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Abstract—Electroencephalography (EEG) headsets are the most
commonly used sensing devices for brain–computer interface. In
real-world applications, there are advantages to extrapolating data
from one user session to another. However, these advantages are
limited if the data arise from different hardware systems, which
often vary between application spaces. Currently, this creates a
need to recalibrate classifiers, which negatively affects people's
interest in using such systems. In this paper, we employ active
weighted adaptation regularization (AwAR), which integrates
weighted adaptation regularization (wAR) and active learning,
to expedite the calibration process. wAR makes use of labeled
data from the previous headset and handles class-imbalance, and
active learning selects the most informative samples from the
new headset to label. Experiments on single-trial event-related
potential classification show that AwAR can significantly increase
the classification accuracy, given the same number of labeled sam-
ples from the new headset. In other words, AwAR can effectively
reduce the number of labeled samples required from the new
headset, given a desired classification accuracy, suggesting value in
collating data for use in wide scale transfer-learning applications.
Index Terms—Active learning, active transfer learning, active

weighted adaptation regularization, domain adaptation, electroen-
cephalography (EEG), event-related potential, single-trial classifi-
cation, transfer learning, visual evoked potential, weighted adap-
tation regularization.

I. INTRODUCTION

E LECTROENCEPHALOGRAPHY (EEG) headsets are
the most commonly used sensing devices for brain–com-

puter interface (BCI), which have been employed in many
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applications, such as healthcare and gaming [15], [18], [26],
[44], [49], because of the general ease of setup for normal
individuals. However, BCI applications have not received
widespread acceptance for real-world applications. One reason
for this is the inability of BCI technologies to adapt to the nu-
merous potential sources of variation inherent in the underlying
technologies. These can include human sources of variability,
such as individual differences and intra individual variability.
They can also include sources of variability in the technology,
such as unintentional differences in recording locations for the
EEG electrodes from session to session, or even differences
between different EEG headsets. To date, this latter source
remains largely unexplored.
There are many existing EEG headsets, with new models and

styles continually becoming available [14]. Ideally, EEG clas-
sification methods should be completely independent from any
specific EEG hardware, such that classifiers trained using data
from one EEG headset will be transferable to other headsets
with little or no recalibration. This would help ensure that appli-
cations could reach a broad base of users and would not become
obsolete through hardware upgrades. However, evidence com-
paring the performance of various classifiers when using dif-
ferent headsets has shown that often performance is not equal
across systems; that is, the headset does in fact matter [30]. From
a hardware standpoint, systems can vary along a number of di-
mensions, including (but not limited to) onboard filter character-
istics, electrode types and contact methods, electrode locations,
or online reference schemes. All of these inherently change the
resulting signal characteristics, some of which are critical fea-
tures on which the classifiers operate.
Thus, it is not surprising that currently switching to a new

or different headset requires the subject to re-calibrate it, which
can take anywhere from 5–20 min [44].When implemented into
a BCI system this calibration session would decrease the utility
and appeal of the overall system, likely slowing the rate of ac-
ceptance. While it is not currently possible to switch between
EEG headsets completely calibration-free, it is certainly pos-
sible to decrease the amount of time and data needed to calibrate
an EEG data classifier for use with another EEG system.
In this paper, we specifically attempt to address the problem

of developing classifiers that can account for variation due to
different EEG headsets within a transfer learning (TL) [27]
framework. In TL, some data from a prior calibration or other
user sessions is used to facilitate learning of the calibration in
a new target context. According to a recent literature review
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[47], there are mainly three types of TL approaches for BCI
applications.
1) Feature representation transfer [11], [17], [20], [24], [31],

[32], [35], which encodes the knowledge across different
subjects or sessions as features. These features are gener-
ally better than extracting features directly from only the
limited number of samples from a new subject or session.

2) Instance transfer [21], [22], [52], [55], which uses certain
parts of the data from other subjects or sessions to help the
learning for the current subject or session. The underlying
assumption is that data distributions for these subjects or
sessions are similar.

3) Classifier transfer, which includes domain adaptation [1],
[35], [46], i.e., handling the different data distributions for
different subjects or sessions, and ensemble learning [39],
[40], i.e., combiningmultiple classifiers frommultiple sub-
jects or sessions, and their combinations [50], [53], [54].

