US Fð Þ are shown in Fig. 4. It can
be viewed that even WD-DTL shows better clustering result than
CNN and DAN, faults types 1, 2, and 3 are hard to be separated
clearly into individual clusters. It must be emphasized that the
above results are carried out by using 100% (4710) sample size in
the target domain, and even in this case, the performance is not
satisfied enough. This raises the problem of how to enhance the
transfer learning performance when signals in the source and tar-
get domains are relevant but not similar enough. We investigate
this problem in the next subsection.

4.4.2. Effect of sample size on unsupervised and supervised accuracy
Next, we investigate the influence of data size on transfer task

accuracy for our proposed method WD-DTL. For each sample num-
ber tested, same experiment is repeated five times and transfer
learning accuracies are recorded. As it has known that our propose
WD-DTL method already achieved very good performance (average
95.75% accuracy in Table 3) for unsupervised transfer scenario US-
Speed. Considering other two scenarios in Table 1, Fig. 5 displays
the accuracy variation curve for WD-DTL of tasks US Eð Þ ! US Fð Þ
and S Eð Þ ! S Fð Þ with respect to scenario US-Location and S-
Location. Diagnosis accuracies will be saturated around a fixed
value when sample number larger than 2500, thus we only show
the result from 10 to 2500.
Fig. 3. Network visualization revealed by t-SNE embeddings of transfer task US Cð Þ ! US
applied on the features in the last layer assigned by CNN-based feature extractor networ
namely normal condition, fault on inner race, fault on outer race, and fault on roller (w
In Fig. 5(a), it can be observed that the accuracy of WD-DTL is
increased from 59.47% and the final test accuracy is confined
around 64%. While the sample number is increasing, fault diagno-
sis accuracies of WD-DTL approach are all higher than DAN and
CNN. This analysis reveals a limitation of the proposed WD-DTL
that, for this unsupervised scenario with large discrepancies
between domains, the improvement is limited (less than 5%) even
with 100% sample number in the target domain. To solve this prob-
lem, in Fig. 5(b), we employ a small amount of labeled data to
improve the fault diagnosis accuracy, which is associated with
the case with limited labeled data in real industrial application.
The plot shows that when the labeled sample size larger than 20
of 4710 the transfer learning accuracy of WD-DTL will surpass
the case in Fig. 5(a) with 100% sample size (blue zone in Fig. 5
(a)). More specifically, only using 100 labeled sample, (equivalent
to 25 for each fault categorization) could achieve 80% transfer
learning accuracy, indicating our proposed WD-DTL is also an opti-
mal framework for supervised transfer task.

Based on the above discussions, we hereby offer two solutions
for manufacturers of using the proposed WD-DTL approach: 1)
when facing the transfer tasks between similar signals in source
and target domains, such as transfer learning between different
motor speeds, unsupervised transfer learning with unlabeled data
is enough to obtain very good fault diagnosis accuracy (higher than
95%); and 2) when facing the transfer tasks between relevant sig-
Að Þ with: (a) CNN approach, (b) DAN approach, and (c) WD-DTL approach. t-SNE is
k, for both source and target domains. Four colors/shapes represent four conditions,
ith corresponding labels 0–3).



Fig. 4. Network visualization of transfer task US Eð Þ ! US Fð Þ with: (a) CNN approach, (b) DAN approach, and (c) WD-DTL approach.

Fig. 5. Accuracy variation curve of task (a) US Eð Þ ! US Fð Þ and (b) S Eð Þ ! S Fð Þ, where sample number is increased from 10 to 2500. Red, blue, and purple lines present the
evolution of the average accuracy of five times’ results under different sample number.

Fig. 6. Experiment number vs. transfer task accuracy of motor speed transfer tasks, for (a) CNN approach, (b) DAN approach, and (c) WD-DTL approach. Black dotted lines
represent the average scores. Blue zone is the 95% confidential interval of each approach.
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nals but not similar enough, such as transfer learning between dif-
ferent sensor locations, a small amount of labeled sample will
greatly improve the transfer learning accuracy compared to the
unsupervised case with a large amount of unlabeled sample data.
4.4.3. Algorithm robustness evaluation
The robustness of our proposed algorithm WD-DTL is investi-

gated and compared with CNN and DAN approaches. We run each
task for five times and store the transfer accuracy of each task.
Fig. 6 gives an illustration of the variation of transfer task accuracy
on 12 tasks of US-Speed scenario. We can observe that not only the
WD-DTL accuracy is higher than other two approaches but also it
has a narrower 95% confidential interval than other two
approaches. This confirms our motivation of using CNN-based net-
work and Wasserstein distance for domain adaptation, since both
the accuracy and model robustness of feature transferability are
enhanced by using our proposed algorithm.
5. Conclusion

To achieve intelligent fault diagnosis, we proposed a novel Deep
Transfer Learning architecture via Wasserstein Distance (WD-DTL)
to enhance the domain adaptation ability. WD-DTL is constructed
based on a deep learning flow (CNN architecture) to extract fea-
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tures and introduces a domain alignment critic to learn domain
invariant feature representations. Through an adversarial training
process, WD-DTL significantly reduces the domain discrepancy
thanks to its gradient property of Wasserstein distance over other
state-of-the-art distances and divergences. Our proposed method
is tested on a CRWU benchmark bearing fault diagnosis dataset
and compared with the base CNN model, DAN metric and other
traditional transfer learning methods over 16 transfer tasks. Perfor-
mance of all the transfer tasks demonstrates that WD-DTL outper-
forms other approaches with much better classification accuracies.
Empirical results also show that 1) our proposed method achieves
higher robustness for motor speed transfer tasks, and 2) WD-DTL is
a novel approach which could contribute to solving both unlabeled
and insufficient labeled data problems in real industry applica-
tions. Future work includes investigating more transfer scenarios
(e.g. transfer learning between different machines) for intelligent
fault diagnosis and optimizing the architecture of our proposed
algorithm.
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