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Abstract—Interval type-2 fuzzy logic controllers (IT2 FLCs)
have been attracting great research interests recently. There are
many decisions to be made in designing an IT2 FLC. One of
them is to determine which membership function type to use,
e.g., Gaussian or trapezoidal. There have not been comprehensive
studies on this problem so far. In this paper we present 12
considerations in choosing between Gaussian and trapezoidal
membership functions for an IT2 FLC, including representa-
tion, construction, optimization, adaptiveness, novelty, analytical
structure, continuity, monotonicity, stability, robustness, compu-
tational cost, and control performance. It can help practitioners
select the appropriate membership function type in IT2 FLC
design, and researchers identify new research opportunities on
IT2 FLCs. Our study shows that each MF type has its own
advantages: Gaussian IT2 FLCs are simpler in design because
they are easier to represent and optimize, always continuous,
and faster for small rulebases, whereas trapezoidal IT2 FLCs
are simpler in analysis.

Index Terms—Interval type-2 fuzzy logic controller, adap-
tiveness, novelty, analytical structure, continuity, monotonicity,
stability, robustness, computational cost

I. INTRODUCTION

Interval type-2 fuzzy sets (IT2 FSs) and systems have been

attracting great research interests recently [37], [39], [46], [72].

They are particularly popular in modeling and control, where

they have demonstrated better abilities to handle uncertainties

than their T1 counterparts [6], [16], [20], [28], [32], [65], [66].

Fig. 1 shows the schematic diagram of an IT2 fuzzy logic

system. It is similar to its type-1 (T1) counterpart, the major

difference being that at least one of the FSs in the rulebase is

an IT2 FS. Hence, the outputs of the inference engine are IT2

FSs, and a type-reducer [21], [37] is needed to convert them

into a T1 FS before defuzzification can be carried out. Type-

reduction is usually performed by the iterative Karnik-Mendel

(KM) algorithms [21].
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Fig. 1. The schematic diagram of an IT2 fuzzy logic system.

It is well-known [8] that T1 fuzzy logic controllers (FLCs)

using a wide class of membership functions (MFs) are uni-

versal approximators, i.e., they are capable of approximating

any real continuous function on a compact set to arbitrary

accuracy. Ying [70], [71] has also shown that both Mamdani

and TSK IT2 FLCs using any MF shapes are universal

approximators. As pointed out by Castro [8], these results have

two consequences: “First, if we use a fixed type of FLC, the

control is theoretically possible. Second, if we want to design a

FLC, we should use the type which is more appropriate to that

particular problem, because almost all types are theoretically

effective.” So, an important question is: which type of IT2

FLC is more appropriate to a particular problem?

There are many decisions to be made in designing an IT2

FLC, e.g., which MF shape to use, how many MFs in each

input and output domain, how to construct the rulebase, how

to reduce the computational cost, etc. In this paper we focus

on the first problem, i.e., which MF shape should be used.

In the literature two MF shapes, Gaussian and trapezoidal

(with triangular MFs as special cases), are most popular; so,

only these two shapes are considered in this paper. Also, we

focus on PI controllers because they are the most widely used

controllers in practice. We consider its incremental form:

u̇ = kP ė+ kIe (1)

where u̇ is the change in control signal, e is the error, ė is the

change of error, and kP and kI are proportional and integral

gains, respectively. Additionally, we focus on the center-of-

sets type-reduction and KM algorithms based type-reducers

[37], because they are the most widely used approaches.

Twelve considerations in choosing between Gaussian and

trapezoidal IT2 FSs are described next.

II. TWELVE CONSIDERATIONS IN CHOOSING BETWEEN

GAUSSIAN AND TRAPEZOIDAL MFS

This section presents 12 considerations in determining

whether Gaussian or trapezoidal MFs should be used in an

IT2 FLC, including representation, construction, optimization,

adaptiveness, novelty, analytical structure, continuity, mono-

tonicity, stability, robustness, computational cost, and control

performance.
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A. Representation

Representation concerns how to effectively and efficiently

describe a MF. Generally a MF shape with simpler representa-

tions is preferred, especially if the parameters of the MF need

to be optimized, because simpler representation usually means

faster convergence.

A Gaussian T1 FS X is shown in Fig. 2(a) as the thick

dashed curve. Its MF is:

µX(x) = e−
(x−m)2

2σ2 (2)

where µX(x) is the membership grade of x on X , m is the

mean of the Gaussian FS, and σ is the standard deviation.