In our case, data acquired from one style of headset is used to
facilitate classification of data currently being acquired from a
different one, through domain adaptation and regularized op-
timization [36], [38], [57]. We look at this problem within the
context of offline single-trial event-related potential (ERP) clas-
sification, with the eventual goal of moving to online single-trial
classification within a BCI system.
In some application domains, we have existing unlabeled data

and the calibration session is focused on labeling this data, e.g.,
BCI applications focused on labeling images, using EEG data
[37], [43]. In these applications, the user can manually label
a few images, and based on the EEG signals associated with
these images a classifier can be trained to automatically label
the rest. Improved calibration performance can be achieved by
selecting the most informative images for manual labeling. In
other words, a desired level of calibration performance can be
obtained with less labeling effort if the most informative images
are selected for labeling. This is the idea of active learning (AL)
[33], which has also started to find application in BCI [9], [19],
[25]. For example, in our recent work on EEG artifacts classifi-
cation [19], we showed that classification accuracy equivalent to
classifiers trained on full data annotation can be obtained while
labeling less than 25% of the data by AL. In another study [25],
we applied AL to a simulated BCI system for target identifica-
tion using data from a rapid serial visual presentation paradigm,
and showed that it can produce similar overall classification ac-
curacy with significantly less labeled data (in some cases less
than 20%)when compared to alternative calibration approaches.
TL and AL are complementary to each other, and hence can

be integrated to further reduce the number of labeled training
samples in offline BCI calibration. The idea of integrating TL
and AL was proposed recently [34] and is beginning to be ex-
plored [7], [8], [29], [51], [58]. However, most of this work is
outside of the EEG analysis domain. In our previous work [51],
we investigated how TL and AL can be integrated to reduce the
amount of subject-specific calibration data in a visual-evoked
potential (VEP) task, by making use of data collected using the
same headset but from other subjects; in contrast, this paper con-
siders the problem of reducing subject-specific calibration data
when the same subject switches from one headset to another.

This paper introduces weighted adaptation regularization
(wAR), a particular TL algorithm, and designs a novel AL
algorithm for it. Using a single-trial ERP experiment, we
demonstrate that wAR can achieve improved performance over
the TL approach used in [51], and active weighted adaptation
regularization (AwAR), which integrates wAR and AL, can
further reduce the offline calibration effort when switching be-
tween different EEG headsets. It should be noted that, while the
ultimate goal is an understanding of how well these approaches
work when transferring both within and across subjects, here,
in order to minimize sources of variability, our analyses are
focused on within subjects TL.
The rest of the paper is organized as follows: Section II intro-

duces the details of wAR. Section III introduces the details of
AwAR. Section IV describes experimental results and a perfor-
mance comparison of wAR and AwAR with other algorithms.
Section V draws conclusions.

II. WEIGHTED ADAPTATION REGULARIZATION (WAR)

This section introduces the details of the wAR algorithms.We
consider two-class classification of EEG data, but the algorithms
can also be generalizable to other calibration problems.

A. Problem Definition

Given a large amount of labeled EEG epochs from one
headset, how can that data be used to customize a classifier
for a different headset? Although EEG epochs from the two
headsets are usually not completely consistent, previous data
still contain useful information, due to the fact that they came
from the same subject. As a result, the amount of calibration
data may be reduced if these auxiliary EEG epochs are used
properly.
TL [27], [56], particularly wAR, is a framework for ad-

dressing the aforementioned problem. Some notations used in
TL and wAR are introduced next.
Definition 1: (Domain) [23], [27] A domain is composed

of a -dimensional feature space and a marginal probability
distribution , i.e., , where .
If two domains and are different, then they may have

different feature space, i.e., , and/or different marginal
probability distributions, i.e., [23].
Definition 2: (Task) [23], [27] Given a domain , a task

is composed of a label space and a prediction function ,
i.e., .
Let , then can be interpreted as the

conditional probability distribution. If two tasks and are
different, then they may have different label spaces, i.e.,
, and/or different conditional probability distributions, i.e.,

[23].
Definition 3: (Domain Adaptation) Given a source domain

, and a target domain with
labeled samples and
unlabeled samples , domain

adaptation transfer learning aims to learn a target prediction
function with low expected error on , under
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the assumptions , , , and
.

In our application, EEG epochs from the new headset are in
the target domain, while EEG epochs from the previous headset
are in the source domain. A single data sample would consist of
the feature vector for a single EEG epoch from a headset, col-
lected as a response to a specific stimulus. Though the features in
source and target domains are computed in the same way, gener-
ally their marginal and conditional probability distributions are
different, i.e., and , because
the two headsets may have different sensor locations, filters, and
signal fidelity. As a result, the auxiliary data from the source
domain cannot represent the primary data in the target domain
accurately and must be integrated with some labeled data in the
target domain to induce the target predictive function.

B. The Learning Framework
Because

(1)

to use the source domain data in the target domain, we need
to make sure1 is close to , and is also
close to .
Let the classifier be , where is the classifier

parameters, and is the feature mapping function
that projects the original feature vector to a Hilbert space .
The learning framework of wAR is formulated as

(2)

where is the loss function, is the overall weight of target
domain samples, is the kernel
function induced by such that ,
and , and are non-negative regularization parameters.

is the overall weight for target domain samples, which should
be larger than 1 so that more emphasis is given to target domain
samples than source domain samples. is the weight for the

sample in the source domain, and is the weight for the
sample in the target domain, i.e.,

(3)

(4)

in which is the set of samples
in Class of the source domain, and

is the set of samples in Class of the target domain,
and . The goal of and is to

balance the number of positive and negative samples in source
and target domains, respectively.
Briefly speaking, the meanings of the five terms in (2) are:

1Strictly speaking, we should make sure is also close to . How-
ever, in this paper we assume all subjects conduct similar VEP tasks, so
and are intrinsically close. Our future research will consider the more
general case that and are different.

