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a b s t r a c t

Biosignals tend to display manifest intra- and cross-subject variance, which generates numerous chal-
lenges for electroencephalograph (EEG) data analysis. For instance, in the context of classification, the
discrepancy between EEG data can make the trained model generalising poorly for new test subjects.
In this paper, a subject adaptation network (SAN) inspired by the generative adversarial network
(GAN) to mitigate different variances is proposed for analysing EEG data. First the challenges faced
by traditional approaches employed for EEG signal processing are emphasised. Then the problem is
formulated from mathematical perspective to highlight the key points in resolving such discrepancies.
Third, the motivation behind and design principle of the SAN are described in an intuitive manner to
reflect its suitability for analysing EEG data. Then after depicting the overall architecture of the SAN,
several experiments are used to justify the practicality and efficiency of using the proposed model from
different perspectives. For instance, an EEG dataset captured during a stereotypical neurophysiological
experiment called the VEP oddball task is utilised to demonstrate the performance improvement
achieved by running the SAN.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Research in neuroscience via EEG brain imaging technology
has undergone enormous developments over recent years, and
the trends are still pushing forward especially when more giant
companies are involved [1,2]. The EEG signals captured during
the noninvasive process open a window looking into the cogni-
tive process accompanying our daily activities, thus consistently
raising the interests of numerous researchers from different per-
spectives.

Although EEG data can reflect brain activity in some con-
venient ways, this activity tends to display distinct intra- and
cross-subject variations due to individual physiological traits [3].
Such discrepancies pose several challenges for the performance
of conventional methods. For example, in some situation the
vigilance of the subject is of interest [4], however, EEG signals
from the same subject in different runs of the experiment or
different subjects with similar vigilance levels tend to present
different power spectra. Reciprocally, identical EEG patterns can
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be labelled quite differently especially from different test sub-
jects. Such inconsistencies have broad negative impacts on EEG
signal processing, from quantitative analysis to qualitative iden-
tifications. This problem is even worse for applications because
new subjects usually have quite different distributions from their
counterparts used for prototype method buildup.

Actually, such a problem is not particular for EEG itself. It
has been observed and addressed in conventional machine learn-
ing studies [5–9], and the corresponding techniques are termed
transfer learning (TL) or domain adaptation (DA). However, the
difficulties facing EEG lie in the following several aspects: (1) EEG
data are immensely complicated and generally of high dimension.
Not mention the difficulty to get some intuitive estimations like
distributions in different domains, such as training set and testing
set. Even to glean apparent information from different subjects
in the same domain is still a challenge. (2) DA usually works
well for well-chosen features obtained from original data, but
it is generally not applicable for EEG signals due to the limited
understanding of the underlying neurophysiological processes. It
tends to lead dispute that what kind of features extracted from
EEG data suitable for a particular neurological experiment. (3)
For some scenario like classification, the ground-truth labels for
the corresponding EEG data are sometimes also problematic. For
example, in sustained attention tasks [3], the vigilance usually

https://doi.org/10.1016/j.asoc.2019.105689
1568-4946/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.asoc.2019.105689
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2019.105689&domain=pdf
mailto:yrming@gmial.com
mailto:ding.wp@ntu.edu.cn
mailto:dpelusi@unite.it
mailto:drwu@hust.edu.cn
mailto:Yukai.Wang@uts.edu.au
mailto:Mukesh.Prasad@uts.edu.au
mailto:Chin-Teng.Lin@uts.edu.au
https://doi.org/10.1016/j.asoc.2019.105689


2 Y. Ming, W. Ding, D. Pelusi et al. / Applied Soft Computing Journal 84 (2019) 105689

indirectly measured via other indicators such as reaction time.
However this method unavoidably introduces noise to the labels,
which makes applying DA tricks via labels ineffective.

Deep neural networks which are applied in some traditional
but difficult fields such as image classification [10] and speech
recognition [11], have found success in recent years and achieved
state-of-the-art results. There are also innovative ideas like gen-
erative adversarial networks (GANs) [12] along the process. Some
data in these domains resemble the complexity of EEG data.
Therefore, there are attempts to investigate the use of various
novel deep network structures and ideas for EEG representation
learning, to seek the potentiality of improving EEG analysis as
in [13–15].

Work in [16] is regarded as a precursor for adaptation from
neural network perspective. It tries to solve the problem with
the guidance of GAN and harnessing deep learning’s end-to-end
modelling philosophy. The work harmonically combines several
components together to achieve adaptation. Essentially, the basic
idea in [16] is to seek some common representation for both do-
mains. Later, methods such as associative domain adaptation [17]
introduce more appropriate loss measurement and generalise the
previous work in [16]. Another approach to utilise the neural
network for DA is making use of GAN to transform one domain
into the other, for example the source domain to the target
domain and/or vice versa, as in papers [18,19]. Since the objective
is now clearer than the case of finding a common representation
space that is not obvious, ADDA and CycleGAN in [18] and [19],
respectively, have achieved more astonishing results.

