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Abstract— There has been an increasing amount of research on
type-2 fuzzy logic systems (FLSs) recently. The interest is fueled
by results demonstrating that type-2 fuzzy sets offer a framework
for effectively solving problems where uncertainties are present.
A concept, known as the footprint of uncertainty (FOU), is
mainly responsible for the improved modeling capability of type-
2 FLSs. This paper aims at providing insight into how the extra
mathematical dimension provided by the FOU differentiates type-
2 FLSs from type-1 FLSs. Since the input-output relationships
of both types of FLS are fixed once the parameters are selected,
the analysis is performed by finding a set of equivalent type-1
sets (ET1Ss) that re-produces the input-output map of a type-2
FLS. Results are presented to demonstrate that a type-2 fuzzy
system is able to model more complex input-output relationship
because the ET1S changes as the input varies. The technique for
converting a type-2 fuzzy set into a group of type-1 sets is also
useful as it provides a framework for extending the entire wealth
of type-1 fuzzy control/identification/design/analysis techniques to
type-2 systems.

I. INTRODUCTION

Type-2 fuzzy sets was introduced by Zadeh in 1975 [1]
as an extension of the type-1 set. A type-2 fuzzy set is
characterised by a concept called footprint of uncertainty
(FOU). Consequently, the membership grade of each element
in a type-2 fuzzy set is a fuzzy set in [0, 1], unlike a type-1 set
where the membership grade is a crisp number in [0, 1]. Fuzzy
logic systems (FLSs) constructed using type-2 fuzzy sets are
type-2 FLSs to distinguish them from the traditional type-1
FLSs. Fig. 1 shows the schematic diagram of a type-2 FLS. A
type-reducer is needed to convert the type-2 fuzzy output sets
into type-1 sets before they are processed by the defuzzifier
to give a crisp output. Since type-2 FLSs provide an extra
mathematical dimension compared with type-1 FLSs, they are
very useful in circumstances where it is difficult to determine
an exact membership grade for a fuzzy set. Hence, they can
be used to handle more system uncertainties and have the
potential to outperform their type-1 counterparts. To date, type-
2 FLSs have been used successfully in decision making [2],
control of mobile robots [3], preprocessing of data [4], noise
cancellation [5], time-series forecasting [6], survey processing
[6], [7], nonlinear system identification [8] and control [9],
[10], etc.

Though the FOU provides type-2 FLSs with the potential
to outperform type-1 FLSs, how to choose the best FOU is
still an open question. Several researchers have demonstrated
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Fig. 1. A type-2 fuzzy logic system

that genetic algorithms can be used to evolve the FOU [8],
[9], [11], [12]. However, there are no guidelines on how to
decide the FOU theoretically. It is also unclear how the FOU
enables type-2 FLSs to differentiate themselves from their
type-1 counterparts. The purpose of this paper is to study the
role of the FOU. Results reported herein may help to explain
why type-2 FLSs are able to model more complex input-output
relationships.

The rest of the paper is organized as follows: Section II in-
troduces the concept of equivalent type-1 sets and describes the
strategy for finding the equivalent sets that will re-produce the
input-output map of a particular type-2 FLS. The methodology
for identifying ET1Ss is then used to study the characteristics
of a type-2 set obtained by blurring a triangular type-1 set
in Section III. Section IV discusses the implications of the
results. Finally, conclusions are drawn in Section V.

II. EQUIVALENT TYPE-1 FUZZY SETS

This paper aims at understanding how the extra degree of
freedom provided by the FOU enables type-2 FLSs to produce
more complex input-output maps. The key idea is that a type-2
set can be reduced to a group of type-1 sets without affecting
the output of a type-2 FLS since the input-output relationships
of both type-1 and type-2 FLS are fixed once the parameters
are selected. By analyzing the characteristics of an equivalent
type-1 set (ET1S), conclusions about the contributions of the
FOU can be drawn. Before presenting the method to identify
the ET1Ss for a given type-2 FLS, the proposed concept needs
to be formally introduced.

By definition, equivalent type-1 sets is the col-
lection of type-1 sets that can be used in place
of the FOUs in a type-2 FLS.