1) The fist term minimizes the loss on fitting the labeled sam-
ples in the source domain.

2) The second term minimizes the loss on fitting the labeled
samples in the target domain.

3) The third term minimizes the structural risk of the
classifier.

4) The fourth term minimizes the distance between the mar-
ginal probability distributions and .

5) The fifth term minimizes the distance between the condi-
tional probability distributions and .

By the Representer Theorem [2], [23], the solution of (2) admits
an expression

(5)

where , and
are coefficients to be computed.

Note that our algorithm formulation and derivation closely
resemble those in [23]; however, there are several major differ-
ences:
1) We consider the scenario that there are a few labeled sam-

ples in the target domain, whereas [23] assumes there are
no labeled samples in the target domain.

2) We explicitly consider the class imbalance problem in both
domains by introducing the weights on samples from dif-
ferent classes.

3) wAR is iterative and we further design an AL algorithm
for it, whereas in [23] domain adaptation is performed only
once and there is no AL.

4) [23] also considers manifold regularization [2]. We inves-
tigated it, but we were not able to achieve improved perfor-
mance in our application, so we excluded it in this paper.

Also note that one of the wAR algorithms (wAR-RLS) de-
scribed in this paper was introduced in our previous publication
[54]; however, this paper includes a new wAR algorithm
(wAR-SVM), and shows how AL can be integrated with
wAR-RLS and wAR-SVM. The application scenario is also
different.

C. Loss Functions Minimization
Two widely used loss functions are the squared loss for reg-

ularized least squares (RLS):

(6)

and the hinge loss for support vector machines (SVMs)

(7)

Both will be considered in this paper. In the following, we de-
note the classifier obtained using squared loss as wAR-RLS, and
the one obtained using hinge loss as wAR-SVM.
1) Squared Loss: Let

(8)

where are known labels in the source domain,
are known labels in the target domain, and

are pseudo labels for the unlabeled
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target domain samples, i.e., labels estimated using another clas-
sifier and known samples in both source and target domains.
Define as a diagonal matrix

with

otherwise
(9)

Substituting (6) into the first two terms in (2), it follows that

(10)

2) Hinge Loss: Using the hinge loss and defined in (9), the
first two terms on the right-hand side of (2) can be re-expressed
as

(11)

Often in SVM formulations, an unregularized bias term is
added to (5), i.e.,

(12)

We also use this convention in this paper. Then, by introducing
non-negative slack variables ( ),
the minimization of (11) is equivalent to

(13)

D. Structural Risk Minimization
As in [23], [45], we define the structural risk as the squared

norm of in , i.e.,

(14)

E. Marginal Probability Distribution Adaptation

Similar to [23], [28], we compute using the
projected maximum mean discrepancy (MMD):

(15)

where is the MMD matrix

,

otherwise
(16)

F. Conditional Probability Distribution Adaptation

Similar to the idea proposed in [23], we first need to com-
pute pseudo labels for the unlabeled target domain samples and
construct the label vector in (8). These pseudo labels can be
borrowed directly from the estimates in the previous iteration
if the algorithm is used iteratively, or estimated using another
classifier, e.g., a SVM. We then compute the projected MMD
with respect to each class. The distance between the conditional
probability distributions in source and target domains is next
computed as

(17)

where , , and have been defined under (4).
Substituting (5) into (17), it follows that

(18)

where

(19)

in which and are MMD matrices computed as

or
otherwise

(20)
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G. wAR-RLS: The Closed-Form Solution
Substituting (10), (14), (15), and (18) into (2), it follows that

(21)

Setting the derivative of the objective function above to 0 leads
to

(22)

H. wAR-SVM Solution
Substituting (13), (14), (15), and (18) into (2), then in (5)

can be re-expressed as

(23)

Define

where and ,
is a vector of all zeros,

is a vector of all ones, and
is the identity matrix.

Then, solving for and in (23) is equivalent to solving for
below

(24)

which can be easily done using quadratic programming.
In summary, the pseudo code for wAR-RLS and wAR-SVM

is shown in the first part of Algorithm 1.

