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Computing the centroid of an interval type-2 fuzzy set is an important operation in a type-
2 fuzzy logic system, and is usually implemented by Karnik-Mendel (KM) iterative algo-
rithms. By connecting KM algorithms and continuous KM algorithms together, this paper
gives theoretical explanations on the initialization methods of KM and Enhanced Karnik-
Mendel (EKM) algorithms, proposes exact methods for centroid computation of an interval
type-2 fuzzy set, and extends the Enhanced Karnik-Mendel (EKM) algorithms to three dif-
ferent forms of weighted EKM (WEKM) algorithms. It shows that EKM algorithms become a
special case of the WEKM algorithms when the weights of the latter are constant value. It
also shows that, in general, the weighted EKM algorithms have smaller absolute error and

faster convergence speed than the EKM algorithms which make them very attractive for
real-time applications of fuzzy logic system. Four numerical examples are used to illustrate
and analyze the performance of WEKM algorithms.

© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Interval type-2 fuzzy sets (IT2 FSs) are the most widely used type-2 fuzzy sets because they are computationally simple to
use. Karnik-Mendel (KM) algorithms originated for computing the centroid of IT2 FSs [5], have been used in many applica-
tions of T2 FSs, and play an important role in type-2 fuzzy logic systems [4,10,13,17].

Mendel [11] used KM algorithms to compute the derivatives in interval type-2 fuzzy logic systems. Wang et al. [21] used
KM algorithms for optimal training of interval type-2 fuzzy neural networks. Wu and Mendel [23,24] applied them to com-
pute uncertainty measures, such as rank, similarity, variance and skewness of IT2 FSs. Zhai and Mendel [28] use KM algo-
rithms to compute the uncertainty measures of general type-2 fuzzy sets. Liu and Mendel [8] proposed new o-cut
algorithms for solving the fuzzy weighted average (FWA) problem using KM algorithms. Compared with other FWA algo-
rithms [1-3,6], they showed that the KM algorithms are the fastest to date. Mendel and Wu [18] proposed the continuous
form of KM algorithms. Mendel and Liu [15] also used continuous KM algorithms for theoretical analyses, and proved mono-
tonicity and super-exponential convergence of the algorithms. This work laid a theoretical foundation for the application of
KM algorithms. Mendel [12] applied the KM algorithms to type-2 based computing with words. Wu and Mendel [22] used
KM algorithms to compute the linguistic weighted average (LWA) of IT2 FSs, and this has been integrated into perceptual
computing [17,25,26]. Liu [7] used KM algorithms for computing the centroid of a general type-2 fuzzy set based on the
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a-plane decomposition of such a fuzzy set, and Mendel et al. [16] used such KM algorithms to design a triangle quasi-type-2
fuzzy logic system. Similar to the «-plane method, Wagner and Hagras [20] used KM algorithms to compute the centroid of
the zSlices of general T2 FLSs in robot control problems. Finally, Wu and Mendel [24] proposed Enhanced KM (EKM) algo-
rithms to reduce the computational cost of the standard KM algorithms. Yeh et al. [27] give an extension of EKM to the gen-
eral type-reduction problem.

In this paper, we propose continuous KM and EKM algorithms for computing the centroid of an interval type-2 fuzzy set.
By comparing the sum operation of KM algorithms and the integral operation in the continuous KM algorithms, EKM algo-
rithms are extended to weighted EKM (WEKM) algorithms that use numerical integration techniques. The new WEKM algo-
rithms are more precise and converge faster to the exact centroid values of the IT2 Fs sets than the EKM algorithms, and they
include the EKM algorithms as a special case.

The organization of the paper is as follows. Section 2 gives preliminaries about numerical integration in numerical anal-
ysis, and KM and EKM algorithms for centroid computation of IT2 FSs. Section 3 provides theoretical explanations on the
initialization methods of KM and EKM algorithms. Section 4 proposes a method to compute the exact value of the centroid
of an IT2 FS, and three new WEKM algorithms with three different weight assignment methods. Section 5 compares the per-
formances of our four specific algorithms using four numerical examples. Section 6 summarizes the main results and draws
conclusions.

2. Preliminaries
2.1. Numerical integration

The goal of numerical integration is to approximate the definite integral of f{x) over the interval [a,b] by evaluating f{x) at
a finite number of sample points.!

Definition 1 (Quadrature formula). Suppose that a =Xy <x; <--- <X, = b. A formula of the form
m
= wif (x) = Wof (Xo) + Wif (X1) + Waf (X2) + - - - + Winf (Xm) (1)
k=0
with the property that

b
/ﬂ f(x)dx = Q(f) + E(f) 2)

is called a numerical integration or quadrature formula. The term E[f] is called the truncation error for integration. The values
{x}1o are called the quadrature nodes and {w,};_, are called the weights.
For all applications, it is necessary to know something about the accuracy of the numerical solution. This leads us to:

Definition 2. Degree of precisionThe degree of precision of a quadrature formula is the positive integer n such that E(P;) =0
for all polynomials P(x) of degree i< n, but for which E(P;.;) # 0 for some polynomial Pi.¢(x) of degree n+ 1, that is,
ja i(x)dx = Q(P;) when degree i < n, and ja i1 (X)dx # Q(Pi.q) when degree i=n+ 1.