The achievements in [16–19] make it appealing to use the
adaptation techniques built upon neural networks for EEG signal
processing. However, one prominent challenge for EEG data is,
besides intra-subject variance, the cross-subject variance has a
smaller granularity than the original DA problem. In this paper,
a subject adaptation network (SAN) is introduced to specifically
target EEG signal processing as rooted. It is pointed out that in
a narrow sense, it can adapt EEG data from different experimen-
tal sessions of the same subject as well, nevertheless the term
subject adaptation network is used instead of session adaptation
network to denote its generality. Our contributions lie in several
aspects as enumerated:

(1) A theoretical basis is formalised to highlight the key points
of adapting EEG data, which not only guides this work based on
deep learning, but also can potentially inspire work from other
perspectives to address the challenge.

(2) A SAN is designed to mitigate the intra-subject as well
as cross-subject variance to facilitate later stage tasks such as
sample selection and classification. The designed network draws
inspiration from GAN but works in a different way, which opens
the possibility of considering GAN in a wider sense to solve other
problems.

(3) The research provides illustrative experimental demon-
strations of the usefulness and effectiveness of the proposed
network architecture, as well as some tricks especially from an
implementation perspective.

The rest of the paper is structured as follows. First, the the-
oretical basis from a mathematical perspective is described to
highlight the key points of subject adaptation in Section 2. Based
on that the SAN is introduced with the aim of meeting the
optimisation constraint in Section 3. In Section 4, the practicality
of using the model is demonstrated by running it on several
datasets including EEG to justify the innovations from different
perspectives. Meanwhile its usage in different analysis contexts
are exemplified and the procedures under different requirements
summarised. A final discussion is given in Section 5 to emphasise
some tricks and pitfalls during our research.

2. Problem description

The EEG signal is the most complex biosignal in physiological
research. When EEG signal processing is compared with conven-
tional problems such as image classification, two criteria have to
be met for a neural network model to perform well: (1) it must be
capable of automatically extracting features to solve the problem
like classification at the first hand. (2) the extracted features can
be shared between the subjects.

The first criterion is justified by the achievements of deep
learning. For the second criterion, various methods have been
recently proposed and devised as aforementioned. However, it is
still worthwhile to guide the design of the SAN via deductions
from the theoretical perspective.

For a given neurological experiment especially with BCI ori-
ented, the set of subjects who participated in the experiment
is denoted by {si}Ni=1. Usually a subject si will participate in the
experiment several times (or sessions), with each session com-
prising many experimental trials (or epochs). For analysis, the
epoch data for a specific subject, si, will be aggregated and de-

noted by
{
sji
}T

j=1
. T denotes the total number of trials over all

sessions involving subject si. Usually, there is a corresponding
label for each trial. Taking the P300 experiment as an example,
each trial sji corresponds to a target or a nontarget stimulus [20].

For convenience, the pair (x, y) with x ∈

{
sji
}T

j=1
and y the

corresponding label is termed input/label. In the following if there
is no ambiguity, x is implicitly assumed to be coupled with label
y. Suppose the probability density function (PDF) of Psi (x, y) is
psi (x, y) (denoted as psi (x) in the following for brevity) in the
original data space (or sample space); then the cross-subject
variance means there is an obvious discrepancy between psi (x)
and psj (x) for the different subjects si and sj with the same label
y.

To reduce the variance, one direct idea is to find another space
(called feature space or embedding space) in which the trans-
formed PDFs better align with each other. Defining the mapping
from data space to feature space by L, an optimisation problem
can be formulated as follows.

For x ∈

{
sji
}
, let z = L (x). Suppose x ∼ psi (x), the corre-

sponding distribution of z is denoted by qsi (z), aka z ∼ qsi (z).
Based on the denotation above, criterion (2) can be formulated
as optimisation with the following formula:

argmin
L

∫
max

i

{
qsi (z)

}
dz (1)

qsi (z) = psi
(
L−1 (z)

) ⏐⏐1/L′
⏐⏐ (2)

An intuitive illustration of (1) is shown in Fig. 1. Assume that
there are two subjects in the dataset denoted by s and t respec-
tively. s is for training and t is for testing. After transforming from
data space to feature space, the corresponding distributions are
denoted by qs (z) and qt (z). Suppose some model is trained using
s and made the inference on t . For different transformations L1
and L2, suppose the learned decision boundaries are those shown
in Fig. 1. It is obvious that the performance of generalisation is
better in Fig. 1(b) than in Fig. 1(a). The more coherent alignment
of the transformed density functions result in a lower value
of the integral

∫
max {qs (z) , qt (z)} dz, consequently there is a

greater preference for the corresponding transformation L, which
corresponds to better generalisation.