III. ACTIVE WEIGHTED ADAPTATION
REGULARIZATION (AWAR)

As mentioned in the Introduction, wAR can be integrated
with AL [33] for better performance. AL tries to select the
most informative samples to label so that a given learning
performance can be achieved with less labeling effort. The key

problem in using AL is estimating which of the data samples
are the most informative. There are many different heuristics
for this purpose [33]. In this paper we select the most volatile
and uncertain ones as the most informative ones. More sophis-
ticated approaches will be studied in our future research2.

A. Active Learning
Our AL for identifying the most informative samples is

a two-step procedure: the first step identifies the most volatile
unlabeled target domain samples, and the second step further
selects the most uncertain ones from them.
Recall that at the beginning of wAR we obtain

, the pseudo labels for unlabeled target domain
samples, from the previous iteration, and finally we output

, the updated estimates of these labels. If is
different from for a certain sample, then there is evidence

2We attempted the active learning approaches in [5], [16] but failed to observe
better performance than the method proposed in this section.



1130 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 24, NO. 11, NOVEMBER 2016

that sample is volatile, probably because it is close to the
decision boundary. According to the volatility of the unlabeled
target domain samples, we partition them into two groups:

and
. Samples

in are more volatile than those in , and hence they are
better candidates for labeling.
We further rank the uncertainties of the samples in by their

closeness to the current decision boundary: a sample closer to
the decision boundary means the classifier has more uncertainty
about its class, and hence we should select it for labeling in the
next iteration. To do this, we first sort in ascending order ac-
cording to . Since a smaller means a closer dis-
tance to the decision boundary and hence higher uncertainty, we
select the first samples in for labeling in the next iteration.
If is larger than the number of samples in , then we also sort

in ascending order according to and select the first
samples from it.

B. The Complete AwAR Algorithm
The complete AwAR algorithm is given in Algorithm 1. We

denote the one based on wAR-RLS as AwAR-RLS, and the
one based on wAR-SVM as AwAR-SVM. In each algorithm,
we first use wAR to classify the unlabeled target domain sam-
ples, and then AL to identify such samples that are most
volatile and uncertain. AwAR-RLS and AwAR-SVM can easily
be embedded into an iterative procedure (Section IV-C) so that
target domain samples are labeled in each iteration until the

maximum number of iterations is reached, or the desired classi-
fication performance is achieved.

C. Make Use of the Extra Channels
In Algorithm 1, we assume the source and target domains

have consistent features, i.e., the old and new headsets have
same channels so that the features extracted from them have
the same dimensionality and meaning. This also works if the
old headset has more channels, but it includes all channels in
the new headset, in which case only the common channels are
used in feature extraction. However, things become more com-
plicated if the new headset has channels that are not included
in the old headset. We can again use the common channels for
feature extraction and then apply Algorithm 1, but there is in-
formation loss if the extra channels in the new headset are com-
pletely ignored. We next propose a solution for this problem.
The extra channels are difficult to use in wAR, because the

target domain does not contain them. However, it is possible to
use them in AL, as shown in Algorithm 2, which can be used to
replace the AL part in Algorithm 1. Algorithm 2 still consists
of two steps. The first step identifies the most volatile unlabeled
target domain samples, which is the same as that in the original
AL algorithm. The second step ranks the uncertainties of the
unlabeled samples by incorporating the uncertainty information
from all channels (common channels plus extra channels). For
that we first build a separate classifier using features extracted
from all channels and trained from only the labeled samples.
For each unlabeled sample, we compute the sum of two signed
distances: 1) the distance from the decision boundary deter-
mined by this additional classifier, and 2) the distance from the

decision boundary determined by wAR. The smaller the sum,
the larger the uncertainty. We then return the top unlabeled
samples that are volatile and most uncertain.

IV. EXPERIMENTS AND DISCUSSIONS

Experimental results are presented in this section to compare
wAR-RLS, wAR-SVM, AwAR-RLS, and AwAR-SVM with
several other algorithms.

A. Experiment Setup
Weused data from aVEP oddball task [30]. In this task, image

stimuli were presented to subjects at a rate of 0.5 Hz (one image
every two seconds). The images presented were either an enemy
combatant [target; an example is shown in Fig. 1(a)] or a U.S.
Soldier [non-target; an example is shown in Fig. 1(b)]. The sub-
jects were instructed to identify each image as being target or
non-target with a unique button press as quickly, but as accu-
rately, as possible. There were a total of 270 images presented
to each subject, of which 34 were targets. The experiments were
approved by the U.S. Army Research Laboratory (ARL) Institu-
tional Review Board (Protocol # 20098-10027). The voluntary,
fully informed consent of the persons used in this research was
obtained as required by federal and Army regulations [41], [42].
The investigator adhered to Army policies for the protection of
human subjects.
Eighteen subjects participated in the experiments, which

lasted on average 15 min. Data from four subjects were not
used due to data corruption or poor responses. Signals were
recorded with three different EEG headsets, including a wired
64-channel ActiveTwo3 system (sample rate set to 512 Hz)
from BioSemi, a wireless 9-channel 256 Hz B-Alert X10 EEG
Headset System4 from Advanced Brain Monitoring (ABM),
and a wireless 14-channel 128 Hz EPOC headset5 from Emotiv.
We considered switching between BioSemi and Emotiv head-
sets, and between BioSemi and ABM headsets, respectively.