When the polynomial P,,(x) of degree m is used to approximate f(x), the integral of f{x) is approximated by the integral of
P,,(x), and the resulting formula is called a Newton-Cotes quadrature formula. For approximating polynomials of degree m = 1,
2, 3, this formula is called Trapezoidal Rule, Simpson’s Rule, and Simpson 3/8 Rule, respectively. Because of the non-smooth or
oscillatory nature of the function f{x) in [a, b], one usually splits [a,b] with quadrature nodes, and applies the composite New-
ton-Cotes quadrature formula. For these three rules, the quadrature nodes {x,}}., are chosen to be equally spaced.

The following composite Trapezoidal Rule approximates f{x) using straight lines.

Theorem 1 (Composite Trapezoidal Rule). Consider y = f(x) over [a,b]. Suppose that the interval [a,b] is subdivided into m
subintervals {x;_1, X}, of equal width h = bn]—“ by using the equally spaced nodes x;, = xo + kh for k=0,1,2,...,m. The numerical
approximation to the integral of f(x) with the composite Trapezoidal Rule is

m—1
/ f0) ( (@) +f(b) + Zf(xk)> +Er(f.h). 3)
k=1
If f is second-order continuous differentiable on [a,b], i.e. f(x) € C*[a,b], the error term Er(f, h) = —©= “) " p* = (hz), where

a < ¢< b, and O(h?) means that when the step size is reduced by a factor of 1/2 the error term Eq(f.h) should be reduced by approx-
imately (%)2 =0.25.
Simpson’s Rule approximates f{x) using quadratic polynomial functions.

1 All the material in this section has been adapted from [9].
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Theorem 2 (Composite Simpson’s Rule). Consider y=f(x) over [a,b]. Suppose that the interval [a,b] is subdivided into 2m
subintervals {x;_ 1,xk}k | of equal width h = %4 by using the equally spaced nodes x, = Xo + kh for k=0,1,2,...,2m. The numerical
approximation to the integral of f{x) with the composite Simpson’s Rule is

/ f&) < (@) +f(b) + nif(xzk)+42f(xzk1)> +Es(f, h). (4)
k=1 k=1

If f is fourth-order continuous differentiable on [a,b], i.e. f(x) € C*[a,b], the error term Es(f,h) = —©= ‘;f G = 0(h"), where
a < &< b, and O(h*) means that when the step size is reduced by a factor of 1/2 the error term Eq(f, h) should be reduced by approx-
imately (1)* = 0.0625.

Simpson'’s 3/8 Rule approximates f{x) using cubic polynomial functions.

Theorem 3 (Composite Simpson’s 3/8 Rule). Consider y = f(x) over [a,b]. Suppose that the interval [a,b] is subdivided into 3m

subintervals {x;_q ,xk}ﬁﬂ of equal width h = b;n;l by using the equally spaced sample points x;. = xo + kh for k=0,1,2,...,3m. The
numerical approximation to the integral of f(x) with the composite Simpson’s 3/8 Rule is
/ fx) Z(f X3k-3) + 3f (X3k-2) + 3f (X3k-1) + f(X31)) + Esc(f, h), (5)
that is
m—1 m m
/ f(x) (f( )+ £(b) + ) 2f(xzi) + > 3f (Xaka) + Z3f(x3kl)> + Esc(f, h). (6)
k=1 k=1 k=1

If f is fourth-order continuous differentiable on [a,b], i.e. f(x) € C*[a,b], the error term Esc(f,h) = h* = o(h*), where
a<é<h.
It should be noted that we have assumed all the integral functions in (4)-(6) are measurable, i.e. the integrals make sense

in a in Lebesgue sense.

_ (b=af? ()
80

2.2. Karnik-Mendel algorithms for computing the centroid of an IT2 FS

The Karnik-Mendel (KM) algorithms were developed to compute the centroid of an IT2 FS [5]. Let x(i = .,N) repre-
sent the discretiztion of IT2 FS A; ,u~(x,) and ,u;(x,) are the lower and upper membership functions that are assoc1ated with A
respectively. Using the wavy-slice representatlon theorem for a type-2 fuzzy set [14], the centroid of A, c = [ci, ¢], can be
computed as the optimal solutions of the following interval weighted average problems [5,15]:

X;0
Cl _ Zl 14iYi (7)
VGE[ Zl 1
N
X;0
€ = e MK Z’ haci (8)
\ﬂ)e[ Zl 1

It is well known that ¢; and ¢, can be expressed, as:

Table 1
KM algorithms for computing the centroid end-points of an IT2 FS, A [5,13,17].

