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Abstract—Single-trial Event-Related Potential (ERP) classifi-
cation is a key requirement for several types of Brain-Computer
Interaction (BCI) technologies. However, strong individual dif-
ferences make it challenging to develop a generic single-trial
ERP classifier that performs well for all subjects. Usually some
subject-specific training samples need to be collected in an
initial calibration session to customize the classifier. However, if
implemented into an actual BCI system, then this calibration
process would decrease the utility of the system, potentially
decreasing its usability. In this paper we propose a Transfer
Learning approach for reducing the amount of subject-specific
data in online single-trial ERP classifier calibration, and an Active
Transfer Learning approach for offline calibration. By applying
these approaches to data from a Visually-Evoked Potential EEG
experiment, we demonstrate that they improve the classification
performance, given the same number of labeled subject-specific
training samples. In other words, these approaches can also attain
a desired level of classification accuracy with less labeling effort
when compared to a randomly selected training set.

Keywords—Single-trial classification, ERP, VEP, EEG, transfer
learning, active learning, active transfer learning

I. INTRODUCTION

Brain-computer interfaces (BCIs) have attracted explosive
research interest in the last decade [9], [13], [26], thanks to
recent advances in neurosciences, wearable/mobile biosensors,
and analytics. Some have left their laboratory settings and
begun to seek real-life applications [15], [24], [26], such as
gaming. Many of these real-world BCI applications require
single-trial classification of Event-Related Potentials (ERPs).
However, people demonstrate strong individual differences in
neural response to tasks or stimuli, which make it challeng-
ing, if not impossible, to develop a generic single-trial ERP
classifier whose parameters fit all subjects. Usually, some
subject-specific training samples need to be collected in an
initial calibration session to customize the classifier. A typical
calibration session can take anywhere from five to 20 minutes
[24]. When implemented into a BCI system this calibration
session would decrease the utility of these systems, potentially
slowing their rate of acceptance. So, there is a critical need to
reduce the number of subject-specific training samples required
for calibration.

Take an EEG-based BCI systems for labeling large num-
bers of images using single-trial ERP classification as an

example [4], [20]. The EEG correlates of target detection
can be stable across sessions within a single subject, but can
vary widely across different subjects. As a result, building a
reliable single-trial ERP classification model requires a signif-
icant amount of calibration data for each individual. However,
although EEG responses from different subjects are different,
they still share some similarity in the underlying ERP. So,
the amount of subject-specific data in online calibration could
be reduced by making use of information contained in other
subjects’ data. This is the idea of transfer learning (TL) [17],
which, along with adaptive approaches [25], started to find
applications in the BCI domain [1], [10], [11], [21] and will
be further explored in this paper.

Additionally, in some application domains we have large
amounts of offline unlabeled data and the calibration session
is focused on labeling this data. For example, a user interested
in quantified self-tracking [16] may use a wearable EEG-
based BCI system to record his/her EEG everyday, and also an
integrated camera to automatically take pictures of interesting
things he/she sees, identified from ERP responses. Undoubt-
edly the BCI system can make mistakes and take uninteresting
pictures, which the user may want to delete at the end of
the day. So, from the large amount of pictures taken each
day, the user needs to label some as interesting and some
as uninteresting so that the ERP classification algorithm can
filter existing pictures and improve its accuracy the next day.
Instead of randomly selecting the pictures for labelling, the
most informative pictures can be selected so that the system
can provide improved performance given the same number of
labeled pictures. In other words, a desired level of performance
can be obtained with less labeling effort. This is the idea of
active learning (AL) [22], which will also be explored in this
paper.

Interestingly, TL and AL are complementary to each other,
so they can be integrated to further reduce the number of
subject-specific training samples in offline BCI calibration. The
idea of integrating TL and AL, or Active Transfer Learning
(ATL), was proposed recently [23] and there has not been
much literature on it [6], [7], [18], [29]. Furthermore, all
previous works are outside of the EEG analysis domain. A
closely related work is [27], in which we focused on integrating
TL and Active Class Selection [14], a specific variant of AL, in
order to speed up an online calibration for detecting cognitive
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state from EEG and other physiological signals.