Clearly, a T1 Gaussian FS has non-zero membership grades

over the entire input domain. A Gaussian IT2 FS is usually

obtained by blurring the mean or standard deviation of a

baseline Gaussian T1 FS [65], as shown in Fig. 2. When

the mean of the Gaussian T1 FS is blurred to be an interval

[m1, m2], as shown in Fig. 2(a), the UMF is

µX(x) =





e−
(x−m1)2

2σ2 , x < m1

1, m1 ≤ x ≤ m2

e−
(x−m2)2

2σ2 , x > m2

(3)

and the LMF is

µX(x) = min(e−
(x−m1)2

2σ2 , e−
(x−m2)2

2σ2 ) (4)

When the standard deviation of the Gaussian T1 FS is blurred

to be an interval [σ1, σ2], as shown in Fig. 2(b), the UMF is

µX(x) = e
−

(x−m)2

2σ2
2 (5)

and the LMF is

µX(x) = e
−

(x−m)2

2σ2
1 (6)

Observe that in either case, only three parameters

[(m1,m2, σ) or (m,σ1, σ2)] are needed to define a Gaussian

IT2 FS.

A trapezoidal T1 FS X is shown in Fig. 3 as the

thick dashed curve. It is determined by four parameters

(a′, b′, c′, d′), and its MF is:

µX(x) =





x−a′

b′−a′
, a′ < x < b′

1, b′ ≤ x ≤ c′

d′−x
d′−c′

, c′ < x < d′

0, otherwise

(7)

which may be written in a more concise form:

µX(x) = max

(
0,min

(
x− a′

b′ − a′
,
d′ − x

d′ − c′
, 1

))
(8)

Note that triangular T1 FSs are special cases of trapezoidal

T1 FSs when b′ = c′.
A trapezoidal IT2 FS can also be obtained by blurring a

baseline trapezoidal T1 FS [66], as shown in Fig. 3. Generally,

nine parameters are needed to represent a trapezoidal IT2 FS,

as (a, b, c, d, e, f, g, i, h) shown in Fig. 3, where (a, b, c, d)
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Fig. 2. Gaussian T1 and IT2 FSs. (a) A Gaussian T1 FS (thick dashed curve)
and a Gaussian IT2 FS obtained from blurring the mean of the T1 FS; (b) a
Gaussian T1 FS (thick dashed curve) and a Gaussian IT2 FS obtained from
blurring the standard deviation of the T1 FS.

determines the UMF and (e, f, g, i, h) determines the sub-

normal LMF.

From the above description we can conclude that generally

it is simpler to represent a Gaussian IT2 FS because it only

needs three parameters, whereas a trapezoidal IT2 FS needs

nine parameters.
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Fig. 3. A trapezoidal T1 FS (thick dashed curve) and a trapezoidal IT2 FS,
represented by nine parameters.

B. Construction

Construction concerns the methods to obtain the MFs. A MF

shape that can be constructed in more ways is more favorable.

Generally there are two approaches for constructing the FSs

in a FLC: model-driven and knowledge-driven. For the model-

driven approach, we have a mathematical model of the plant,

so optimization algorithms [65], [66] can be used to tune

the parameters of the MFs. Both Gaussian and trapezoidal

MFs can be used in this approach. For the knowledge-

driven approach [33], [34], the user specifies the rulebase and

constructs the MFs according to his/her understanding of the

linguistic terms. However, it is not easy to construct IT2 FS

word models, especially if several people are working together

and they have different opinions.



Recently Liu and Mendel [31] proposed an Interval Ap-

proach for constructing IT2 FSs from interval survey data, and

Wu et al. [59] further improved upon it. In both approaches, for

each word in an application-dependent encoding vocabulary,

a group of subjects are asked the following question:

On a scale of 0-10, what are the end-points of an

interval that you associate with the word ?

After some pre-processing, during which some intervals (e.g.,

bad data, outliers) are eliminated, each of the remaining

intervals is classified as either an interior, left-shoulder or

right-shoulder IT2 FS. Then, each of the word’s data intervals

is individually mapped into its respective T1 interior, left-

shoulder or right-shoulder MF, after which the footprint of

uncertainty of the IT2 FS is computed. So far only trapezoidal

IT2 FSs can be generated from these approaches.