Step? KM algorithm for ¢

o= minW‘E [E:(X,)#:(X,)} (Z?’:m 0i/31 Hi)

KM algorithm for c,

¢y = max

e [g;(xf).u;(xf)] (ZL X0/ N, 9i)

1 Initialize 6; by setting 0; = [E;(Xi) + ,u;(xi)} /2,i=1,2...,N and then compute ¢’ = c(0;,0y,...,0n) = SN 0| />N, 0;.

2 Find K'(1 <k <N —1) such that x, < ¢’ <xp_;.

3 Set 0; = ﬂ;(xi) wheni< Kk, and §; = E;(Xf) wheni > k' +1,and then Set 0; = H;(xi) wheni< K, and 0; = ,u;(xi) wheni > k' +1, and then
compute compute
alk) = ZZ o, oK) = ZZO” A

4 Check if c,(k’) c. If yes, stop and set ¢,(k')=c;and k' = L. If no, go to  Check if c (k') = c'. If yes, stop and set ¢,(k’) = ¢, and k' = R. If no, go to
Step 5. Step 5.

5 Set ¢’ = ¢(k’) and go to Step 2. Set ¢’ = ¢,(k’) and go to Step 2.

2 Note that x; <x <--- < Xp.
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Table 2
EKM algorithms for computing the centroid end-points of an IT2 FS, A [17,24].
Step* EKM algorithm for ¢ EKM algorithm for c,
. N N N N
¢; = min i1 Xi0i /> 111 0; ¢y = max i1 Xi6i/> ii16;
: e [t )| (ot o) ' e [0 (/21 0)
A A A A
1 Set k = [N/2.4](the nearest integer to N/2.4) and compute: Set k = [N/1.7](the nearest integer to N/1.7) and compute:
o= Z:'(:]Xi,a;(xi) + Z?’:,<+1Xiﬁ;(xi)~, o= Zf'(:lxiﬁg(xi) + Z?Lkﬂxiﬂ;("i%
B = ST (%) + il iy (). B =S 1 (%) + il Py (%),
Compute ¢’ = ofp.
2 Find k' € [1,N — 1] such that x,y < ¢ <Xxp ;.
3 Check if k' = k. If yes, stop and set ¢’ = ¢;and k = L. If no, go to Step 4. Check if k' = k. If yes, stop and set ¢ = ¢, and k = R. If no, go to Step 4.
4 Compute s = sign(k’ — k) and: Compute s = sign(k’ — k) and:
o = ok S il (%) — (%0, o = o= s Xl (%) — ().
(kK / (k,k .
= B S [P () — (X)) B =B s B (k) — p ().
Compute c'"(kK)=0d[p.
5 Set ¢’ =c"(k')x= o,f=p" and k =Kk’ and go to Step 2.

¢ Note that x; <x, <--- <Xn.

ZL]X:‘,H;(XI') + Z?LLHXI’H;(XI‘)
€= SN N 9)
i1 M (xi) + Zi:L+1ﬁA (xi)
Ry i—(x. N T (X
G = S e MG (10)
2t M (X)) + 2 i1 b (xi)

where L and R are called switch points with x; < ¢; < X+ and xg < ¢; < Xg+1. The determination of L and R are performed by
using KM algorithms that are summarized in Table 1 [5,13,17].

Mendel and Liu [15] proved that the KM algorithms converge monotonically and super-exponentially fast. Recently, Wu
and Mendel [24] proposed Enhanced KM (EKM) algorithms, which are summarized in Table 2. The EKM algorithms improve
the KM algorithms in the following three ways [24]:

1. A better initialization method k = [N/2.4] for ¢; and k = [N/1.7] for c, is used to reduce the number of iterations;

2. A subtle computing techniques is used to reduce the computational cost of each of the algorithm’s iterations by using
intermediate values a, b, in which only the differences of the sum operator are computed in every new iteration; and,

3. The termination condition of the iterations is changed from c(k) = ¢’ in Step 4 to k' = k in Step 3, which saves the compu-
tation of the last iteration.

3. On the Initializations of KM and EKM Algorithms
3.1. Continuous KM and EKM Algorithms

Continuous KM algorithms [18,19] were proposed for studying the theoretical properties of IT2 FS centroid computations.
They can also be found in [15].

Observing the relationships between (7) and (9), and (8) and (10), ¢; and ¢, can be expressed as:

SN (%) + zﬁmx-w(xf)

- gin 40, g , )
o S )+ 3 )
i=k+1
im1 X (Xi) + D i Xil (X
6= max (k)= max i ) ZN“?”A( ) (12)
B S ST U NS S Iy

We assume all the x;s are different, and a = x; <x, <--- <xy=Db, where g, b are the left-hand (smallest) and the right-hand
(largest) sampled values, respectively.? Then, the continuous versions of (11) and (12) are

2 As noted in [19, p. 363], if Gaussian MFs are used, the theoretical results can be extended to a - — oo, b — + oo; but, in practice and in algorithm design,
when truncations are used, a and b are again finite numbers.
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b
j X[i~(x)dX + J: Xp(x)dx

¢ = min i —— , 13
*e[abﬁ( o= abl fg,u~ X) dx—s—ffﬁg(x)dx ()
XU~ (x)dx + b xi~(x)dx
¢, = maxf; (¢ _maxf 151 fgb ) . (14)
celab) selab] [° M (X)dx + [ fi(x)dx

From Table 1, continuous versions of the KM algorithms for ¢; and c,, which give the optimal solution of (13) and (14), can be
expressed as in Table 3. Similar expressions can also be found in [15,18,19] with infinite integral domain (—oo, + co) instead

of [a,b].
Using the notations of f; in (13) and f; in (14), from Steps 2 and 4 of Table 3, one can observe that
G=A() and & =1¢, (15)
=f(&) and ¢ =¢. (16)
These are fixed point iteration formulas, i.e. when iterations terminate at Step 3, ¢;= ¢ and ¢, = &, so that
=fla), o =fi(c). (17)

Note that ¢; and c, are the fixed points of fi(¢) and f,(&), respectively.
In the same way, continuous versions of EKM algorithms are given Table 4, for which the relationships of (17) still hold.