3http://www.biosemi.com/products.htm
4http://www.advancedbrainmonitoring.com/xseries/x10/
5https://emotiv.com/epoc.php
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TABLE I
NUMBER OF EPOCHS FOR EACH SUBJECT AFTER PREPROCESSING. THE NUMBERS OF TARGET EPOCHS ARE GIVEN IN THE PARENTHESES

Fig. 1. Example images of (a) a target; (b) a non-target.

Switching between Emotiv and ABM headsets was not consid-
ered because they have too few common channels.

B. Preprocessing and Feature Extraction

We used EEGLAB [10] for EEG signal preprocessing and
feature extraction. Raw amplitude features were used in this
study. The performances of AwAR-RLS and AwAR-SVM on
other feature sets are studied later in this section.
For switching between BioSemi and Emotiv headsets, we

used their 14 common channels (AF3, AF4, F3, F4, F7, F8,
FC5, FC6, O1, O2, P7, P8, T7, T8). For switching between
BioSemi and ABM headsets, we used their nine common chan-
nels (C3, C4, Cz, F3, F4, Fz, P3, P4, POz). For each headset,
we first band-passed the EEG signals to [1, 50] Hz, then down-
sampled them to 64 Hz, performed average reference, and next
epoched them to the [0, 0.7] second interval timelocked to stim-
ulus onset. We removed mean baseline from each channel in
each epoch and removed epochs with incorrect button press re-
sponses6. The final numbers of epochs from the 14 subjects are
shown in Table I. Observe that there is significant class imbal-
ance for all headsets; that's why we need to use and in
(2) to balance the two classes in both domains.
Each [0, 0.7] second epoch contains 45 raw EEG magnitude

samples. The concatenated feature vector has hundreds of di-
mensions. To reduce the dimensionality, we combined concate-
nated feature vectors from the old and new headsets, performed
a simple principal component analysis (PCA), and took only
the scores for the first 20 principal components (PCs). We then
normalized each feature dimension separately to [0, 1] for each
subject.

6Button press responses were not recorded for the ABM headset, so we used
all epochs from it.

Fig. 2. Flowchart of the evaluation process.

C. Evaluation Process and Performance Measures
Although we know the labels of all EEG epochs from all

headsets for each subject, we simulate a different scenario, as
shown in Fig. 2: all EEG epochs from the old headset are la-
beled, but none of the epochs from the new headset is initially
labeled. Our approach is to iteratively label some epochs from
the new headset, and then to build a classifier to label the rest of
the epochs. The goal is to achieve the highest classification ac-
curacy for the epochs from the new headset, with as few labeled
epochs as possible.
The following three performance measures were used:
1) False positive rate (FPR), which is the number of false pos-

itives (the number of non-targets which were mistakenly
classified as targets) divided by the number of true nega-
tives (non-targets).

2) False negative rate (FNR), which is the number of false
negatives (the number of targets which were mistakenly
classified as non-targets) divided by the number of true
positives (targets).

3) Balanced classification accuracy (BCA), which is the av-
erage of classification accuracies on the positive (target)
class and the negative (non-target) class. It can be shown
that .

Algorithms
We compared the performances of wAR-RLS, wAR-SVM,

AwAR-RLS, and AwAR-SVM with three other algorithms:
1) Baseline (BL), which is a simple iterative procedure: in

each iteration we randomly select a few unlabeled training
samples collected using the new headset, ask the subject
to label them, add them to the labeled training dataset, and
then train an SVM classifier by 5-fold cross-validation. We
iterate until the maximum number of iterations is reached.

2) The simple TL (TL) algorithm introduced in [51], which is
very similar to BL, except that in each iteration it combines
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labeled samples from the old and new headsets in building
an SVM classifier and then applies it to the unlabeled sam-
ples from the new headset.

3) The active TL (ATL) algorithm introduced in [51], which
adds AL to the above TL: instead of randomly selecting
unlabeled samples from the new headset to label, it selects
those closest to the SVM decision boundary.

Weighted LIBSVM [6] with a linear kernel was used as the
classifier in BL, TL, ATL, wAR-SVM, and AwAR-SVM. Grid
search was used to determine the optimal penalty parameter in
LIBSVM for BL, TL and ATL. We chose in wAR-RLS,
wAR-SVM, AwAR-RLS and AwAR-SVM to give the labeled
target domain samples more weights, and and

, following the practice in [23]. In Section IV-H we
present robustness analysis for AwAR-RLS and AwAR-SVM
to , and , and show that AwAR-RLS and AwAR-SVM
are insensitive to them. Because there are labeled target domain
samples, cross-validation could also be used to optimize these
parameters. This will be considered in our future research.