However, the optimisation of (1) is a variational problem from
a mathematical point of view. Since the potential feature space
and the form of L are unknown, the problem is generally highly



Y. Ming, W. Ding, D. Pelusi et al. / Applied Soft Computing Journal 84 (2019) 105689 3

Fig. 1. Illustration of the transformed probability density function alignment. L2
is preferable to L1 because the area under the solid line of (b) is smaller than
that of (a), which merits the criterion formula (1).

intractable. Nevertheless, observation of the transformed PDFs
and their alignments can suggest some characteristics of the
optimal L which in turn guide the design of the neural network.
For example, it is obvious that an envelope can be found for the
aligned PDFs as indicated by the dotted magenta line in Fig. 1(b).
If the original distributions of subjects are bimodal, it is expected
that the envelope has similar statistical property. Or equivalently,
L should be endowed with some modality preservation property.

3. Proposed subject adaptation network

3.1. Motivation

As mentioned above, the data distribution psi (x, y) is usu-
ally inconsistent with psj (x, y), when subjects participated in the
same experiment with an identical setup, or even the same sub-
ject participated in the same experiment in multiple runs (now si
and sj are referred to data from different sessions of the same sub-
ject). Such inconsistency in samples is the root cause of difficulty
in EEG data analysis. A desired solution is to enforce adaptation
to all subjects’ data. However, as unveiled above, theoretical
formulation into an optimisation problem does not mean that an
analytical solution can be found in practice. For example, a 32-
channel EEG data with sampling rate 250 Hz is 8000-dimensional,
which prohibits any direct observation. The interpretation of the
original distribution is undoubtedly challenging, never mention
the evaluation of the adapted distribution.

However, distributions in low-dimensional spaces such as 1D
and 2D are much easier to interpret and manipulate. In the
previous section some indications have been drawn about the
transformation L and the post-adaptation distributions. Based on
some domain knowledge of EEG experiment, it is appealing to
design an artificial distribution in a low dimension and enforce
the original sample distribution to approximate such an ideal dis-
tribution endowed with nice properties. Thus, the intuition and
motivation for this work are to avoid gleaning the distributions
of samples in a very high-dimensional space, and just enforce
alignment with a ‘‘clean distribution’’ in low-dimensional space
of the same modality by an adversarial network.

3.2. Constraint realization by neural network

The reasoning and insight above lead to the network archi-
tecture designed in Fig. 2. The overall architecture consists of a
generative and a discriminative network, resembling the general
architecture of GAN [12]. The generative network or generator
is split into two parts, namely, an adapter network denoted
by A (x, θa) and a mapper network denoted by M (x, θm). The
discriminative network or discriminator is denoted by D (x, θd).
After adaptation, the network can aggregate other components
such as a classifier network C (z, θc) or a sample selection module
S (z, θs) for post-adaptation stage applications, as explored in the
experiment section.

However, our work is different from the original GAN in two
aspects. First, the input to the generator here is based on the
sampling of real data, instead of from a random source as in the
case of GAN. Hence, rather than learning a function that maps
the input distribution to a target distribution, the generator learns
to align distributions from different sources into a coherent one
to confound the discriminator. Second, the discriminator receives
the ground-truth information not from samples in the real world,
but by sampling a designed or artificial distribution.

So, the data flow of our proposed model is as follows: EEG
signals either from different sessions or from different subjects
are input into the generator for distribution aligning. The
dimensionality-reduced latent representations from the genera-
tor are pipelined to the discriminator in competition with another
discriminator input, which is from an artificial distribution. The
adaptation of EEG signals is guaranteed by the working principles
of GAN during the training process, and these adapted represen-
tations are harnessed for different applications, as illustrated in
Fig. 2.

It is noticed that one reason for splitting the generator here
into an adaptor plus a mapper, is in the expectation that while
the adaptor tries to project the original sample data into some
embedding space during the adversarial learning process, it still
keeps the projection in reasonable dimensionality. Such a dimen-
sionality is mandatory to have later applications like classification
performing well. Another reason for splitting the generator lies in
the fact that the ‘‘real-’’ distribution is artificial. Designing such
a distribution requires domain knowledge of and insight into
the original sample space. However, if there exists some biased
design for the target distribution, the enforced final distribution,
aka output from the generator, might be problematic. By splitting
the generator into an adaptor and a mapper, it is intended to
harvest only intermediate transformed representations that have
the inclination to be better aligned. Furthermore, as mentioned,
directly processing the final output of the generator might be in-
appropriate for some applications such as classification via a deep
neural network. The intermediate representations still have rea-
sonable dimensions, which can aid the classification performance.
Nevertheless, determining the boundary between the adaptor and
the mapper is still an empirical process.
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Fig. 2. The overall architecture of the subject adversarial network.