3.2. Theoretical interpretations of KM algorithm and EKM algorithm initialization methods

In this subsection, new interpretations are provided for the initialization methods of the KM and EKM algorithms that are
given in Tables 1 and 2, whose continuous forms are in Tables 3 and 4, respectively. In addition, a new initialization method

Table 3
Continuous KM (CKM) algorithms for computing the centroid end-points of an IT2 FS, A.
Step CKM algorithm for ¢ CKM algorithm for c,
. fb X0(x)dx J ” x0(x)dx
€1 = MMV =0 fi- ()] [ owx Cr = MAXYo(E(p~(x). =) Powax
1 _ s . ” fbx()(x)dx
Let 0(x) = (u~(x) + [~(x))/2, and compute the initial value &, as & = ¢ .
A A [ﬂ 0(x)dx
2 Set 0(x) = p;(x) when x < &, and 0(x) = H;(x) when x > &, and then Set 0(x) = H;(X) when x < ¢, and 0(x) = ,a;(x) when x > ¢, and then
compute compute
. [ xodx [P xodx
o= j: 0(x)dx cr = J: v,
3 Check if |¢" — &| < & (& is a given error bound of the algorithms). If yes, Check if |¢ — &| < ¢ (¢ is a given error bound of the algorithms). If yes,
stop and set ¢; = &.. If no, go to Step 4. stop and set ¢, = &. If no, go to Step 4.
4 Set & = ¢ and go to Step 2. Set ¢ = ¢, and go to Step 2.
Table 4 ~
Continuous EKM (CEKM) algorithms for computing the centroid end-points of an IT2 FS, A.
Step CEKM algorithm for ¢ CEKM algorithm for c,
. [ x0(x)dx 7 x0(x)dx
€ = MiNyp(x)e [4~(x) (x)] j: B00dx Cr = maXV0<X>E[L§(X)-‘7‘;<X>] f: 0@dx
12 Set c=a+ (b — a)/2.4, and compute Setc=a+ (b - a)/1.7, and compute
o= X[ (X)dx + s Xtz (x)dx, o= [ Xt (x)dx + Is X[tz (x)dx,
B= s [ (x)dx + Is p(x)dx. =/ X (x)dx + Ix X[ (x)dx
Compute ¢’ = o/p.
2 Check if |¢ — c| < ¢ (¢ is a given error bound of the algorithms). If yes, Check if |c’ — c| < € (¢ is a given error bound of the algorithms). If yes,
stop and set ¢’ = c;. If no, go to Step 4. stop and set ¢’ =c,. If no, go to Step 4.
3 Compute s = sign(c’ — c) and: Compute s = sign(c’ — c) and:
o =o+s [mee) x [,u~( ) — 1 (x) | dx, o =0 —s [ X (%) = s (x))dx
B =p+s fmms (%) — g (x)]dx. B =p—sfmmes) [ (%) — p ()] dx

Compute ¢’ =o'[f.
4 Setc=c,c=c",a=0a’', = and go to Step 2.

2 The initialization step utilizes the shift-invariant property of computing the centroid of an IT2 FS [19], i. e. one can always set a = 0, so that the total
sample number N corresponds to the integral length b — a.
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is provided which combines the initialization methods of these algorithms, and includes the Tables 1 and 2 initialization
methods as special cases.

For the purpose of algorithm initialization, suppose H;(x) = ,a;(x) =0(x) for all xe<|a,b]; then, observe that
0(x) = (EZ(X) + ,a;(x))/Z, which agrees with Step 1 in Table 3. In this case, (13) and (14) become the same, so that

b (BN
aq=c fabxé)(x)dx fax( i ) ) (18)
=5 =" - [=()+Te-(x) :
f;] H(X)dX j‘é’ —A - A dx
(18) is the continuous KM algorithm’s initialization method given in Table 3, denoted here as &*;
b
x0(x)dx
£ fab (x)dx (19)
Ja 0(x)dx
where 0(x) = (U~ (x) + ,u;(x))/z.
The discrete ?orm of @V is found in Steps 1 and 2 in Table 1, and is
N —
CXi(p~ (%) 4+ o~ (X
KD = { kixg < Z"N] () flﬂ( ) <X, 1<k<N-1Y. (20)
Dlim (M (1) + [ (x1))

This KM algorithm initialization method should provide good results when p~(x) and fi~(x) are very close to each other, be-
cause we have just shown that it becomes the exact optimal solution of (1§5‘ or (14) when U~(x) = i~(x).