D. Experimental Results
All seven algorithms started with zero labeled samples from

the new headset. In each iteration, five new EEG epochs were
labeled and added to the training dataset. For BL, TL, wAR-
RLS, and wAR-SVM, these five were the same and were se-
lected randomly from unlabeled samples. For ATL, AwAR-RLS
and AwAR-SVM, these five were selected by their respective
AL algorithms, so generally they were different in different
algorithms.
To cope with randomness in these methods, each of them

was repeated 30 times and the average results are shown. Be-
cause the AL-based algorithms are deterministic, we introduced
randomness by randomly selecting (without replacement) 200
epochs from the old headset as data in the source domain, before
running the seven algorithms. The average performances of the
seven algorithms across the 14 subjects for the four switching
scenarios are shown in Figs. 3 and 4. Observe that:
1) Generally, the performance of BL increases as more sam-

ples from the new headset are labeled and added; however,
it cannot build a model when there are no labeled samples
at all from the new headset (observe that the first point on
the BL curve is missing in every subfigure). On the con-
trary, without any labeled samples from the new headset,
all other TL or wAR-based methods can build a model
which has over 50%, many times much higher, BCA for
most subjects, because they can transfer useful knowledge
from the old headset to the new one. More specifically, the
first point on the TL (or ATL) curve in each subfigure rep-
resents the BCA when the best classifier learned from the
old headset is applied directly to the new headset. Observe
that it is better than 50% (random guess) for most sub-
jects. However, better BCAs can be obtained with wAR
and AwAR.

2) Generally, all six TL or wAR-based methods outperform
BL, which is expected, as TL and wAR get additional data
from the old headset.

3) AwAR-RLS almost always achieves better performance
(in terms of FPR, FNR, and BCA) than wAR-RLS, and

AwAR-SVM almost always achieves better performance
than wAR-SVM. The average performance improvements
of AwAR-RLS over wAR-RLS, and AwAR-SVM over
wAR-SVM, are evident for all four scenarios, as shown in
Figs. 3 and 4. This verifies our conjecture that integrating
AL with wAR can further improve the performance of
wAR.

4) As shown in Figs. 3 and 4, among the three AL methods
(ATL, AwAR-RLS and AwAR-SVM), AwAR-SVM al-
most always have the smallest FPR, and AwAR-RLS
almost always have the smallest FNR. AwAR-RLS and
AwAR-SVM have higher BCAs than ATL when is
small, but they become closer as increases. AwAR-RLS
and AwAR-SVM have better performance than ATL,
because they use more sophisticated wAR algorithms. As
an evidence, Figs. 3 and 4 also show that wAR-RLS and
wAR-SVM achieve better performance than TL.

5) Generally, wAR-RLS has similar performance to wAR-
SVM, and AwAR-RLS also has similar performance to
AwAR-SVM. However, since wAR-RLS and AwAR-RLS
can be trained several times faster than wAR-SVM and
AwAR-SVM, they are the preferred methods to use. This
is also consistent with the observations in [23].

E. Statistical Analysis
We also performed comprehensive statistical tests to check

if the BCA differences among the algorithms were statistically
significant. To assess overall performance differences among all
the algorithms, a measure called the area-under-performance-
curve (AUPC) [25] was calculated. The AUPC is the area under
the curve of the BCA values plotted at each of the 30 random
runs and is normalized to [0, 1]. Larger AUPC values indicate
better overall classification performance.
First, we used Friedman's test, a two-way non-parametric

Analysis of Variance (ANOVA) where column effects are
tested for significant differences after adjusting for possible
row effects. We treated the algorithm type (BL, TL, wAR-RLS,
wAR-SVM, ATL, AwAR-RLS, AwAR-SVM) as the column
effects, with subjects as the row effects. Each combination of al-
gorithm and subject had 30 values corresponding to 30 random
runs performed. Friedman's test showed statistically significant
differences among the seven algorithms ( ) across
all four modes of transfer (BioSemi ABM, Emotiv
BioSemi).
Then, non-parametric multiple comparison tests using Dunn's

procedure [12], [13] were used to determine if the difference be-
tween any pair of algorithms was statistically significant, with
a -value correction using the False Discovery Rate method by
[4]. This test was performed for each mode of transfer, and the
results are shown in Tables II–V. Observe that in all cases, AL
based methods (ATL, AwAR-SVM, AwAR-RLS) performed
significantly better than the corresponding non-AL based
methods. AwAR-RLS and AwAR-SVM always performed
significantly better than BL, TL, wAR-RLS, and wAR-SVM.
Although AwAR-RLS and AwAR-SVM did not perform signif-
icantly better than ATL, the -values were close to the threshold
when switching from Emotiv to BioSemi (Table II), and from
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Fig. 3. Average performances of the seven algorithms across the 14 subjects
across the BioSemi and Emotiv headsets. (a) Switching from BioSemi headset
to Emotiv headset; (b) switching from Emotiv headset to BioSemi headset.