Based on the above reasoning, before processing the subject
data, samples from all subjects will go through the adaptation
network which is designed to align the distribution of subjects
while still maintaining internal distinguishability. It is expected
that by competing with the artificial targeted distribution, data
from different subjects can be aligned coherently and consistently
while still keep the modality for later processing such as classifi-
cation. Consequently, it is clear that the paradigm of utilising our
proposed model for EEG data analysis consists of two stages. The
first stage is training the adaptor, mapper and discriminator to
the optimal balance, which means that the discriminator cannot
effectively determine the sources of its inputs. The second stage
is pipelining the adaptor with or without the mapper to other
components according to different applications.

3.3. Artificial target distribution design

Generally, it is impossible to directly observe the distribution
of EEG data in sample space due to the tremendously high di-
mensionality of the data. However, some overall properties of the
distribution such as the modality and relative size of the potential
clustering of the original data can be depicted. For example, the
P300 EEG experiment [20], subjects react to two kinds of stimuli,
targets and nontargets. It can be expected that there are two
modalities for the designed artificial PDF. If the ratio between
targets and non-targets is supposed to be 1:2, it can be further
assumed that the area under one modality is half of the area
under the other modality, just indicated as in Fig. 3.

To feed the discriminator by sampling from the artificial dis-
tribution, in this work the rejection sampling is always used
considering its simplicity and efficiency in low dimensions.

4. Experiment evaluation and analysis

4.1. MNIST dataset

To justify the practicality of using our proposed model, MNIST
dataset is utilised for the first stage, namely, data involving a
multimodal distribution can be forced to align with the targeted
distribution in the low-dimensional space. This process is the
basis for later stage applications, and MNIST dataset is chosen
here instead of EEG dataset due to its clean label and simplicity
especially from the illustrative perspective.

For simplicity, only two handwritten digits, ‘0’ and ‘1’, are
filtered out from the original MNIST dataset for demonstration,

Fig. 3. Designed artificial distribution for an exemplified EEG dataset.

Table 1
Network configuration for MNIST dataset.
Name Layer #Filter Kernel Activation

Adaptor

L1 Conv2D 32 5 × 5 –

L2 Conv2D 64 5 × 5 –
AvgPool – 2 × 2 –

L3 Conv2D 128 5 × 5 –

Mapper

L1 Conv2D 32 3 × 3 tanh

L2 Conv2D 64 3 × 3 tanh
AvgPool – 2 × 2 –

L3 Linear 256 – tanh
L4 Linear 1 – –

Discriminator
L1 Linear 256 – ELU
L2 Linear 64 – ELU
L3 Linear 1 – –

since it is a little easier to design the bimodal target distribution
in this case than using the whole dataset. Considering that the
MNIST is a dataset that is nearly balanced over all digits, our
designed distribution is in accordance with the following PDF (3).

y = 0.5/
√
2π ∗ exp

(
− (x ± 2.0)2 /2

)
(3)

The configuration of the network is detailed in Table 1. After
data preparation, Adam is adopted as the optimiser with batch
size 64 and learning rate 1e−4 to train the network for 20000
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Fig. 4. Histogram illustrations during the training. (a) Histogram of samplings from designed artificial distribution; (b) Histogram of outputs from the generator
(adaptor + mapper).

Fig. 5. Histogram of mapped values vs. ground-truth labels (a) Case of digit 0; (b) Case of digit 1.

iterations. To maintain stability during training, the model takes
advantage of the loss suggested by Wasserstein GAN (WGAN) [21]
as well as spectrum normalisation [22].

Fig. 4 shows the histogram of outputs from the mapper during
the training process vs samplings from the designed distribution.
It is manifest that such a coherent alignment can be enforced by
adversarial training. The ongoing changes with iterations are indi-
cated by the horizontal lines from inwards to outwards. Fig. 4(a)
shows the histogram of sampling from the designed artificial
distribution, which is coherent during the whole training process.
Fig. 4(b) shows the histogram of outputs from the mapper (or the
generator). Since the weights are initialised according to some
normal distributions, it can be expected to appear as a single
modality with a high peak at the beginning. As the training con-
tinues, the distribution approaches the targeted distribution. Note
that due to the scale problem, the last stages of the histogram in
(b) seem to be different from that in (a), but they are actually
quite similar.

During the whole process, it is just assumed that handwritten
digits of 0 and 1 comply with some bimodal distribution, and
no prior information about the labels is utilised. However, after
the training process, it is necessary to verify the outputs of the
network to justify using our proposed SAN. The histograms of the
outputs corresponding to the ground-truth labels are shown in
Fig. 5.

It is obvious that the statistical properties of the network
outputs are within our expectation. Although the training process
assumes no label information, the distributions of each category
are clearly separate from each other; nevertheless, there are some
outliers. Usually, the variance of 0 is greater than 1 because the
strokes of 0 are more complex than those of 1. Consequently,
from Fig. 5 it can be observed that the deviation of the 0’s
distribution is larger than that of the 1’s distribution.