In summary, Gaussian IT2 FSs can only be constructed from

the model-driven approach, whereas trapezoidal IT2 FSs can

be constructed from both model-driven and knowledge-driven

approaches. So, using trapezoidal IT2 FSs gives the user more

freedom in MF construction.

C. Optimization

Optimization concerns the way to tune the parameters of

the MFs. Generally a MF shape that can be optimized more

efficiently is preferred.

In the literature there are two popular categories of methods

to tune the parameters of IT2 FSs. The first consists of steepest

descent algorithms (also referred to as back-propagation algo-

rithms) [37], [40], [50], and the second consists of evolutionary

computation algorithms [6], [50], [65], [66], especially genetic

algorithms. The steepest descent algorithms need to compute

the derivatives of the MF parameters. This is challenging for

both Gaussian and trapezoidal IT2 FSs because the KM type-

reducer does not have a closed-form solution. One example

on IT2 FLCs using Gaussian MFs with uncertain means is

given by Mendel [38]. Because of this, optimization of IT2

FLCs using evolutionary computation algorithms are more

popular in the literature and practice. Gaussian IT2 FSs are

generally more favorable in this case because fewer parameters

are needed to represent them.

In summary, it is challenging to optimize the parameters of

both Gaussian and trapezoidal IT2 FSs using steepest descent

algorithms. When evolutionary computation algorithms are

used, Gaussian MFs are more favorable since they have fewer

parameters to tune.

D. Adaptiveness

We [53], [55] considered adaptiveness as one of the two fun-

damental differences between IT2 and T1 FLCs. Adaptiveness

means that the embedded T1 FSs used to compute the bounds

of the type-reduced interval change as input changes.

Consider an IT2 FLC [55] with two inputs (x1 and x2) and

one output (y). Each input domain consists of two trapezoidal

IT2 FSs, shown as the shaded areas in Fig. 4. The rulebase

consists of the following four rules:

R1 : IF x1 is X̃11 and x2 is X̃21, THEN y is Y 1.

R2 : IF x1 is X̃11 and x2 is X̃22, THEN y is Y 2.

R3 : IF x1 is X̃12 and x2 is X̃21, THEN y is Y 3.

R4 : IF x1 is X̃12 and x2 is X̃22, THEN y is Y 4.

The corresponding rule consequents are given in Table I.
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Fig. 4. MFs of the IT2 FLC. (a) Input MFs of x1; (b) Input MFs of x2.

TABLE I
RULEBASE AND CONSEQUENTS OF THE IT2 FLC.

x2
P
P
P
P

x1 X̃21 X̃22

X̃11 Y 1 = [y1, y1] = [−1,−0.9] Y 2 = [y2, y2] = [−0.6,−0.4]

X̃12 Y 3 = [y3, y3] = [0.4, 0.6] Y 4 = [y4, y4] = [0.9, 1]

Denote the firing interval of Rule Ri as [f i, f
i
], and the

type-reduced interval, computed by the KM algorithms, as

[yl, yr]. When the input is (x′
1
, x′

2
) = (−0.3, 0.6), according

to the KM algorithms [55],

yl =
f
1

y1 + f2y2 + f3y3 + f4y4

f
1

+ f2 + f3 + f4
(9)

When the input is (x′
1
, x′

2
) = (0.3, 0.6),

yl =
f
1

y1 + f
2

y2 + f3y3 + f4y4

f
1

+ f
2

+ f3 + f4
(10)

The corresponding embedded T1 FSs used in (9) and (10) are

shown in Table II. Observe that when the input changes from

(−0.3, 0.6) to (0.3, 0.6), different embedded T1 FSs are used

in computing the four firing levels and hence yl. This is the

adaptiveness that does not exist in traditional T1 FLCs.

Though the adaptiveness of IT2 FLCs is illustrated by

trapezoidal MFs above, it is fundamental to IT2 FLCs and

is independent of the shape of the MFs. In other words, both

Gaussian and trapezoidal IT2 FSs preserve the adaptiveness

of IT2 FLCs.



TABLE II
THE EMBEDDED T1 FSS FROM WHICH THE FOUR FIRING LEVELS IN (9)

AND (10) ARE OBTAINED.