ABM to BioSemi (Table V). The BCA difference between
AwAR-RLS and AwAR-SVM was always not statistically
significant.
In summary, we have demonstrated that AwAR-RLS and

AwAR-SVM can significantly improve the BCA, given the
same number of labeled samples from the new headset. In other
words, given a desired BCA, these algorithms can significantly
reduce the number of labeled samples from the new headset.
For example, Figs. 3 and 4 show that on average, AwAR-RLS
and AwAR-SVM can achieve the same BCA as BL, trained
from 100 labeled samples from the new headset, using only
60–65 labeled samples. Figs. 3 and 4 also show that, without
using any labeled samples from the new headset, on average
AwAR-RLS and AwAR-SVM can achieve the same BCA as
BL which is trained from about 25 labeled samples from the
new headset.

Fig. 4. Average performances of the seven algorithms across the 14 subjects
across the BioSemi and ABM headsets. (a) Switching from BioSemi headset to
ABM headset; (b) switching from ABM headset to BioSemi headset.

TABLE II
-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISON OF BCAS OF THE

ALGORITHMS WHEN SWITCHING FROM EMOTIV TO BIOSEMI

F. Make Use of the Extra Channels (ECs)
In the above experiments, we have only used the common

channels between the old and new headsets. This is fine if all
channels of the new headset are included in the old headset;
however, there is information loss if the new headset has chan-
nels that do not present in the old headset. For example, when
switching from Emotiv to BioSemi, the extra
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TABLE III
-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISON OF BCAS OF THE

ALGORITHMS WHEN SWITCHING FROM BIOSEMI TO EMOTIV

TABLE IV
-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISON OF BCAS OF THE

ALGORITHMS WHEN SWITCHING FROM BIOSEMI TO ABM

TABLE V
-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISON OF BCAS OF THE

ALGORITHMS WHEN SWITCHING FROM ABM TO BIOSEMI

channels are completely ignored, whereas they may contain
valuable information.
In this subsection, we replace the AL part in Algorithm 1

by Algorithm 2 to make use of the extra channels, and the
corresponding algorithms are denoted as AwAR-RLS-EC
and AwAR-SVM-EC. Because this modification only affects
AwAR-RLS and AwAR-SVM, we do not present results from
STL, wAR-RLS and wAR-SVM since they are the same as
those in the last subsection. However, for comparison purpose,
we include BL and ATL. We also added another baseline algo-
rithm (BL-EC), which is similar to BL in the last subsection
but uses features extracted from all 64 BioSemi channels.
The average results across the 14 subjects are shown in

Fig. 5, and the results for the individual subjects are shown
in the Appendix. Observe from Fig. 5 that by making use of
the extra channels, BL-EC had better FPR, FNR and BCA
than BL, AwAR-RLS-EC had better FPR, FNR and BCA than
AwAR-RLS, and AwAR-SVM-EC also had better FPR, FNR
and BCA than AwAR-SVM. In summary, Algorithm 2 indeed
allowed us to exploit new information in the extra channels to
improve performance.
We also performed statistical tests to check if the BCA

improvement with the extra channels were statistically signifi-
cant. Friedman's test showed statistically significant difference
among the six learning algorithms ( ) across both
modes of transfer (Emotiv Biosemi, ABM Biosemi).
Dunn's procedure (Tables VI–VII) showed that BL-EC was
always statistically better than BL. AwAR-SVM-EC was

Fig. 5. Average performances of the seven algorithms across the 14 subjects.
(a) Switching from Emotiv headset to BioSemi headset; (b) switching from
ABM headset to BioSemi headset.

TABLE VI
-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISON OF THE
SIX ALGORITHMS WHEN SWITCHING FROM EMOTIV TO BIOSEMI,

WITH EXTRA CHANNELS

statistically better than AwAR-SVM when switching from
ABM to BioSemi. With the help of the extra channels,
AwAR-SVM-EC had statistically better BCA than ATL when
switching from Emotiv to BioSemi, and both AwAR-SVM-EC
and AwAR-RLS-EC had statistically better BCAs than ATL
when switching from ABM to BioSemi.
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TABLE VII
-VALUES OF NON-PARAMETRIC MULTIPLE COMPARISON OF THE

SEVEN ALGORITHMS WHEN SWITCHING FROM ABM TO BIOSEMI,
WITH EXTRA CHANNELS

Fig. 6. Average BCAs of AwAR-RLS and AwAR-SVM for different number
of linear PCs, when switching from BioSemi to ABM.