Actually, the proposed SAN provides a new alternative to tra-
ditional unsupervised clustering methods. For traditional cluster-
ing methods such as k-NN, by specifying the number of potential
clusters, k-NN relies on the calculation of the distance between

Fig. 6. Clustering according to the distribution of generator outputs.

samples to determine relations. Our method works by approach-
ing the mapping L, which preserves the original distributions. As
indicated in Fig. 6, by choosing the decision boundary, a sample x
can be assigned to a particular category according to the location
of the value L (x) with respect to the decision boundary. Note
that in Fig. 6, the plot is against ground-truth labels, however in
practice the decision boundary can be empirically drawn since it
is quite intuitive to decide in low-dimensional space.

The procedures for performing clustering based on the SAN are
summarised as follows:

Estimate the statistical property of the sample data {xi}.
Design the artificial probability density function f .
Train the network to obtain the optimised mapping function
L (x; θ∗) (generator network).
Observe the histogram of network outputs hist (L ({xi} ; θ∗))
which has a low dimensionality such as 1D or 2D.
Decide where the decision boundary B is located.
Decide the category of a given sample x′ by comparing L

(
x′
)

and B.
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Fig. 7. (a) Histogram of measured RTs; (b) Designed gamma distribution approximating the distribution of measured RT.

4.2. Driving EEG dataset

As a brain imaging technology, EEG can reflect some charac-
teristics of mind state or cognitive process pertaining to people’s
specific activities like driving. By collectively analysing samples
from test subjects, some conclusions especially from neurophys-
iological aspect can be reached, such as activities of different
lobes, connectivity between lobes, etc. However, the difficulty
in EEG research is by estimating such implicit mind states to
select the most appropriate samples for analysis. For example,
to understand the brain dynamic under low performance driving,
one needs to screen out the trial data corresponding to fatigue for
analysis.

However, the mind states or attention levels are by no means
can be directly measured. It relies on a clever experiment design
to indirectly measure such indicators. For example, in simulated
driving experiment, the reaction time (RT) is utilised for labelling
attention level. But usually the relation between the direct but
implicit label such as attention level with indirect but explicit
indicator like RT is unknown. And due to other factors, such
measurement is usually error-prone or at least accompanied by
noise. It can potentially move the EEG data actually correspond-
ing to the alert stage into the fatigue category, consequently it
will hurt the accuracy of the conclusions. Actually, even for one
subject, the higher number of runs the subject participate in the
experiment, the more likely of inconsistency on data labelling.
Now and then, such intra-subject variance poses a challenge for
effective analysis.

In this experiment, a driving EEG dataset is utilised to demon-
strate the capability of our proposed network for sample selec-
tion, especially from the intra-subject variance perspective. The
EEG data were captured during a simulated sustained-attention
driving task which is to investigate people’s performance during
driving under different vigilance levels. The setup is to have
test subjects driving in a simulated four-lane highway for an
enduring test lasting 90 min. It is based on the postulate that
the attention of test subjects cannot be maintained at the same
level during the entire procedure, which results in reactions to
occurrences requiring instant reactions during driving exhibiting
various latencies.

To measure the subjects’ vigilance during driving, lane-
departure events were deliberately and randomly introduced
by having the car drift away from the original cruising lane
towards the left or right side (deviation onset). Test subjects were
instructed to quickly compensate for this perturbation by steering
the wheel (response onset), to turn the car back to the original
lane (response offset). It is manifest that the extent of fatigue
is closely related to the latency of response onset. The duration
between such consecutive event onsets, called reaction time (RT),
is utilised to label the EEG data into different vigilance stages.
The detailed explanations of the baseline period and consecutive
events for each complete trial can be found in [23].

Table 2
Network configuration for driving dataset.
Name Layer #Filter Kernel Activation

Adaptor

L1 Conv2D 32 3 × 3 –

L2 Conv2D 32 3 × 3 –
AvgPool – 2 × 2 –

L3 Conv2D 64 3 × 3 –

L4 Conv2D 64 3 × 3 –
AvgPool – 2 × 2 –

Mapper L1 Linear 256 – sigmoid
L2 Linear 1 – –

Discriminator
L1 Linear 256 – ELU
L2 Linear 64 – ELU
L3 Linear 1 – –

EEG signals are recorded simultaneously and continuously
using the SynAmps2 Express system during the experiment. To
increase the correlation between fatigue and RT as well as to
exclude other impact factors during testing, participants need to
operate only the steering wheel in reacting to lane-perturbation
events and are free from controlling the accelerator and brakes.
However, due to the inclination of subjects to be distracted, some
RT cannot faithfully reflect the underlying fatigue state.