A. Rationale for ET1Ss

The focus of this subsection is the rationale behind ET1Ss.
First, the type-2 FLS studied is described. As the objective
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is to provide insights into how a type-2 FLS differs from its
type-1 counterpart, a common basis for comparison is needed.
Hence, the strategy adopted is to start with a baseline type-1
FLS. The fuzzy Proportional plus Integral (PI) controller [13]
is selected because fuzzy control is one of the most common
applications of fuzzy theory. It has two inputs signals, the
feedback error (e) and its rate of change (ė). The output signal
is the rate of change in the control action (u̇). For simplicity,
each input domain is characterized by 3 type-1 fuzzy sets.
The rule base is shown in Table I. When the “Product-Sum-
Gravity Method” is used to implement the inference engine, a
PI controller u(t) = KP e(t) + KI

∫ t

0
e(τ)dτ can be realized

by a FLS if the consequences in Table I are defined as :

u̇ij = KI · Pei
+ KP · Pėj

i, j = 1, 2, 3 (1)

where Pei
is the apex of the membership function (MF) ei,

Pėj
is the apex of MF ėj , as labelled in Fig. 2.

TABLE I

RULE BASE OF THE FLSS

e \ ė ė1 ė2 ė3

e1 u̇11 u̇12 u̇13

e2 u̇21 u̇22 u̇23

e3 u̇31 u̇32 u̇33
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Fig. 2. MFs of the two FLSs

The type-2 FLS studied is one with a simple but effective
architecture [10]. Fig. 2 shows the membership functions of
the type-2 FLS. The input signals, output signal and the rule
base are the same as the baseline type-1 FLS. The only
difference is the center fuzzy set in the error domain, which
has been changed into a type-2 fuzzy set. ẽ2 is obtained by
blurring the type-1 FLS, whose MFs are shown as the dark
thick lines. The blurred area, referred to as the footprint of
uncertainty (FOU), represents the uncertainties in the shape
and position of the type-1 fuzzy set. It is bounded by an upper
MF and a lower MF, both of which are type-1 MFs. The type-
2 fuzzy set used is an interval one i.e. each point in the FOU
has unity secondary membership grade.

Fig. 3(a) shows a sample input-output map of the type-2
FLS. Clearly, it is non-linear. Since the baseline type-1 FLS is
equivalent to a linear PI controller, it may be concluded from
the plot in Fig. 3(a) that a more complex relationship can be
modeled by simply changing one of the fuzzy sets from type-1
to type-2. Although the input-output map of the type-2 FLS
may be relatively more complex, the output corresponding to a
particular set of inputs is still fixed once the system parameters

are selected. As a type-1 FLS has the same property, the
implication is that the interval firing strength of the type-2 set
corresponding to a particular input-output pair can effectively
be replaced by a crisp value without affecting the system
output. The task of finding the equivalent type-1 sets can be
achieved by first making a vertical cut to obtain a slice where
all points have the same ė value. That is, for a particular input
ė, a curve representing the relationship between the output u̇
and the input e can be plotted (See Fig. 3(b) when ė = −1).
Each slice is then replicated by replacing the type-2 set, ẽ2,
with an ET1S. Since the surface corresponding to the type-2
FLS is more complex, the shape of the slice may change as
ė is varied so different ET1S may be needed to re-produce
the curve corresponding to different ė. By considering all ė
within the universe of discourse [pė1 , pė3 ], the collection of
ET1Ss that duplicates all the slices and therefore the input-
output map can be found. The following subsection formally
delineates a procedure for identifying the ET1Ss.
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Fig. 3. Illustration of the control surface and a slice of it

B. Method for identifying ET1Ss

Consider the input pair (e′, ė′). Suppose the firing strength
of the type-2 MF ẽ2 corresponding to e′ (fẽ2) is the interval
set [fel

, feu
], where fel

and feu
are the points of intersection

on the lower and upper MFs of the type-2 set ẽ2 as labelled
in Fig. 2(a). Assume the firing strengths of the type-1 sets e1,
e3, ė1, ė2 and ė3 are fe1 , fe3 , fė1 , fė2 and fė3 , respectively.
Then, the firing strengths of the rules are :

Rij :
{

fei
× fėj

→ u̇ij i = 1, 3
fẽi

� fėj
= [fel

× fėj
, feu

× fėj
] → u̇ij i = 2

where j = 1, 2, 3. The crisp output, u̇′, of the type-2 FLS
corresponding to the input (e′, ė′) is obtained using sum-
product inference, center-of-sets type-reduction and height
defuzzification.