This paper proposes a novel implementation of TL for
online calibration1 of a single-trial ERP classifier, and ATL for
offline calibration. We show that, at equal training set sizes,
TL and ATL can outperform a training set selected purely
at random. We also show, for a small subset of individuals,
that ATL can either match or improve performance over 5-
fold cross-validation while using only a fraction of the overall
number of trials. This initial demonstration indicates that TL
and ATL may be effective tools for building robust neural
signal classifiers in online and offline calibrations.

The rest of the paper is organized as follows: Section II
introduces the details of several algorithms: two baselines, TL,
and ATL. Section III describes experimental results, perfor-
mance comparison of the algorithms, and possible improve-
ments to TL and ATL. Section IV draws conclusions.

II. ALGORITHMS

This section introduces the details of our algorithms, and
two baseline approaches for comparison purpose. In this paper,
we focus on 2-class classification problems, and use a Support
Vector Machine (SVM) classifier with a Radial Basis Function
(RBF) kernel. We consider the problem of classifying EEG
data, but the algorithms should be generalizable to calibration
problems.

A. Baseline 1 (BL1)

BL1 assumes we know all labels of the subject-specific
samples, and uses 5-fold cross-validation and SVM to find
the classification accuracy. This usually represents an upper
bound of the classification performance we can get from other
algorithms, although not always the case.

B. Baseline 2 (BL2)

BL2 is a simple iterative procedure for online calibration:
in each iteration we randomly select a few unlabeled subject-
specific training samples, ask the subject to label them, add
them to the labeled training dataset, and then train an optimal
SVM by cross-validation. We iterate until the maximum num-
ber of iterations is reached, or the cross-validation performance
is satisfactory.

C. Transfer Learning (TL)

Assume we have already collected lots of labeled EEG
epochs from other subjects, and now we are customizing a
single-trial ERP classifier online for a new subject. Although
EEG epochs from other subjects may not be completely consis-
tent with those from the new subject, they usually still contain
useful information, due to the similarity of the underlying ERP.
As a result, the amount of online calibration data may be
reduced if these auxiliary EEG epochs are used properly. TL
[17], [28] is a framework for addressing this type of problems.

Definition 1: (Transfer Learning) [17] Given a source
domain DS with learning task TS , and a target domain DT

1Actually TL can be used in both online and offline calibrations; however,
as will be demonstrated later in this paper, ATL has better performance in
offline calibration. So, we will only use TL in online calibration.

with learning task TT , TL aims to help improve the learning of
the target predictive function fT (·) in DT using the knowledge
in DS and TS , where DS �= DT , and/or TS �= TT .

In the above definition, a domain is a pair D = {X , P (X)},
where X is a feature space and P (X) is a marginal probability
distribution, in which X = {x1, ..., xn} ∈ X . DS �= DT means
that Xs �= XT , and/or P (XS) �= P (XT ), i.e., the features in
the source domain and the target domain are different, and/or
their marginal probability distributions are different. Similarly,
a task is a pair T = {Y, P (Y |X)}, where Y is a label space
and P (Y |X) is a conditional probability distribution. TS �=
TT means that YS �= YT , and/or P (YS |XS) �= P (YT |XT ),
i.e., the label spaces between the source and target domains
are different, and/or the conditional probability distributions
between the source and target domains are different.

For example, in the domain of classifying target and non-
target stimuli from time-locked EEG responses, labeled EEG
epochs from a new subject would be the primary data in the
target domain, while labeled EEG epochs from other subjects
would be the auxiliary data from the source domain. A single
data sample would consist of the feature vector for a single
EEG epoch from one subject, collected as a response to a
specific stimulus. Though the features in this primary data and
auxiliary data are computed in the same way, generally their
marginal distributions are different, i.e., P (XS) �= P (XT ), due
to the fact that the baseline EEG levels for different subjects are
likely to differ. Moreover, the conditional probabilities are also
different, i.e., P (YS |XS) �= P (YT |XT ), due to the significant
individual differences in EEG response to stimuli. As a result,
the auxiliary data from the source domain cannot represent
the primary data in the target domain accurately, and must be
integrated with some labeled primary data in the target domain
to induce the target predictive function.