As mentioned above, one subject who participated in the
experiment several times with the greatest number of trials is
chosen to demonstrate utilising the model for solving the intra-
subject variance problems aka sample selection. For emphasising
the key steps, just the alpha band (4∼7 Hz) of the EEG data
is chosen. It is converted to topographies after pre-processing
(down-sampling from its original 500 Hz to 250 Hz followed by a
band-pass filter with range 0.5 to 50 Hz) with corresponding RTs.

For a specific sample, the measured RT is potentially biased.
For example, due to subjects distractions or weariness of muscles,
the prolonged measured RTs probably brings a sample corre-
sponding to alertness into the category of fatigue. However, it is
believed that the overall trend of RT is trustworthy. Therefore,
to design the artificial distribution, the first step is to plot the
histogram of measured RTs to get an overall estimation of the
distribution. Fig. 7(a) is the histogram of RT, hence a gamma
distribution is chosen in Fig. 7(b) as the designed distribution.

With the specified configuration in Table 2, the EEG data are
processed in spatial domain by training the network for 4e+4
iterations with a learning rate 5e−4 until the enforced alignment
aka the gamma distribution is clearly observed. The enforced
distribution of samples vs corresponding RTs is plotted in Fig. 8
to select the most appropriate samples for further analysis. In
Fig. 8, according to our domain knowledge, the orange dashed
eclipse is plotted to indicate our recommendation of EEG samples
for corresponding analysis, since the measured RTs are more
consistent with the enforced aligned distribution.
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Fig. 8. Plotting of enforced sample distribution vs. measured RT. The dashed
eclipse indicates the recommended range for selecting samples.

To demonstrate such a claim, the topographies of neighbour-
ing samples in three groups are inspected along the line y = 1.5
in Fig. 9. It can be noticed that the topographies from the same
group are sharing more similarities, which can distinguish them
from other groups. Hence it justifies our claims as well as the
suitability of utilising our model for sample selections.

The procedures for performing sample selection based on SAN
are summarised as follows:

Estimate the measured or noise label distribution.
Design the artificial probability density function f for
measured labels.
Train the network to obtain the optimised mapping function
L (x; θ∗) (generator network).
Scatter plot the distribution of network outputs L ({xi} ; θ∗)
vs. measured labels.
Propose the range R based on domain knowledge.
Only select samples in range R for analysis.

4.3. Oddball task EEG dataset

To demonstrate the performance improvement obtained by
adapting EEG data of different subjects for further analysis such
as classification, an EEG dataset captured during a visually evoked
potential (VEP) oddball task [20] is utilised here. The experiment
is based on the P300 (P3), an event-related potential (ERP) elicited
in the visual system. During the experiment, image stimuli are
presented to subjects at a rate of 0.5 Hz (one image every two
seconds). The dichotomous images were either an enemy com-
batant or a U.S. soldier. The subjects were instructed to identify
each image as a target or a nontarget with a unique button press
as quickly but as accurately as possible.

The image set used in this experiment is an imbalanced ver-
sion with 34 targets among 270 images. Eighteen subjects partic-
ipated in the experiments, which lasted for 15 min on average. In
this work, signals recorded with a wired 64-channel ActiveTwo3
system (sample rate set to 512 Hz) from BioSemi is used for data
acquisition. More details especially the consent of the experiment
can be found in [20].

EEG data is usually processed in the frequency domain [24]. By
sacrificing time resolution, it is expected the frequencies or power
spectrum can unveil more statistical properties of underlying
brain activities in a certain period. Usually, data analysis requires
using domain knowledge to evaluate the viability of the feature
to be used or the way to extract features. However, due to the

Table 3
Network configuration for Oddball dataset.
Name Layer #Filter Kernel Activation

Adaptor

L1 Conv2D 32 7 × 7 –
AvgPool – 2 × 2 –

L2 Conv2D 64 5 × 5 –
AvgPool – 2 × 2 –

L3 Conv2D 128 3 × 3 –
AvgPool – 2 × 2 –

Mapper L1 Linear 64 – tanh
L2 Linear 1 – –

Discriminator
L1 Linear 256 – ELU
L2 Linear 64 – ELU
L3 Linear 1 – –

Classifier L1 Linear 256 – ELU
L2 Linear 2 – –

limited knowledge of the cognitive or physiological process, it is
still not very clear which are the best sub-band or novel features
buried in EEG data or even whether the frequency domain is the
best domain in which to work or not. Considering the feature
extraction capabilities of deep neural networks, it is persuasive to
directly work with waveform EEG data in the time domain. Works
in [15] and [25] launched this aspect of research and achieved
some promising results, so this paper takes a similar approach.