G. Robustness Analysis
In this subsection we study the robustness of AwAR-RLS and

AwAR-SVM to three different factors: the number of linear PC
features, the feature sets extracted using different methods, and
the parameters and ( ). To save space, we only show the
BCA results when switching from BioSemi to ABM. Similar
results were obtained from other switching scenarios.
The average BCAs of AwAR-RLS and AwAR-SVM for dif-

ferent number of linear PCs are shown in Fig. 6. Observe that
AwAR-RLS and AwAR-SVM are very robust to the number of
PCs. 20 PCs were used in this paper mainly for the computa-
tional cost consideration.
Two other feature sets were employed to study the robustness

of AwAR-RLS and AwAR-SVM to different feature extraction
methods: 1) 20 nonlinear PCA features extracted from an auto-
encoder [3]; and, 2) 18 power spectral density features [theta
band (4–7.5 Hz) and alpha band (7.5–12 Hz)] from the nine
common channels using Welch's method [48]. The BCA results
are shown in Fig. 7. Observe that AwAR-RLS and AwAR-SVM
still achieved the best overall BCAs in both cases, and they had
more obvious performance improvements over other methods
than the linear PCA case in Fig. 4(a). The BCAs of ATL de-
creased on these two feature sets, suggesting that ATL is not as
robust as AwAR-RLS and AwAR-SVM to different features.
The average BCAs of AwAR-RLS and AwAR-SVM for

different ( and were fixed at 10) are shown in
Fig. 8(a), and for different and7 ( was fixed at 0.1) are
shown in Fig. 8(b). Observe from Fig. 8 that AwAR-RLS and
AwAR-SVM are robust to both and ( ).

H. Discussions
Extensive experimental results have demonstrated that

AwAR-RLS and AwAR-SVM can indeed reduce the calibration
effort when switching to a new EEG headset, and they are very
robust. However, they still have some limitations, which will
be considered in our future research:

7We always assigned and identical value because they are conceptu-
ally close.

Fig. 7. Average BCAs of AwAR-RLS and AwAR-SVM for different feature
sets, when switching from BioSemi to ABM. Top: 20 nonlinear PCA features;
Bottom: 18 theta and alpha band power spectral density features.

Fig. 8. Average BCAs of AwAR-RLS and AwAR-SVM for different parame-
ters, when switching from BioSemi to ABM. (a) ; and, (b) and .

1) AwAR-RLS and AwAR-SVM assume that the old and new
headsets have enough common channels. We will need to
quantify the minimum number of common channels for
them to work well, and develop approaches to perform
transfer for headsets with none or very few common chan-
nels, e.g., more sophisticated feature extraction methods
that allow compensation from close-by electrodes.

2) In the current study each subject performed the same
task in three sessions on three different days, with the
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subject wearing a different headset each day. The headset
difference was the most challenging problem in this
transfer learning setting, but there could also be session
transfer effects, e.g., nonstationarity of the brain, mind
wandering, distraction, human-system mutual adapta-
tion, environment impacts, physical condition changes,
electrode re-positioning, etc. In future research we will
conduct additional experiments, in which each subject
wears the same headset in multiple sessions. By com-
paring the transfer learning performance between sessions
with the same headset and between sessions with different
headsets, we can separately study the effects of headset
transfer and session transfer.

V. CONCLUSION
In this paper, we have introduced two active weighted adap-

tation regularization approaches, which integrate domain adap-
tation transfer learning and active learning, to expedite the cali-
bration process when a subject switches to a new EEG headset.
Domain adaptation makes use of labeled data from the subject's
previous headset, whereas active learning selects the most infor-
mative samples from the new headset to be labeled. Experiments
on single-trial classification of ERPs using three different EEG
headsets showed that active weighted adaptation regularization
can significantly improve the classification performance, given
the same number of labeled samples from the new headset; or,
equivalently, it can effectively reduce the number of labeled
samples from the new headset, given a desired classification
accuracy.
While the current examples are based on intra-subject transfer

(e.g., same-subject, different headsets), our ultimate goal is the
application of this approach tomore sophisticated preprocessing
and feature extraction techniques, such as active weighted adap-
tation regularization from multiple sources (e.g., use data from
other subjects and multiple headsets in a new headset calibra-
tion), and the generalization of weighted adaptation regulariza-
tion to online BCI calibration. Together, these will open the door
for a host of applications facilitating BCI technology across
a wide range of domains. For example, cross-headset transfer
learning, as shown here, will allow data acquired from one re-
search group to be utilized by others, enabling a vast wealth of
resources for generating calibration data. To date, this has not
been a possible practice due to a wide variety of hardware used
in research settings. However, the techniques discussed here not
only suggest feasibility, but also lay the foundation for under-
standing the most critical features of data acquisition hardware
which affect transfer and classifier performance. This informa-
tion can, in turn, be used to further refine and propel the system
design industry.
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