Next, we give interpretations of the initialization methods for EKM algorithms, and show | that its initialization methods
are based on the difference between H;(X) and ﬂ;(x). Suppose now that

J; By (odx
W—P- (21)

Note that p > 1, because E;(X) < ﬁ;(x) for all x € [a,b]. Suppose, also, for the purpose of initializing the EKM algorithmes, it is
assumed that HZ(X) and ,u;(x) are constants for all x € [a,b], namely H}(X) =m > 0 and ,u;(x) = pm, so that (21) is satisfied.
Then, from (13),

& T b ¢ 4 o
o X ()dx + [} xp(x)dx _ [> pmxdx + ff mxdx _ J; pxdx + fb Xdx  p(&® —a?) + (b* - &)

i) = Ja B (x)dx + S fodx [ pmdx+ [Pmdx [ pdx+ [Pdx  2(p(E—a)+(b=0)’
so that
2 2

2(p(¢ - a)+ (b~ &)’
Setting f/(¢) = 0, it follows that:

b-¢* _
a7
b-¢
m =/p. (23)
Solving (23) for &, one obtains
_b+ayp b-a
RARES W Al B .

From (22), it can be verified that for all ¢ € [a, &), f/(£) <0, and for all ¢ € (&,b),f/(£) > 0, so & is the minimum value of f(¢)
for ¢ € [a,b]. It can also be verified that fi(¢;) = &, which means that ¢; = f(&) = &, confirming the relationship for ¢; in (17).
Proceeding in a similar manner in (14), it follows, that

(& -a)+pb’ - &)

MO == a+ =9
so that
. 2 2

2((¢—a)+pb-¢))
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Setting f/(&) = 0, it follows that:

b-9*_1

(E-a? P

b-¢

i v 1/p. (26)
Solving (26) for &, one obtains

g -bravlp_,, b-a (27)

S 1+/1/p 1+ /1/p

From (25), it can be verified that for for all ¢ € [a, &,),f/(¢) > 0, and for all ¢ € (&, b),f/(¢) < 0, so & is the maximum value of
f{(&) for € € [a,b]. It can also be verified that f(&,) = &, which means c, = f(&,) = &, confirming the relationship for ¢, in (17).
Combining (24) and (27) together, our new initialization method for ¢, denoted &), is:

a+ L4 for ¢,
=0 (28)
a-—+ m (0] Cr.
Because p > 1, it follows that ¢® < a+1(b—a) for ¢, and ¢? > a+1(b - a) for c,.
Based on the footnote of Table 4, letting a = 0 (or by comparing the initialization expressions in Table 2 for the EKM algo-
rithms and in Table 4 for the CEKM algorithms, the discrete form of (28) is:

K _ IN/(1+p)]  forc, 29)
[N/(1++/1/p)] forc:.
where
Zi]ﬂ;("i)
BESLTN 30
S ey 30)
When p =2,
1+p=1+V2~24, (31)
1+/1/p=1+/1/2=1+v2/2~17. (32)
so that (28) and (29) become
.2 _Ja+(b—-a)/24 forc,
2= {a+(b—a)/1.7 for c,. (33)
@ _ [IN/2.4] for ¢,
k' = { IN/1.7] for c,. (34)

These are the initialization methods for the CEKM and EKM algorithms that are given in Tables 4 and 2, respectively.

Wu and Mendel [24] determined EKM algorithm initialization parameters Ly = [N/2.4] and Rq =[N/1.7] from empirical
simulations. Observe that their results coincides with (29) when p = 2, which means that their EKM algorithm initialization
parameter can be seen as a special case of our initialization method.

From the above analyses, observe that the KM algorithm initialization method éf)” and k™ in (19) and (20) should be suit-
able when i~(x) and fi~(x) are very close; and, our just proposed new initialization method ¢ and k® in (28) and (29)
=A A ) . L
should be suitable when the differences between E;(x) and E;(x) are large. In practice, one can take a combination of both

initialization algorithms by using a parameter «, i.e.:

{ O =1 —o)eM +aé®  for continuous algorithms, (35)

kK® =[(1 - k" + ak®] for discrete algorithms.

where o € [0,1]. In general, o weights the difference between H;{(X) and [t~(x). One can choose o = 1/2 to simultaneously take
equal advantage of these two initialization methods. Of course, with some additional data, it may be possible to optimize « in
order to obtain a better initialization.

We have tested the new initialization method (35) with many examples. Although our results show that using (35) can
improve the initiation to the optimal solution, (35) is not as simple as the EKM algorithm’s initialization method. Further-
more, we have observed that (35) can only improve the total computation cost for problems whose total iteration number is
greater than 6. Consequently, in the rest of this paper, we continue to use the EKM algorithm’s initialization method.
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Based on this decision, one may view the results in this section as providing a mathematical derivation of the EKM algo-
rithm’s empirical initialization results that were observed by Wu and Mendel [24].

4. Weighted EKM algorithms

To date, the CKM algorithms in Table 3 (or their somewhat different forms in [15,18,19]) have only been used to obtain a
better theoretical understanding of KM (EKM) algorithms. In this section, we obtain a new class of EKM algorithms, called
weighted EKM algorithms-WEKM algorithms, whose results can be compared with the EKM algorithms.