Usually, EEG data tend to undergo a series of pre-processing
such as bandpass filtering, down-sampling before feeding into the
network, meantime to retain as much information as possible to
allow the network to automatically discover the most appropriate
latent representations. For data preparation in this paper, data
from four subjects are first rejected due to corruption or poor
responses. Next the EEG signals are band-passed to 1–50 Hz,
followed by down-sampling to 64 Hz. Then epochs are extracted
within [0, 0.7] second interval time-locked to the stimulus on-
set. Epochs with incorrect button press responses are excluded
to reduce the impact of outliers. Finally, the mean baseline is
subtracted from each channel in each epoch for normalisation. To
counter the potential bias during training, the data are resampled
to have a ratio of targets to nontargets as 1:3, which is also taken
into consideration when the artificial distribution is designed.

Fig. 2 suggests that during adaptation, the outputs of some
intermediate layer can be to some extent aligned more coherently
than the data in the original sample space, while they still have
reasonable dimensionality for classification. This point of view
is highlighted by the embedding space and its relationship with
the classifier in Fig. 2. It is mentioned that there are 382 targets
vs. 1146 nontargets. The dimension of sample space is 2880 (64
channels with each channel having 45 data points). Such a limited
number of samples in such a high-dimensional space are far
from enough to capture the underlying data distribution. The
available data constraint leaves us with the choice to practically
analyse only one single channel which is Pz, to restrict the sample
space to 45 dimensions. Notice the data can still be treated from
the two-dimensional perspective just with the height equal to 1
here. Based on this limitation, a network configuration is given in
Table 3.

The designed artificial distribution complies with the follow-
ing Eq. (4):

y = (0.5 ∓ 0.25) /
√
2π ∗ exp

(
− (x ± 2.0)2 /2

)
(4)

With the targeted distribution, the network is trained with the
Adam optimiser of learning rate 1e−4 for 1e+4 iterations. The
enforced distribution with ground-truth labels is shown in Fig. 10.
Due to the complexity of EEG data, the separation is not as clear
as the case of MNIST data.
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Fig. 9. Topographies of the samples in different groups. (a), (b) and (c) are chosen based on the measured RT and mapped values of the enforced distribution.

Fig. 10. (a) Histogram of samples corresponding to target (b) Histogram of samples corresponding to non-target.

Table 4
Test results comparison.
Model S1 S2 S3 S4 S4 Average

SVM 0.815 0.805 0.789 0.811 0.780 0.800
EEGNet 0.808 0.900 0.806 0.778 0.732 0.805
SAN 0.802 0.885 0.820 0.809 0.760 0.815

For benchmarking comparisons, the conventional support vec-
tor machine (SVM) method and the current well-spoken-of EEG-
Net [15] are chosen here. Since the data is just of single-channel,
the depthwise convolution which is analogous to the common
spatial pattern (CSP) filter [26] is omitted from the original EEG-
Net structure. For the sake of brevity, only the first five subjects
are utilised for leave-out testing.

The results are listed in Table 4 for comparison. With budget
EEG data, all the models produce comparable results, but our pro-
posed model is slightly better among all. It is mentioned that SVM
has a big advantage with limited training samples, because only
a few support vectors can help determine the decision boundary
with reasonable margin. However, it is believed that by increas-
ing the number of samples to a reasonable magnitude which
is appropriate to train our proposed network in the adversarial
way, the improvement could be further boosted. Nevertheless,
the improvement of subjects’ adaptation can be justified from the
results, even with limited samples.

The procedures for performing classification based on the SAN
are summarised as follows:
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Fig. 11. (a) Distribution of training samples and the corresponding decision boundary; (b) Distribution of test samples and the corresponding decision boundary as
well as migrated decision boundary from training; (c) Adapted training samples and test samples and corresponding decision boundary. Note the coordinate system
in (c) is not necessarily the same as (a) and (b), because the adapted samples can be in some latent space.

Estimate the sample distribution.
Design the artificial probability density function f that
simulates the estimated sample distribution.
Train the network to obtain the optimised mapping function
L (x; θ∗) (generator network).
Empirically choose some intermediate latent representations
of the generator (which are equivalent to the outputs of the
adaptor) A (x; ω∗), here ω∗

⊂ θ∗.
Train another classifier C (z, ϑ) based on the outputs of the
adaptor.

5. Discussion

The first topic for discussion is about the motivations which
drive this research. To balance between the brevity and plain
explanation for some background information of this work, it has
been moved to this section. Due to the long-standing research
of domain adaptation, one motivation is just recapped here to
highlight its necessity. As in Fig. 11, suppose a model is con-
structed to target a binary classification problem. In Fig. 11(a),
a training process leads to a decision boundary be nicely set up
between the two training class samples. However, due to the
discrepancy of training sample distribution and testing sample
distribution, simply migrating the decision boundary obtained in
training might be inappropriate for the test set, as illustrated
in Fig. 11(b). Since it is presumed that training set and test
set comply with some bimodal distributions, if by embedding
both into some latent space, where the same class of training
samples and test samples are with more coherent distributions,
the generalisation of the trained model is certainly with higher
performance, as illustrated in Fig. 11(c).