X̃11 X̃12 X̃21 X̃22

UMF LMF UMF LMF UMF LMF UMF LMF

f
1 √ √

Equation (9) f2
√ √

(x′

1
, x′

2
) = (−0.3, 0.6) f3

√ √

f4
√ √

f
1 √ √

Equation (10) f
2 √ √

(x′

1
, x′

2
) = (0.3, 0.6) f3

√ √

f4
√ √

E. Novelty

We [53], [55] considered novelty as another fundamental

differences between IT2 and T1 FLCs. Novelty means that the

upper and lower MFs of the same IT2 fuzzy set may be used

simultaneously in computing each bound of the type-reduced

interval.

Take yl in (9) as an example. The firing levels of the

four rules are f
1

, f2, f3 and f4, respectively, which are

computed from different lower and upper MFs, as shown in

the first part of Table II. Observe that both the upper and lower

MFs of X̃11 are used in computing yl, and they are used in

different rules: The UMF of X̃11 is used in computing f
1

, the

firing level of Rule R1, whereas the LMF of X̃11 is used in

computing f2, the firing level of Rule R2. Similarly, the upper

and lower MFs of X̃21 are used simultaneously in different

rules for computing yl. Observe also from the second part of

Table II that the upper and lower MFs of X̃21 and X̃22 are

used simultaneously in different rules for computing yl. This

novelty is impossible for a traditional T1 FLC, where the same

MFs are always used in computing the firing levels of all rules.

Though the novelty of IT2 FLCs is illustrated by trapezoidal

MFs above, it is fundamental to IT2 FLCs and is independent

of the shape of the MFs. In other words, both Gaussian and

trapezoidal IT2 FSs preserve the novelty of IT2 FLCs.

F. Analytical Structure

To better understand the characteristics of an IT2 FLC,

several researchers [11], [42], [44], [67], [74] have tried to

derive the analytical structure of IT2 FLCs. All of them used

trapezoidal IT2 FSs and showed that a trapezoidal IT2 PI FLC

is equivalent to a variable-gain PI controller. The value and

functional representations of the variable PI gains change as

the inputs [e(t) and/or ė(t)] change.

Zhou and Ying [75] presented a comprehensive study on

deriving the analytical structure of a broad class of IT2

Mamdani FLCs, where the MFs can have arbitrary shapes. The

equivalent variable-gain nonlinear controller can be expressed

as:

u̇(t) =k′I(e(t), ė(t)) · e
2(t) + kP (e(t), ė(t)) · ė(t)

+ kI(e(t), ė(t)) · e(t) + δ(e(t), ė(t)) (11)

where k′I(e(t), ė(t)), kP (e(t), ė(t)), kI(e(t), ė(t)) and

δ(e(t), ė(t)) are functions of e(t) and ė(t), and they may

have different representations when e(t) and ė(t) change.

They showed that if and only if all the input FSs are piecewise

linear, e.g., when the input FSs are trapezoidal IT2 FSs,

k′I(e(t), ė(t)) in (11) becomes 0 and the IT2 PI FLC becomes

a nonlinear PI controller with variable PI gains plus a variable

offset term. For Gaussian IT2 FLCs, k′I(e(t), ė(t)) in (11) is

nonzero and hence it has a e2(t) term. As a result, it is not

a PI controller, which makes its performance analysis more

challenging.

In summary, trapezoidal IT2 FLCs have simpler analytical

structures than Gaussian IT2 FLCs, though they are still very

complex.

G. Continuity

Continuity is a very important and desirable property for

FLCs because most physical systems are continuous, and

a continuous and smooth control surface is usually more

favorable in terms of stability and performance [20], [58], [62],

[64], [65]. We [58] have done a comprehensive study on the

continuity of T1 and IT2 FLCs. Two types of discontinuities

were considered. A function f(x) has a gap discontinuity

at c if f(c) is undefined. For example, f1(x)/f2(x) has a

gap discontinuity at c if f2(c) = 0. A function f(x) has a

jump discontinuity at c if f(c) is defined but lim
x→c+

f(x) 6=

lim
x→c−

f(x), i.e., both f(c) and f(c+δ) are defined, but f(c+δ)

does not approach f(c) as δ approaches 0. For example,

f(x) =
{

2, x<0

3, x≥0
has a jump discontinuity at x = 0.

We [58] have studied the continuity of IT2 fuzzy logic

systems with an arbitrary number of inputs. Here we present

the results for IT2 PI FLCs with only two inputs.

Result 1: An IT2 PI FLC has gap discontinuity if and only

if there exist at least one point in the input domain that is not

covered by the UMFs.