WEKM algorithms are numerical implementations of CEKM algorithms. Comparing the KM algorithms in Table 1 and the
continuous KM algorithms in Table 3, and the corresponding EKM algorithms in Tables 2 and 4, observe that the sum oper-
ations in the KM (EKM) algorithms at the sampling points x; play the role of integration of the corresponding functions. Using
the general quadrature formula (1), one can assign weights w; to the membership function values at sampling points x;, and
obtain more accurate values of ¢; and c,. In this way, we extended the EKM algorithms to weighted EKM (WEKM) algorithms,
as given in Table 5.

The EKM algorithms are a special case of WEKM algorithms when w; = 1(i = 1,2,...,N). In Table 5, there are various weight
assignment methods according to the quadrature formula (1) [9]. Here, we only give the weight assignment methods for the
three numerical integration methods described in Section 2: Trapezoidal Rule, Simpson’s Rule and Simpson’s 3/8 Rule, whose
quadrature formulas are (3), (4) and (6), respectively. The corresponding WEKM algorithms are called TWEKM, SWEKM and
S3/8WEKM algorithms, respectively. Table 6 gives the weight assignment methods on the EKM, TWEKM, SWEKM and S3/
8WEKM algorithms. For all three WEKM algorithms, the sampling points are distributed evenly in [a,b] with
Xi=a+i%(b—a),i=1,2,...,N, according to Theorems 1-3.

In Table 6, except for the weight assignment method of the EKM, the three WEKM algorithm’s weight assignment meth-
ods are obtained from (3)-(6) using the following steps:

1. x(k=0,1,...,m) and xo = a, X, =b in (3); x(k=0,1,...,2m) and Xy = a, X, = b in (4); and x,(k=0,1,...,
X3m = b in (6), are each replaced by x,(i=1,2,...,N) and x; =a, xy = b.

3m) and xq =aq,

Table 5
Weighted EKM (WEKM) algorithms for computing the centroid end-points of IT2 FS, A,.

Step?

WEKM algorithm for ¢

Z, 1wp(,l),
Z, Wil

€ = My, fu(x,) i x,)]
—A A

WEKM algorithm for ¢,

Z| Iw,x,(),
Z’ Wil

Cr = MaXvy;e (i~ (x),i~(x,)]
—A A

Set k = [N/2.4](the nearest integer to N/2.4) and compute:
o = S Wiifes (%) + S Wikift (%),

Zf ]Wx Xl) + 21 I<+]W1,UA (Xi)'
Compute c= oz//f

Set k = [N/1.7](the nearest integer to N/1.7) and compute:
o= Zfﬂwixiﬁg(xi) + Zﬁimwi?‘iﬂ;(xi)-,

p= Zf‘ﬂwiﬁ;(&') + Zﬁmwzﬂ;(xi)-

2 Find k' € [1,N — 1] such that x,; <’ <Xp,q.
3 Check if k' = k. If yes, stop and set ¢ = ¢;and k=L. If no, go to Step 4. Check if k' = k. If yes, stop and set ¢’ = c, and k = R. If no, go to Step 4.
4 Compute s = sign(k’ — k) and: Compute s = sign(k’ — k) and:
o = o4 SR W[ (%) — (), o = o — SR W[ (%) — i (),
B = Bt Sl Wilkt (%) = 15 (). B = B =SSk Wilk (%) — p5 (x).
Compute ¢’ =o/[f.
5 Set ¢ =c",a=0o, =4 and k =k’ and go to Step 2.

2 Note that x; <x; < --- <X

Table 6

Weight assignment methods of WEKM (EKM) algorithms.

Algorithms Integration Rule Weight value
EKM - w;=1(i=1,2,...,N)
TWEKM Trapezoidal Rule 1/2 1f i=1,N,
{ ifi=1,N.
SWEKM Simpson’s Rule 1/2 ifi=1,N
{ ifi=1mod %2) and i # 1,N,
if i=0mod (2) and i # N.
S3/8WEKM Simpson’s 3/8 Rule 1/3 ifi=1,N

2/3 if i=1mod(3) and i # 1,N,
if i=2 mod(3) and i # N,
if i=0 mod(3) and i # N.

2mod is modular arithmetic operator. i = j mod (d) means i = nd + j, where n is an integer.
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2. The common coefficients of h (i. e., h/2,h/3,3h/8) in (3), (4), and (6) are neglected because they cancel in the quotient of
two integrals in Table 4.

3. The TWEKM and SWEKM algorithm weight values in Table 6 also use one-half of the coefficients in the parentheses of (3)
and (4), and the S3/8WEKM algorithm weight values use one-third of the coefficients in the parentheses of (6).

4. The number of points N of SWEKM and S3/8WEKM algorithms are not restricted to N=2m+1 and N=3m+1 (i. e.,
N=1mod (2) and N = 1mod (3)), as (4) and (6) require.

According to the relationships between Table 6 and (3)-(6), the TWEKM, SWEKM and S3/8WEKM algorithms approxi-
mate the numerical integrations of the membership functions with polynomials of order n=1, 2, 3, respectively, which
are special cases of the Newton-Cotes formula, as explained in Section 2.1.

Remark 1. In theory, any degree n Newton-Cotes formula could be used to obtain more general WEKM algorithms;
however, for large n, numerical integration can sometimes suffer from catastrophic Runge’s phenomenon, where the error
grows when n increases, which is contrary to the goal of approximation theory [9].