This is exactly the case of EEG data, where data for training and
testing respectively can be quite different from each other. Such a
cross-subject variance problem just inherits the common problem
of domain adaptation which tries to address, and is worthy of
research as exemplified in this work. However, besides that, EEG
data is endowed with another trait, aka intra-subject variance,
as the case demonstrated in Fig. 12. It shows the RTs of one
subject participated in the experiment for two times. According
to the experiment log, these two experiments were carried out
with identical setup, similar time, and subject reported similar
physical and mental conditions when participating. Nevertheless,
the eminent discrepancy between RT patterns for different ses-
sions of the same subject posts a big challenge for selecting the
appropriate EEG data segments to analyse the neurophysiological
process during the experiment.

Hence, to select the most appropriate samples to analyse the
underlying cognitive process like attention alteration, it requires
not only the measure RT being considered, but also the maximum
commonality between sessions being sought. For example, dur-
ing which stage of the experiment the subject is anticipated as
alertness, which stage the subject is as drowsiness. This requires
some adaptation method to sort out the samples coherent with

the distribution of RTs, another motivation for our research. As
shown in Fig. 8, the samples which distribute along the diagonal
line are preferred.

Next some tricks that are recognised by us as subtle and
useful are highlighted to help ease subsequent research. First, by
observation, average pooling is preferable to maximum pooling
when building the network especially for the adaptor. Due to the
univariance effect, max-pooling may affect the distinguishability
between samples since the details are blurred to some extent.
One consequence is the potentially induced higher variance as
shown in Fig. 13. Another consequence is the potential failure
of adaptation when the variance exceeds a certain width, which
means the alignment cannot be effectively enforced.

It is obvious that the properties of designed distribution should
be taken into consideration for the choice of the mapper’s activa-
tion function. For example, in the first experiment the hyperbolic
tangent function is chosen because the target distribution that
being designed is to some extent symmetric with respect to x =

0. For the second experiment the sigmoid function is chosen since
gamma distribution only exists when x > 0. It is also noticed
that the mapper is quite sensitive to initialisation. When Gaussian
normalisation is used, the standard deviation is suggested to keep
within 0.5. Using larger values tend to cause modal collapse. One
possible reason is the initial penalty is likely so severe that it
restricts the exploration throughout the whole training process.
This comparison is demonstrated in Fig. 14.

It is also found that it is a little easier to use the WGAN
framework instead of the original GAN for adversarial training,
because it allows an initially relaxed exploration of the parameter
space. Nevertheless, once the nearly optimal parameters have
been found and marginal fine-tuning commences, the selection
between these two frameworks does not make much difference.

One restriction for EEG data analysis is that EEG datasets are
usually costly to obtain. However, the use of our proposed SAN
method requires to sample the original data space in a reasonable
amount. However, the availability of EEG samples can satisfy
only part of the budget requirement for adversarial training. It is
expected in future by considering the proposed model in a wider
sense, harvesting its potential to generate additional interesting
outcomes could be fulfilled.

The fact that the performance of our proposed SAN relies on
a properly designed artificial distribution whose modalities and
relative shapes and distances between modalities can well re-
flect the original sample distribution, provides another aspect for
future work. One idea is to utilise principal component analysis
(PCA) on a subset of samples, to map these samples into a lower
dimensional space. Then using GAN to learn a generating network
which simulates the distribution of samples by competing over
samples from the latent sample space after PCA. However, studies
of these topics are just launched, and more efforts are needed for
deeper investigations in these areas in the future.
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Fig. 12. RT patterns for the same subject who participated in the experiment for two times.

Fig. 13. The impact of different pooling methods on the enforced distribution of samples.

Fig. 14. Enforced distribution trends during training with different standard deviation for the second experiment (a) σ = 0.2 (b) σ = 1.0.

6. Conclusion

In this paper a subject adversarial network is proposed with
the guidance of a variational optimisation problem targeting the
mitigation of the intra- and cross-subject variance among EEG
data. The architecture and usage of the network are detailed
and demonstrated from different perspectives with respect to
EEG data analysis, such as sample selection and classification.
The experimental results indicate its practicality and efficiency
in different scenarios. Some tricks developed during the research
are also discussed with goodwill of their potential helpfulness
concerning adversarial training for further applications in wider
sense. Meanwhile, the effectiveness of utilising our proposed
model depends on the designed artificial distribution, which de-
mands the understanding of the problem domain and inspection
of the data to be analysed. These constraints might require extra
work compared with straight-forward usage of other models.
Future work can be considered from potential auxiliary methods

for better distribution designed and increase of data scale which
is critical for the training of deep neural network models.
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