The strategy for identifying ET1Ss is based on the principle
of reducing the interval firing set, fẽ2 , to a single value
without affecting the crisp output u̇′ of the type-2 FLS. Let
the equivalent type-1 membership grade, feq, be a point on the
MF of the ET1S corresponding to ė = ė′ (Refer to Fig. 2(a)).
When the type-2 fuzzy set is replaced by its ET1S, the type-2
FLS is reduced to an equivalent type-1 FLS. Assuming height
defuzzification, the crisp output u̇eq of the equivalent type-1
FLS is the mathematical expression labelled as Equation (2).
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u̇eq =
fe1fė1 u̇11 + fe1fė2 u̇12 + fe1fė3 u̇13 + feqfė1 u̇21 + feqfė2 u̇22 + feqfė3 u̇23 + fe3fė1 u̇31 + fe3fė2 u̇32 + fe3fė3 u̇33

fe1fė1 + fe1fė2 + fe1fė3 + feqfė1 + feqfė2 + feqfė3 + fe3fė1 + fe3fė2 + fe3fė3

(2)

feq =
u̇′(fe1 + fe3)(fė1 + fė2 + fė3) − fe1(fė1 u̇11 + fė2 u̇12 + fė3 u̇13) − fe3(fė1 u̇31 + fė2 u̇32 + fė3 u̇33)

fė1 u̇21 + fė2 u̇22 + fė3 u̇23 − u̇′(fė1 + fė2 + fė3)
(3)

Since the output should not be affected when a type-2 FLS
is switched to its ET1S, feq must be selected to reproduce u̇′

i.e. u̇eq = u̇′. Consequently, the mathematical expression for
calculating the appropriate feq can be derived by substituting
u̇eq by u̇′ in Equation (2) and then re-arranging. The complete
group of ET1Ss can be then identified by discretizing the input
domains and applying Equation (3) repeatedly. In summary,
the procedure for finding ET1Ss of a two-inputs single output
Type-2 FLS is as follows :-

1) Discretize the ė domain into m points [ė′1, ė
′
2, . . . , ė

′
m]

2) Discretize the FOU of the type-2 set ẽ2, bounded by
(Pe1 − de) and (Pe3 + de) (Refer to Fig. 2(a)), into n
points.

3) Select an element in [ė′1, ė
′
2, . . . , ė

′
m]. Use Equation (3)

to calculate the n equivalent type-1 membership grades
feq,i(i = 1, . . . , n) such that the slice of the input-
output map corresponding to the selected ė′ remains un-
changed. By joining the n equivalent type-1 membership
grades, the ET1S corresponding to a particular ė′ can be
found.

4) Repeat Step (3) for the remaining (m − 1) elements in
[ė′1, ė

′
2, . . . , ė

′
m] as the ET1Ss may differ from each other

as ė′ changes.
Here it is assumed only one MF of the type-2 FLS is type-

2. When there are k (k > 1) type-2 sets, one can first replace
k − 1 type-2 sets by k − 1 embedded type-1 sets [6] and then
find ET1Ss to replace the last type-2 set [14].

C. Uniqueness of ET1S corresponding to each ė′

This subsection provides proof that an unique equivalent
type-1 membership grade feq, and therefore a unique ET1S,
exists when the remaining firing strengths in a FLS are fixed.