Regarding which of the WEKM algorithms to use, one should first observe the nonlinear nature of the upper and lower
membership functions, and then select approximate numerical integration rules for the WEKM algorithms. Because of the
piecewise integrals of the LMF and UMF in Tables 3 and 4, one could also mix more than one Table 6 weight assignment
method depending upon the natures of the LMF and UMF.

The relationships between the CEKM algorithms in Table 4 and WEKM algorithms in Table 5 for computing the centroid of
IT2 FS are that:

1. WEKM algorithms compute the centroid value based on the addition operations applied to sample data x,(i=1,2,...,N),
and find the optimal switch points as the approximation of the centroid value when the iteration terminates. CEKM algo-
rithms compute the centroid value using integral operations and obtain the exact centroid values of an IT2 FS. The solu-
tion of WEKM algorithms approaches to that of CEKM algorithms when the sample size N — + co.

2. For WEKM algorithms, more accurate results are obtained by increasing the sample size N. For CEKM algorithms, more
accurate results are obtained by setting a smaller accuracy level ¢ to control the differences between two adjacent iter-
ation values.

3. WEKM algorithms are computed numerically with addition operations, whereas CEKM algorithms are computed symbol-
ically with integral operations. WEKM algorithms are numerical implementations of CEKM algorithms using numerical
integration methods.

5. Experimental evaluation of the proposed methods
5.1. Introduction

In this section, centroid computations are considered for the four IT2 FSs 31 ~ 34 in Table 7, that correspond to the FOUs
used in the examples in [15,16].

For A; ~ A4, if the FOUs of these IT2 FSs are approximated with different order polynomials, and the order of polynomials
is used to describe the linear-nonlinear properties of these FOUs, it can be observed intuitively that the nonlinear property
becomes greater from A; to A4, which means the higher order polynomials are required to approximate the FOUs in the se-
quence of A; to A4. This is used to explain the performances of the three kinds of WEKM algorithms and EKM algorithms
below.

As in [15], the algorithms are only illustrated for computing c;,, because the results for c, are very similar to those for c;.

5.2. Accuracy performance comparison and analysis

From footnote 2 on page 5, the centroid computation of IT2 FS can always be limited to a finite domain [a,b]; the contin-
uous EKM (CEKM) algorithms in Table 4 can be used to compute the exact centroid value of an IT2 FS. The exact centroid
computations for A; ~ A4 using CEKM algorithms are given in Table 8. The same value in the last two iterations corresponds
to the termination conditions of the algorithms in Table 4.

The exact left centroid values of these IT2 FSs are:

¢/ (Ay) =3.660534, cj(A;)=0.445924, c;(As)=3.155741, c;(A4)=3.595542.

The performances of WEKM algorithms are studied next.

When the number of samples, N is fixed, [x1,xy] = [a,b] where x; = x; +i=%(b—a),i=1,2,...,N. N ranges from 100 to
2000 with step length equal to 100.

Computation results are given in Figs. 1-4. Part (a) of each figure gives ¢, versus N for EKM algorithms and the three
WEKM algorithms (TWEKM, SWEKM and S3/8WEKM), so that one can observe the convergence process to c; as N increases.
Part (b) of each figure gives absolute error |c
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Table 7
IT2 FS examples.

MF Type MF Expression MF Plot

(1) Piecewise H
linear MFs -

[16] (x-1)/2 if1<x<3,] [(x=2)/5 if2<x<86, !
By () =maxg | (7-x)/4 if4<x<7 | [(16-2%)/5 if6<x<8,
' 0 otherwise. 0 otherwise.

x-1)/6 if1<x<3,] [(x-3)/6 if2<x<5, N
,u;(x)max{{ﬂx)/G if3<x<7} [(8 X)/9 if5<x<8,”

5 10

0 otherwise. 0 otherwise.

(2) Triangular

LMF and _ 06(:5) .
Gaussian - (X) _ T if xe [—5,2.6},
UMF [15] A, 0.4(1;17)() lf X e [267 14}

exp[-1(:2)°] if xe[-5,7.185]

5

fe (X) =
Ay 1(x=9\2]
exp|-1(9)°] if xe[7.185,14)
(3) Piecewise "
Gaussian _ 1L
MFs [16] ,u; (x) = max{exp [ } 0.8 exp [ H
3 [0,10] |
[t (x) = max {0.5 exp [— } 0.4exp [ e ” 05
L 3 .
T T
o 5 10
(4) Gaussian H
MFs with ) 1k
i ~ — _1(x=5
uncertain g (0 =exp [~ ()]
dle;,natlon 5 € [0,10]. o
] _ 1(x=5 SF
1l f, (1) =exp | =5 (i53) }
»
T T
o 5 10
Table 8
CEKM algorithms iterations for ¢; with & =107,
t? 0 1 2 3 4 5
AT] 3.916667 3.664327 3.660535 3.660534 3.660534
7\2 2.916667 0.761481 0.452688 0.445927 0.445924 0.445924
;\3 4.166667 3.222779 3.156043 3.155741 3.155741
A4 4.166667 3.663813 3.596623 3.595542 3.595542

2 tis the iteration number. t = 0 corresponds to the initialization step.

algorithm can be observed more clearly. Part (¢) of each figure gives ¢ for the three WEKM algorithms in the same way as
part (a), but with a magnified scale. Part (d) of each figure gives absolute error |c;
part (b) also with a magnified scale. Parts (a) and (b) are mainly used to compare the performances of EKM algorithms and
the three WEKM algorithms, whereas parts (c) and (d) are used to compare the performances of the three WEKM algorithms.