There are many different TL algorithms [17]. The basic
idea used in this paper is illustrated in Fig. 1. For each
new subject, we combine his/her labeled samples with labeled
samples from each auxiliary subject in building a classifier,
where the contribution of labeled samples from an auxiliary
subject is determined by the response similarity of the two
subjects. The detailed implementation is given in Algorithm 1,
which can be viewed as an instance transfer approach [17], as
specific instances of data are being transferred from one subject
to another in order to improve model performance. First,
a classifier C0 is trained based on labeled primary training
samples from the new subject only. Then, a classifier Ci for
the ith subject in the auxiliary data is trained by combining
his/her data with labeled primary training samples from the
new subject. The final classification is a weighted voting from
all these classifiers, where C0 has unit weight, and Ci’s weight
is its cross-validation accuracy.

D. Active Learning (AL)

As mentioned in Introduction, in some applications there
are large amounts of offline unlabeled training samples, and
calibration consists of selecting some of them for labeling. The
selection strategy may have a significant impact on the calibra-
tion performance. AL [22] tries to select the most informative
samples to label so that a given learning performance can be
achieved with less labeling effort.
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Fig. 1. An illustration of TL. The circles and squares are labeled training
samples from two classes. The size of a circle or square indicates its weight.
The dotted and dashed lines are classification boundaries.

Algorithm 1: The TL algorithm.

Input: N l labeled primary training samples;
Nu unlabeled primary training samples;
M , the number of subjects in auxiliary data;
Nm (m = 1, 2, ...,M ), the number of labeled

training samples for the mth subject;
Output: Labels for the Nu unlabeled samples.
Cross-validation using the N l samples to find the best
SVM parameters, P;
Train a SVM on the N l samples using P;
Classify the Nu unlabeled samples and denote their
labels as {L0

i }i=1,2,...,Nu;
for m in [1, M ] do

Combine the N l primary samples and Nm auxiliary
samples;
Cross-validation using these N l +Nm samples to
find the best SVM parameters, Pm;
Record the best cross-validation accuracy, am;
Train a SVM on the N l +Nm samples using Pm;
Classify the Nu unlabeled primary samples and
denote their labels as {Lm

i }i=1,2,...,Nu;
end
Compute weighted sum of the 1 +M SVM outputs:
Li = L0

i +
∑M

m=1
am · Lm

i , i = 1, 2, ..., Nu;
Return sign(Li), i = 1, 2, ..., Nu;

A popular AL idea is illustrated in Fig. 2. Suppose we have
two classes, A and B, and they are separated by the green
dashed circle in the left part of the figure. In practice we do
not know the true distributions of these two classes, hence the
resulting linear classification boundary. We only have a few
labeled samples from each class, and many more unlabeled
samples from both classes, as shown in the middle part of
the figure. Our task is to select a few more unlabeled samples
(say two) to label such that a better classifier can be trained.
The easiest way is to do random selection. Then we may end
up with two new labeled samples shown as the stars in the
top right part of the figure, which actually do not provide
new information as they have no impact on the classification
boundary. In AL, the goal is to select the two most informative
samples for labeling, shown as the stars in the bottom right
part of the figure. The classification boundary will be changed
significantly once these two new samples are added to the
training dataset, and it is a better approximate of the true
classification boundary. As we iterate through this process,
the AL classification boundary should rapidly approach the

true one.

The key problem in using AL is estimating which of
the data samples are the most informative. There are many
different heuristics for this purpose. In our implementation
a committee is created by training multiple classifiers on
different subsets of the data. The data samples selected as
the most informative are those with the greatest amount of
uncertainty, defined as those points with the most disagreement
between the classifiers in the committee. More specifically,
assume m1 classifiers classify a sample as positive and m2 as
negative, then the smaller |m1−m2| is, the most disagreement
there is.

B
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Fig. 2. An illustration of AL. The blue or purple circles are initial labeled
training samples, where different colors denote different classes. The stars are
the newly labeled samples. The black line is the decision boundary based
on initial labeled samples only, and the red line and curve are the decision
boundaries after the newly labeled samples have been added.