First, assume e′ ∈ [Pe1 − de, Pe2 ] and ė′ ∈ [Pė1 , Pė2 ]. In
this case, only the MFs e1, ẽ2, ė1 and ė2 are fired and the firing
strengths are fe1 , fẽ2 , fė1 and fė2 , respectively. Equation (2)
can, therefore, be simplified to Equation (4).

u̇eq = fe1fė1 u̇11+fe1fė2 u̇12+feqfė1 u̇21+feqfė2 u̇22

fe1fė1+fe1fė2+feqfė1+feqfė2

= (fe1fė1 u̇11+fe1fė2 u̇12)+feq(fė1 u̇21+fė2 u̇22)

(fe1fė1+fe1fė2 )+feq(fė1+fė2 )

=
(fe1fė1 u̇11+fe1fė2 u̇12)−

fė1
u̇21+fė2

u̇22
fė1

+fė2
(fe1fė1+fe1fė2 )

(fe1fė1+fe1fė2 )+feq(fė1+fė2 )

+ fė1 u̇21+fė2 u̇22

fė1+fė2

= 1
(fe1+feq)(fė1+fė2 )2

[
fe1f

2
ė1

(u̇11 − u̇21)

+fe1fė1fė2(u̇11 + u̇12 − u̇21 − u̇22)

+fe1f
2
ė2

(u̇12 − u̇22)
]
+ fė1 u̇21+fė2 u̇22

fė1fė2
(4)

Substituting Equation (1) into Equation (4) :

u̇eq =
fė1 u̇21 + fė2 u̇22

fė1 + fė2

+
KIfe1

fe1 + feq
(Pe1 − Pe2) (5)

The first term on the right hand side of Equation (5) is a
constant. Since fe1 , feq, fė1 and fė2 are firing strengths, they
should satisfy the following relations:

fe1 ≥ 0, feq ≥ 0, fe1 + feq > 0
fė1 ≥ 0, fė2 ≥ 0, fė1 + fė2 > 0

From Fig. 2 we have

Pe1 − Pe2 < 0

Hence, Equation (5) can be further simplified as :

u̇eq = c +
K

fe1 + feq
(6)

where
c =

fė1 u̇21 + fė2 u̇22

fė1 + fė2

(7)

is a constant and

K = KIfe1(Pe1 − Pe2) ≤ 0 (8)

Since K = 0 if fe1 = 0, u̇eq does not change with feq when
e′ = Pe2 . Otherwise, K < 0 and u̇eq will increase when feq

increases. The analysis indicates that u̇eq is monotonic to feq

when all other firing strengths are fixed and e′ �= Pe2 . Fig. 4
shows the relationships between u̇eq and feq when Pe1 =
Pė1 = −1, Pe2 = Pė2 = 0, KP = 1, KI = 1, e′ ∈ {−0.5, 0}
and ė′ = −0.5. They coincide with the analysis.
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Fig. 4. The monotonicity between u̇eq and feq

When the inputs are in other regions of the input domain,
similar calculations are performed and the following conclu-
sions can be drawn:

u̇eq ↑ as feq ↑, when e′ < Pe2 and ė′ ≤ Pė2;

u̇eq ↑ as feq ↑, when e′ < Pe2 and ė′ ≥ Pė2;

u̇eq ↓ as feq ↑, when e′ > Pe2 and ė′ ≤ Pė2;

u̇eq ↓ as feq ↑, when e′ > Pe2 and ė′ ≥ Pė2 .
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More concisely,

u̇eq ↑ as feq ↑, when e′ < Pe2 ;

u̇eq ↓ as feq ↑, when e′ > Pe2 .

As the relationship between u̇eq and feq is monotonic when
K �= 0, it may be concluded that there is a 1-1 mapping
between feq and u̇eq provided that e′ �= Pe2 . That is, the
feq calculated using Equation (3) is unique. Consequently, the
ET1S is also unique when ė′ is fixed.

III. SIMULATION RESULTS

The simulation results presented in this section were ob-
tained when the parameters defined in Fig. 2 assume the
following values :

Pe1 = −1, Pe2 = 0, Pe3 = 1
Pė1 = −1, Pė2 = 0, Pė3 = 1

The parameters of the PI controller are :

KP = 1, KI = {0.2, 1, 2}
When KI changes, the corresponding rule bases are shown in
Table II–IV.