Result 2: An IT2 PI FLC has jump discontinuity if 1) the

input domain is fully covered by the UMFs; 2) there exists

at least one point not covered by the LMFs; and, 3) All rules

have different consequents.

Result 3: An IT2 PI FLC is continuous as long as its input

domain is fully covered by both the UMFs and the LMFs.

Based on the above results, we have the following guidelines

for practitioners who want to design continuous IT2 PI FLCs:

1) To guarantee a continuous control surface regardless

of which type-reduction and defuzzification method is

used, Gaussian IT2 FSs should be employed.

2) When trapezoidal IT2 FSs are used, to guarantee a

continuous control surface, the LMFs should cover every

input domain. This implies that the UMFs must also

cover every input domain.

Note that the constraints on the trapezoidal IT2 FSs are very

easy to satisfy, so they have little impact on the performance

and design freedom of trapezoidal IT2 FLCs.



In summary, Gaussian IT2 PI FLCs are always continuous,

whereas trapezoidal IT2 PI FLCs are only continuous under

certain easy constraints.

H. Monotonicity

Many real-world systems are monotonic, e.g., the fan speed

of an air conditioner increases monotonically as the electricity

current increases. This requires that the corresponding con-

troller should also be monotonic. As pointed out in [49], the

monotonicity property represents additional qualitative infor-

mation/knowledge that can be exploited to obtain interpretable

and optimized FLCs.

The monotonicity of T1 FLCs using both Gaussian and

trapezoidal MFs have been studied by several researchers [5],

[47], [49], [52]. The goal is to derive the conditions under

which a T1 FLC is guaranteed to be monotonic. There are

only a few studies [26], [27], [51] on the monotonicity of

IT2 FLCs because of its complexity. All of them considered

only trapezoidal or triangular IT2 FSs. They also have other

limitations. Li et al. [26] studied the monotonicity of an IT2

FLC using the KM type-reduction algorithms; however, only

single-input single-output IT2 FLCs were considered. Wang

et al. [51] studied the monotonicity of a single-input single-

output IT2 FLC whose output is un-normalized, whereas most

IT2 FLCs used in practice are normalized. Li et al. [27] also

considered single input rule modules (SIRMs) connected IT2

FLCs1, which can have multiple inputs; however, their type-

reduction method is different from the most widely used KM

algorithms.

In summary, there have been some preliminary studies on

the monotonicity of IT2 FLCs using trapezoidal MFs, but no

studies on the monotonicity of IT2 FLCs using Gaussian MFs.

So far there are no results to guarantee that a Gaussian or

trapezoidal IT2 FLC using the KM algorithms is monotonic.

I. Stability

Stability is very important for a controller because it is

related to safety. There have been several studies on the

stability of IT2 FLCs [2], [7], [18], [19], [23], [24], which

include methods for designing stable IT2 FLCs and methods

for testing whether an IT2 FLC is stable or not.

Castillo et al. [7] extended Margaliot and Langholz’s [35]

method for designing stable Mamdani T1 FLCs to IT2 FLCs.

They demonstrated the concept using a very simple example,

where only two trapezoidal IT2 FSs were used in each of the

two input domains. However, there are some limitations with

their approach. First, they required that the control signal is

proportional to a state variable or its derivative, which is not

always true in practice. Second, they translated the Lyapunov

condition x2(x1 + ẋ2) < 0 to rules like “If x1 is positive and

x2 is positive, Then ẋ2 must be negative big” so that each

individual rule is stable. To ensure the aforementioned rule

1A SIRMs based IT2 FLC constructs a single-antecedent IT2 FLC for each
input, computes the outputs of such single-antecedent IT2 FLCs separately
using the KM algorithms, and then combines the outputs using a weighted
average.

always satisfies the Lyapunov condition, |ẋ2| must be larger

than the largest element of the support of the FS “positive”

(otherwise x1 + ẋ2 still has a chance to be positive, and

hence x2(x1 + ẋ2) > 0). Clearly, this is not possible for

Gaussian MFs. Though this is possible for trapezoidal MFs, it

imposes a significant constraint on how the FSs can be defined.

We believe the constraints can be relaxed if stability can be

considered at the fused output level instead of individual rule

level.