E. Active Transfer Learning (ATL)

Because AL considers how to optimally label offline
subject-specific data and TL (which can be used both online
and offline) considers how to make use of training data from
other subjects, they are complementary. So, we conjecture that
integrating AL with TL will further improve the performance
of TL in offline calibration. The fundamental concept is to
use TL to select the optimal classifier parameters for the
new subject based on available data obtained from the new
subjects and other subjects, and then use AL to select the
most informative unlabeled samples for labeling for the new
subject, until the desired cross-validation accuracy is obtained,
or the maximum number of iterations is reached, as illustrated
in Fig. 3.

In our implementation of ATL, the TL part is the same
as Algorithm 1, and the AL part uses the idea introduced
in the previous subsection. Recall that the label for the ith
unlabeled training sample is determined as sign(Li) in TL
(Algorithm 1). Because a smaller |Li| means a larger disagree-
ment among the M+1 classifiers, in AL we simply pick those
samples corresponding to the smallest |Li| to label.

III. EXPERIMENTS AND DISCUSSIONS

Experimental results are presented in this section to com-
pare the algorithms proposed in the previous section. Potential
improvements to the algorithms are also discussed.

A. Experiment Setup

We used data from a standard Visually Evoked Potential
(VEP) oddball task [19]. In this task, image stimuli were
presented to subjects at a rate of 0.5 Hz (one image every

2803



AL to determine which subject-

specific samples to label

Label and add new subject-

specific training samples

A few initial labeled subject-

specific training samples

TL to determine the optimal 

model parameters

Maximum number of 

iterations reached?

Or cross-validation 

accuracy satisfactory?

Massive labeled 

training samples 

from other 

subjects

Output the 

optimal

model

Yes

No
Massive offline 

unlabeled 

subject-specific 

training samples

Fig. 3. Flowchart of ATL.

two seconds). The images presented were either an enemy
combatant [target; an example is shown in Fig. 4(a)] or a U.S.
Soldier [non-target; an example is shown in Fig. 4(b)]. The
subjects were instructed to identify each image as being target
or non-target with a unique button press as quickly, but as
accurately, as possible. There were a total of about 270 images
presented to each subject, of which the number of targets
ranged from 30 to 55. The experiments were approved by U.S.
Army Research Laboratory (ARL) Institutional Review Board.

(a) (b)

Fig. 4. (a) A target image; (b) A non-target image.

16 subjects participated the experiments, which lasted on
average 15 minutes. Data from two subjects were not used due
to data corruption, so we only used data from 14 subjects in
this analysis. EEG signals were recorded using a 64-channel
BioSemi ActiveTwo system with 4 additional EOG channels
to record eye movement activity. The EEG data was sampled
at 512Hz.

B. Preprocessing and Feature Extraction

We used EEGLAB [8] for EEG signal preprocessing and
feature extraction. We compared several different types of

features, e.g., raw magnitudes, power spectral features, and
time-frequency features. Raw magnitudes achieved robust per-
formance, and also were the easiest to extract. Since the
goal of this paper is to demonstrate how advanced machine
learning algorithms can improve single-trial ERP classification
performance based on existing data and features, we used raw
magnitude features in our algorithms.

Of the 64 BioSemi EEG channels, we only used 21
channels (Cz, Fz, P1, P3, P5, P7, P9, PO7, PO3, O1, Oz,
POz, Pz, P2, P4, P6, P8, P10, PO8, PO4, O2) mainly in the
parietal and occipital areas, as research has shown that they
demonstrate strong visual ERPs [12]. We first downsampled
the 512 Hz EEG signals to 64 Hz, and then epoched the
EEG signals to the [0, 0.7] second interval timelocked to
stimulus onset. We removed mean baseline from each channel
in each epoch and removed epochs with incorrect button press
responses. Because the sizes of the two classes were highly
imbalanced, we downsampled the non-target class to match
the target class by selecting the non-target epoch that occurred
immediately before each target epoch. In the rare case that
there was no non-target epoch before a target epoch; i.e., a
target image was presented first in the sequence, we selected
the non-target epoch immediately following that target epoch.
After preprocessing, on average each subject had 54 epochs,
half target and half non-target.

Each [0, 0.7] second epoch contains 44 raw EEG mag-
nitude samples (64 × 0.7). The feature vector obtained by
concatenating the features from all 21 EEG channels would be
excessively large. To reduce the dimensionality, we performed
a simple principal component analysis for each channel and
took only the scores for the first five principal components.
As a result, each epoch had 5 × 21 = 105 features. We then
normalized each feature dimension separately to [0, 1] for each
subject.