TABLE II

RULE BASE OF THE FLSS WHEN KI = 0.2

e \ ė ė1 ė2 ė3

e1 −1.2 −0.2 0.8
e2 −1 0 1
e3 −0.8 0.2 1.2

TABLE III

RULE BASE OF THE FLSS WHEN KI = 1

e \ ė ė1 ė2 ė3

e1 −2 −1 0
e2 −1 0 1
e3 0 1 2

TABLE IV

RULE BASE OF THE FLSS WHEN KI = 2

e \ ė ė1 ė2 ė3

e1 −3 −2 −1
e2 −1 0 1
e3 1 2 3

The ET1Ss of ẽ2 may be calculated using the procedure
described in Section II-B. By discretizing the domain of e
into 2(1+de)

0.1 + 1 points and the domain of ė into 21 points
(i.e. the distance between successive discrete points is 0.1), the
ET1Ss when the parameter defining the width of the FOU (de)
is 0.3 and 0.6 respectively were found and shown in Fig. 5.
The input-output maps of the resulting FLSs are shown in
Fig. 6. Note that the Karnik-Mendel iterative type-reduction
procedure [6] was used to produce the type-2 FLS mapping.
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Fig. 5. ET1Ss of ẽ2 when KI changes
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Fig. 6. Control surfaces of the FLSs when KI changes
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IV. ANALYSIS AND DISCUSSIONS

Several patterns can be found from Fig. 5 and Fig. 6 :
(1) A larger FOU gives rise to a more complex input-output
relationship. This observation coincides with intuitions. When
the FOU is bigger, the difference between feu

and fel
is

bigger, which may result in more diverse output and hence
more complex control surface.
(2) As the FOU of a type-2 set grows, the ET1Ss become more
diverse. This characteristics is consistent with observation (1).
An ET1S at ė′ is a curve that can be used to replace the type-
2 set when ė = ė′ without changing the output. The output
is actually a slice of the control surface at ė = ė′. Since the
control surface is more complex when the FOU is bigger, the
difference between different ET1Ss becomes more obvious.
(3) When the MFs of the type-2 FLS is symmetric, all the
ET1Ss as a whole is symmetric. However, a particular ET1S
may not be symmetric. As shown in Fig. 7, the ET1S at ė = 0
is symmetric. The ET1S when ė = −0.2 is symmetric to
the one when ė = 0.2. When the type-2 FLS itself is not
symmetric, the ET1Ss will not be symmetric.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

e

edot= −0.2
edot= −0.1
edot=  0
edot= 0.1
edot= 0.2

Fig. 7. Illustration of symmetry. KP = 1, KI = 0.11 and de = 0.5

(4) The input-output maps of the resulting type-2 FLSs are
nonlinear and more complex. This is the direct result of the
shape of the ET1Ss and can be analyzed using Equation (2).
The first derivative of u̇eq (slope of u̇eq) wrt feq is :

üeq = KI [fe1(Pe2 − Pe1) + fe3(Pe3 − Pe2)] ·
1

(fe1 + feq + fe3)
2

(9)
Equation (9) indicates that |üeq| will increase when feq

decreases. In other words, a smaller feq means that the slope
of u̇eq is steeper. Fig. 5 shows that the membership grades of
the ET1Ss are the same as that of the original type-1 set e2

when e = 0. Thus, the slope of the control surfaces are the
same at this point. When e gradually departs from Pe2 , the
membership grades of the ET1Ss can be bigger or smaller than
that of the original type-1 MF, thus the input-output map is
more complex. Fig. 8 shows two slices of the control surfaces
with different ė′ and KI . Interestingly, the shapes are similar
to the ET1Ss shown in Fig. 5.
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(a) KI = 2, ė′ = 0
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(b) KI = 0.2, ė′ = 0.2

Fig. 8. The slope of the control surface

(5) The ET1Ss are closer together if KI is larger. By analyzing
Equation (9), it may be concluded that the crisp output of a
type-2 FLS, u̇, is proportional to KI . When KI increases, the
first derivative of u̇ also increases. For the same change in feq,
the FLS corresponding to KI = 2 gives the maximum output
change. From another point of view, the FLS with KI = 2
needs the minimum change in feq to give the same amount
of change in u̇. Thus, its ET1Ss are the closest of the three
FLSs that were studied.
(6) The ET1Ss may not lie in the FOU of the corresponding
type-2 set. Moreover, the equivalent type-1 membership grades
of the ET1Ss may be larger than 1 or smaller than 0. ET1Ss
with some equivalent type-1 membership grades that are larger
than the upper membership grade are illustrated in Fig. 7.
More interesting ET1Ss are presented in Fig. 9, where some
of the equivalent type-1 membership grades of the ET1Ss
are negative. To provide insights into why equivalent type-
1 membership grades may assume negative values, consider
the input pair e = −0.2, ė = 0.2. The slice of the input-output
map where ė = 0.2 is shown in Fig. 10. The point of interest
is labelled by a square. In this case, the firing strengths are :