Lam and Seneviratne [23] studied the stability of IT2 FLCs

using linear matrix inequalities and the Lyapunov stability

theory. One nice part of their approach is that the MFs can be

any forms including Gaussian and trapezoidal. However, the

plant under control must also have a fuzzy logic model, and

the IT2 FLC must have the same antecedent MFs and the same

number of rules as the plant. In their more recent work [22]

these constraints were removed, and hence design flexibility

was enhanced. However, they indicated that this leads to

conservative stability analysis results. It also needs to point

out that in both studies they used a normalized central FLC

whose type-reduction and defuzzification method is different

from the popular iterative KM algorithms.

Biglarbegian et al. [2] studied the sufficient conditions for

the stability of IT2 TSK FLCs whose MFs can have arbitrary

shapes including Gaussian and trapezoidal. They also used

linear matrix inequalities and the Lyapunov stability theory.

To make the analysis more feasible, they employed a closed-

form type-reduction and defuzzification method, which again

is different from the popular iterative KM algorithms.

Li et al. [24] performed stability analysis for the SIRMs

based IT2 FLCs, in which both Gaussian and trapezoidal

IT2 FSs can be used; however, its structure is different

from traditional IT2 PI FLCs. Additionally, they only studied

local stability around the equilibrium point because it is very

difficult to study the global stability.

Jafarzadeh et al. [18], [19] proposed sufficient conditions

for the exponential stability of T1 and general type-2 TSK

FLCs. A major advantage of their approach is that it doe not

require the existence of a common Lyapunov function and

is therefore applicable to systems with unstable consequents.

However, their approach only applies to special triangular T1

FSs which are orthogonal, consistent, complete and normal,

and special triangular IT2 FSs whose UMFs are orthogonal,

consistent, complete and normal and whose LMFs are scaled

and shifted versions of the UMFs.

In summary, there have been some studies on the stability

of both Gaussian and trapezoidal IT2 FLCs; however, each

approach has its own limitations, and so far there has not

been comprehensive stability analysis for either Gaussian or

trapezoidal IT2 FLCs using the popular KM type-reduction

algorithms. So, it is difficult to conclude which MF shape is

more favorable in terms of stability.

J. Robustness

Robustness is another important property of controllers.

As pointed out by Biglarbegian et al. [4], “when a system



is subjected to small deviations around the sampling points

(operating points), it is essential to find the maximum tolerance

of the system with respect to those perturbations, referred

to herein as the systems robustness. Thus, in the context of

modeling, robustness is a metric for measuring the impact of

input deviations on the desired output.”

Many experiments have verified that IT2 FLCs are more ro-

bust than their T1 counterparts [16], [30], [65], [66]. However,

only a few researchers [3], [4], [24] have tried to investigate

their robustness directly. Biglarbegian et al. [3], [4] studied

the robustness of IT2 FLCs using an alternative type-reduction

method, which has closed form solution and is different from

the iterative KM algorithms. Their method can be applied

to both Gaussian and trapezoidal IT2 FSs. Li et al. [24]

studied the robustness of the SIRMs connected IT2 FLCs

and illustrated their method using triangular IT2 FSs. Their

method can also be applied to trapezoidal or Gaussian IT2

FSs. However, they also used an alternative type-reduction

method which is an extension of Biglarbegian et al.’s method.

The robustness of IT2 FLCs using the most popular KM type-

reduction algorithms remains unexplored.

In summary, there have been some studies on the robustness

of IT2 FLCs using alternative closed-form type-reducers, but

no studies on IT2 FLCs using the KM type-reducer. Hence,

it is difficult to conclude which MF shape will result in more

robust IT2 FLCs when the KM type-reducer is used.

K. Computational Cost

The iterative KM type-reduction algorithms [21] are com-

putationally intensive and may hinder IT2 FLCs from certain

real-time applications. There have been many different ap-

proaches for reducing the computational cost of IT2 FLCs. We

[54] presented a comprehensive overview and comparison of

them. These approaches can be grouped into three categories:

1) Enhancements to the KM type-reduction algorithms [12],

[17], [36], [57], [60], [69], which improve directly over

the original KM algorithms to speed them up. We [54]

gave an overview and comparison of five such enhance-

ments and showed that for practice PI FLCs (i.e., the

rulebase has less than 100 rules) the enhanced opposite

direction searching algorithms [17] are the fastest.