C. Experimental Results

Although we know the labels of all EEG epochs for all 14
subjects in the experiment, we simulate a different scenario:
we have labeled EEG epochs for 13 subjects, but only a
small number of epochs for the 14th subject are labeled. Our
goal is to iteratively label epochs for the 14th subject so that
the remaining unlabeled epochs can be reliably classified. We
repeat this procedure 14 times so that each subject has a chance
to be the “14th” subject.

We compared the performance of BL1, BL2, TL and ATL
introduced in the previous section. BL2, TL and ATL started
with the same four randomly selected labeled samples from
the “14th” subject, two in target class and two in non-target
class. In each iteration, two new EEG epochs were labeled
and added to the training dataset. For BL2 and TL, these two
were selected randomly from unlabeled samples, simulating
online calibration. For ATL, these two were selected by AL,
simulating offline calibration. Testing classification accuracy
was computed from the remaining unlabeled subject-specific
samples. We used libSVM [5] with RBF kernel as the base
classifier in all algorithms. Due to the large variability in
classification performance, each algorithm was repeated 100
times so that statistically meaningful results could be obtained.
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Fig. 5. Performance of the four algorithms for each individual subject, averaged over 100 runs. Horizontal axis: N l, number of labeled subject-specific training
samples; vertical axis: testing classification accuracy.

The performances of the four algorithms, which are aver-
aged across the 100 runs for each subject, are shown in Fig. 5,
where each subfigure represents a different “14th” subject.
The average performance of the four algorithms across the
14 subjects is shown in Fig. 6. Observe that:

1) Generally the performance of BL2 increases as more
subject-specific training samples are labeled and
added; however, it drops when the first two new
labeled samples are added, i.e., when the number of
labeled samples increases from four to six. This is
because the random sampling approach used in BL2
and TL may result in significant class imbalance,
when the number of labeled samples is small. We
have ensured that of the four initial labeled samples,
two from the target class and two from the non-
target class; however, in the next iteration the two
new labeled samples may be from the same class.
For example, if the two new samples are both from
the target class, then of the six samples after the first
iteration, four are from target class and two from non-

target class, so the two classes are highly unbalanced.
BL2 may simply classify all samples as target, result-
ing in a training classification accuracy of 67% but
testing accuracy of about 50%. We will improve our
method in future research to overcome this problem,
e.g. by ensuring more balanced sampling, or by using
F-score instead of classification accuracy to determine
the best SVM parameters.

2) TL almost always outperforms BL2, which coincides
with our conjecture. Furthermore, the performance
drop of TL when the number of labeled samples
increases from four to six is much smaller than that of
BL2, which means that by considering auxiliary data
from other subjects, the primary data class imbalance
problem can be significantly alleviated.

3) ATL almost always outperforms TL in Fig. 5, and the
average performance improvement is quite evident, as
shown in Fig. 6. This verifies our conjecture that TL
and AL are complementary, and hence integrating AL
with TL can further improve the offline calibration
performance. Furthermore, with the help of AL, the
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performance drop of ATL when the number of labeled
primary samples increases from four to six is also
smaller than that of TL. Surprisingly, Fig. 5 also
shows that sometimes ATL can even outperform BL1,
which suggests that by utilizing data from other
subjects, we may be able to achieve classification
accuracy that is unreachable by using only subject-
specific data, even though there may be a lot of such
data.
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Fig. 6. Average performance of the four algorithms across the 14 subjects.

To show that the performance differences among BL2,
TL and ATL are statistically significant, we performed a 3-
way mixed-effects analysis of variance (ANOVA), considering
random effects on the subjects and the number of labeled
subject-specific samples. The p values for the three factors
(subjects, number of labeled subject-specific samples, and
algorithms) are 0.0001, 0.0249, and 0.0458, respectively, as
shown in Table I. A post-hoc multiple comparison procedure
using the Tukey-Kramer test showed that the performance
improvement of TL over BL2 is statistically significant, and
the performance improvements of ATL over BL2 and TL are
also statistically significant.

TABLE I. RESULTS OF 3-WAY ANOVA.