fe1 = 0.2
fẽ2 = [0, 0.8889]
fė2 = 0.8
fė3 = 0.2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

e

edot= −0.2
edot= −0.1
edot=  0
edot= 0.1
edot= 0.2

   e=−0.2
 edot=0.2
MG=−1.308

Fig. 9. Example where ET1Ss are not within FOU (KI = 0.2, de = 0.8)

Thus, the fired rules are :
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Fig. 10. A slice of the control surface when KI = 0.2, ė = 0.2, de = 0.8

Rule No: Firing Strength → Consequent
R12 : 0.16 → −0.2
R13 : 0.04 → 0.8
R22 : [0, 0.7111] → 0
R23 : [0, 0.1778] → 1

For the type-2 FLS, the bounds of the type-reduced interval
type-1 set obtained using the Karnik-Mendel type-reducer and
the resulting crisp output are :

u̇l = −0.16×0.2+0.04×0.8+0×0+0×1
0.04+0.16+0+0 = 0

u̇r = −0.16×0.2+0.04×0.8+0×0+0.1778×1
0.04+0.16+0+0.1778 = 0.4722

u̇ =
u̇l + u̇r

2
= 0.2361 (10)

Suppose the equivalent type-1 membership grade of the inter-
val firing strength fẽ2 = [0, 0.8889] is feq. Then, the firing
level of rules in the equivalent type-1 FLS are :

Rule No: Firing Strength → Consequence
R12 : 0.16 → −0.2
R13 : 0.04 → 0.8
R22 : 0.8feq → 0
R23 : 0.2feq → 1

The expression governing the output of the equivalent type-1
FLS is :

u̇eq = 0.16×−0.2+0.04×0.8+0.8feq×0+0.2feq×1
0.16+0.04+0.8feq+0.2feq

=
0.2feq

0.2 + feq
(11)

For positive feq, the output of the equivalent type-1 FLS, u̇eq

(Equation (11)), will increase and tend towards 0.2 as feq →
+∞ i.e.

lim
feq→+∞

0.2feq

0.2 + feq
= 0.2

Since the maximum u̇eq value is 0.2 if feq is constrained to
be positive, the resulting equivalent type-1 FLS will not be
able to replicate the crisp output of the type-2 FLS which is
0.2361 (Equation (10)). The only way for the outputs of the
equivalent type-1 FLS and the type-2 FLS to match is for feq

to take on the negative value −1.3080. This analysis indicates
that the extra dimension provided by the FOU enables a type-2
FLS to produce outputs that cannot be achieved by traditional
type-1 FLSs with the same number of MFs.

From the above analysis, there are two main differences
between type-1 and type-2 FLSs. Firstly, a type-2 fuzzy set
can be viewed as a combination of many different ET1Ss.
A different ET1S is utilized when the input is changed,
thereby providing a type-2 FLS with more degrees of freedom.
Secondly, a type-2 fuzzy set may give rise to an equivalent
type-1 membership grade that is negative or larger than unity.
These two characteristics of a type-2 fuzzy set enable a type-2
FLS to model more complex input-output relationships than
its type-1 counterpart.

V. CONCLUSIONS

In this paper, the role of the FOU in type-2 sets is ana-
lyzed by introducing the ET1Ss concept. Using the proposed
algorithm for identifying ET1Ss, the characteristics of a type-
2 FLS is compared with a type-1 FLS. Results show that
the FOU needs to be replicated by different ET1Ss as the
inputs are varied. Thus, the type-2 FLS can be viewed as a
combination of many different type-1 FLSs. As a type-2 FLS
switches between the various type-1 FLSs, it is able to model
more complicated input-output maps. The results in this paper
may also provide insights on how the FOU can be theoretically
selected. That is one of our future research directions.
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