2) Alternative type-reduction algorithms [1], [10], [11],

[13], [14], [25], [29], [43], [48], [63], [68]. Unlike the

iterative KM algorithms, these alternative type-reduction

algorithms have closed-form representations. They are

usually fast approximations of the KM algorithms. We

[56] gave an overview and comparison of 11 such

approaches. Experiments demonstrated that ten of them

are generally faster than the KM algorithms; among

them, the Wu-Tan [63] and Nie-Tan [43] methods are

the fastest, and they are only about 1.2-1.7 times slower

than a T1 FLC.

3) Simplified IT2 FLCs [61], [66], in which the architecture

of an IT2 FLC is simplified by using only a small

number of (usually only one) IT2 FSs for the most

critical input regions and T1 FSs for the rest. In [61],

a simplified IT2 FLC, which used one IT2 FS around

e = 0 and one around ė = 0, outperformed a T1

FLC with the same number of MFs and showed similar

performance as an IT2 FLC whose MFs are all IT2 FSs.

In [66], a simplified IT2 FLC, which used only one IT2

FS in the ė domain, outperformed a T1 FLC with the

same number of MFs and showed similar performance

as a T1 FLC with more MFs and an IT2 FLC whose all

MFs are IT2 FSs.

All methods in these three categories can be applied to both

Gaussian and trapezoidal IT2 FLCs. Our experimental results

[54] showed that when the rulebase is small (e.g., there are

less than 50 rules), generally Gaussian IT2 FLCs are faster

than the corresponding trapezoidal IT2 FLCs when the same

number of MFs and the same type-reduction and defuzzifica-

tion method are used. Since small rulebases are usually used

in practice, Gaussian IT2 FLCs seem more favorable in terms

of computational cost.

L. Control Performance

Control performance is the most important consideration

in choosing between Gaussian and trapezoidal MFs in a FLC.

There are lots of studies on comparing the control performance

of Gaussian and trapezoidal MFs in T1 FLCs [9], [15], [41],

[45], [73]; however, it seems that the conclusion is highly

application dependent, and it is difficult to conclude which

MF shape is always better.

To the best knowledge of the author, so far there has not

been any study on directly comparing the performance of

Gaussian and trapezoidal MFs in IT2 FLCs. Wu [65] evaluated

the performance of IT2 FLCs using Gaussian MFs on a

coupled-tank liquid level control system, and also the perfor-

mance of IT2 FLCs using trapezoidal MFs on the same system

in a different publication [66]. Both evaluations showed that

IT2 FLCs can outperform their type-1 counterparts; however,

no direct comparisons between the performance of IT2 FLCs

using different MF shapes were made. We conjecture that

like the T1 FLC case, which IT2 FS shape is better is also

application dependent, and it will not be known until the IT2

FLCs using different MF shapes are designed and tested.

In summary, it is difficult to predict whether a Gaussian or

a trapezoidal IT2 FLC will give better control performance

for a particular application: we need to design and compare

them. However, if the budget permits only one IT2 FLC to

be designed, then the eleven considerations presented above

will be very important in determining which IT2 FLC to start

with.

M. Summary

For the convenience of the readers, the 12 considerations

presented in this section are summarized in Table III. Clearly,

there are lots of research opportunities on IT2 FLCs, es-

pecially, their monotonicity, stability, robustness, and direct

comparative studies on the effects of different MF shapes. So,

it is difficult to conclude which MF type is better. Each MF

type has its own advantages: Gaussian IT2 FLCs are simpler



in design because they are easier to represent and optimize,

always continuous, and faster for small rulebases, whereas

trapezoidal IT2 FLCs are simpler in analysis.

III. CONCLUSIONS

IT2 FLCs have been attracting great research interests

recently. One of the most important decisions to be made

in designing an IT2 FLC is to determine which MF type

to use, e.g., Gaussian or trapezoidal. In this paper we have

presented 12 considerations in choosing between Gaussian and

trapezoidal MFs, including representation, construction, opti-

mization, adaptiveness, novelty, analytical structure, continu-

ity, monotonicity, stability, robustness, computational cost, and

control performance. Each MF type has its own advantages:

Gaussian IT2 FLCs are simpler in design because they are

easier to represent and optimize, always continuous, and faster

for small rulebases, whereas trapezoidal IT2 FLCs are simpler

in analysis. This paper will be very useful to practitioners on

IT2 FLC design, and to researchers who want to identify new

research opportunities on IT2 FLCs.
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