Source Sum Sq. d.f. Mean Sq. F Prob>F
Subjects 193.816 13 14.9089 7.68 0.0001
SampleSize 61.129 8 7.6411 3.08 0.0249
Algorithms 42.615 2 21.3074 3.60 0.0458

In summary, we have demonstrated that given the same
number of labeled subject-specific training samples, TL can
improve online calibration performance, and ATL can improve
offline calibration performance. For Subjects 1, 2, 4, 6 and
11, we see ATL either matched or exceeded the classification
performance of BL1 with only 20 labeled trials. For these
subjects this represents a significant decrease in the amount of
labeled data needed when compared to the sample size used to
calculate BL1 (∼40). While the ATL performance in all other
subjects did not outperform BL1, we do see an increasing
trend as the number of labeled samples increases. In other
words, given a desired classification accuracy, TL and ATL can
reduce the number of labeled subject-specific training samples.
For example, in Fig. 6, the average classification accuracy
of BL2 is 70%, given 20 labeled subject-specific training
samples. However, to achieve or exceed that performance,
TL only needs 16 samples, and ATL only needs 12, which
are corresponding to 20% and 40% savings in labeling effort,
respectively.

D. Future Improvements

The performance of TL and ATL can be further improved
in several different ways. As mentioned in the previous sub-
section, we may be able to remedy the performance drop in the
first few iterations by ensuring roughly balanced sampling, or
using F-score instead of accuracy in determining the best clas-
sifier parameters. Additionally, the following improvements
will be investigated in our future research:

1) Using only carefully selected auxiliary subjects may
be better than using all subjects in both online and
offline calibrations. In our approach all 13 auxil-
iary subjects were used; however, some subjects’
responses may be so different from the new subject
that actually it is more beneficial to not include
them. This will also reduce the computational cost
of TL and ATL. A systematic procedure needs to
be designed to automatically select the most useful
auxiliary subjects, based on the labeled and unlabeled
samples from the new subject.

2) More sophisticated features may result in more robust
transfer in both online and offline calibrations. As
TL benefits from the similarity among subjects, and
that similarity is expressed by EEG features, we
conjecture that more robust features would improve
the performance of TL and hence ATL. In addition,
a more robust feature space may be more montage-
independent, allowing us to make use of the data
from the other EEG headsets. We will investigate
deep learning, or representation learning [3], for this
purpose.

3) More sophisticated TL and AL algorithms can be
used in ATL for offline calibration. In this paper we
only used a very basic instance transfer approach in
TL. There are many other approaches [17] that can
be investigated, e.g., feature representation transfer,
parameter transfer, and relational knowledge transfer.
For AL there are also many other approaches [22]
that can be investigated, e.g., expected model change,
expected error reduction, and variance reduction.

4) We could also make better use of information in
the unlabeled subject-specific samples in offline cal-
ibration. In the current implementation, we are only
using the unlabeled subject-specific samples for AL,
but they could also be used in TL part, in a semi-
supervised learning setting, e.g., manifold regulariza-
tion [2].

Finally, it will be important to implement TL and ATL into
an actual BCI paradigm and evaluate them in both online and
offline conditions.

IV. CONCLUSIONS

In this paper we have proposed a Transfer Learning ap-
proach for online BCI calibration, which uses data from other
subjects to reduce the amount of calibration data required
to perform accurate online single-trial classification of ERPs,
and an Active Transfer Learning approach for offline BCI
calibration, which integrates data from other subjects while
simultaneously selecting the most informative data from the
current subject in order to minimize the offline calibration
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effort. TL and ATL can indeed improve the classification per-
formance, given the same number of labeled subject-specific
training samples; or, equivalently, they can reduce the number
of labeled subject-specific training samples, given a desired
classification accuracy. This suggests that TL and ATL may
be useful techniques for online and offline training of robust
neural classifiers.

TL and ATL have many potential applications in EEG
classification, where large between-individual variation can
cause difficulty in developing classifier models. For example,
they may have relevance to BCI technologies that rely on
single-trial ERP classification, such as image analysis BCI
systems [20]. In the future we intend to improve both TL and
ATL, and to demonstrate their generality by applying them to
several distinct EEG classification domains.
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