To measure the performance of each algorithm for A; (i =1,...,4), for each sample size N the relative error \C, -
was computed. The average of the relative errors |c; — ¢} i(i=1,...,4)is given in Table 9.
The last line of Table 9 gives the overall average of the relative errors, averaged over the four A; for each algorithm.

From Figs. 1-4 and Table 9, observe that:

1. From parts (a) and (b) of Figs. 1-4, except for Ay, all WEKM algorithms lead to smaller absolute errors than the EKM algo-
rithms, and they also converge to the accurate values faster than do the EKM algorithms. The reason for both of these results
is that the EKM algorithms only use a simple sum. Both EKM and WEKM algorithms for A; are very good due to the linear
property of the FOU of A,(this is discussed further in Item 2(d)). From Table 9, the biggest average relative error for EKM
algorithms is 1.4141%, while the biggest average relative error for WEKM algorithms is 0.0038%. In a similar way, the
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Table 9

Average of the relative errors |, — ¢;|/|c; |, for N=100 to 2000.
Algorithms EKM TWEKM SWEKM S3/8WEKM
A 0.000002 0.000002 0.000001 0.000007
A, 0.014141° 0.000028 0.000002 0.000038
As 0.000779 0.000002 0.000002 0.000001
A4 0.000093 0.000006 0.000002 0.000003
Overall average 0.003754 0.000010 0.000002 0.000012

2 Bold-faced numbers are explained in the text.

overall average relative error of EKM algorithms for all IT2 FSs is 0.3754%, whereas the overall average relative error of

WEKM algorithms for all IT2 FSs is less than 0.0012%. This implies that the computational accuracy of WEKM algorithms

is greatly improved over the EKM algorithms. Comparing the vertical axis scales of Figs. 1-4, from parts (a) and (b), one

can observe that the error bounds of EKM algorithms are different for different IT2 FSs, but from parts (c) and (d), the
error bounds of WEKM algorithms for different IT2 FSs are on the same scale. This means that WEKM algorithms also have
better error stability than EKM algorithms.

2. From parts (c) and (d) of Figs. 1-4, the statistics of Table 9, and recalling that TWEKM, SWEKM and S3/8WEKM algorithms
approximate membership functions with polynomial orders 1(linear), 2 (quadratic) and 3 (cubic), respectively:

(a) For Ay in Fig. 1, the results of linear polynomial approximation TWEKM algorithms and quadratic polynomial approx-
imation SWEKM algorithms are very close, and both are better than that of S3/8WEKM algorithms. The cubic poly-
nomial approximation of S3/8WEKM algorithms seems unsuitable because of A;’s piecewise linear lower and
upper membership functions. The linearity of the membership functions can also be used to explain why the non-
weighted EKM algorithms for A; has almost the same good results as the TWEKM algorithms in Fig. 1 (a)and (b).

(b) For A, in Fig. 2, all three WEKM algorithms have very good performances (Fig. 2 (a), (b)), and SWEKM algorithms per-
forms the best among them (Fig. 2 (c), (d)). Because of its mixed linear LMF and nonlinear UMF, both the linear
approximation of TWEKM algorithms and cubic polynomial approximation of S3/8WEKM algorithm are not the best
choices.

(c) For As in Fig. 3, all three WEKM algorithms have very good performances (Fig. 3(a) and (b)), but the S3/8WEKM algo-
rithms performs the best among them (Fig. 3(c) and (d)), which is different from the case of A,. The nonlinear nature
of As is greater than A,, and that of A; is greater than A, (see Table 7). This can be used to explain why the SWEKM
algorithms is the best choice for A,, and the S3/8WEKM algorithm is the best choice for As;. On the other hand, for A,
the S3/8WEKM algorithm is the worst choice because of the Runge’s phenomenon described in Remark 1.

(d) For A4 in Fig. 4, the three WEKM algorithms still greatly outperform the EKM algorithms. The results of SWEKM and
S3/8WEKM algorithms are very good and similar, but the linear polynomial approximation of TWEKM algorithms
become the worst of all the WEKM algorithms. This is contrary to the case of A;, where the cubic polynomial approx-
imation of S3/8WEKM algorithms performs the worst. The reason for this is the cubic polynomial approximation of
S3/8WEKM algorithm over-fits for the linear FOU of A;, and the linear approximation of TWEKM algorithms under-fit
the nonlinear FOU of A4.

In summary, from A; to Ay, as the nonlinear nature of the FOU increases, the WEKM algorithms also perform better and better
consistent with the nature of the higher order of polynomials in the sequence of EKM, TWEKM, SWEKM, S3/8WEKM.
In general, there are two ways to view these centroid computations:

1. Approximation theory, where one wants to obtain high-precision results. To accomplish this, one may have to adjust the
sample rate (1/N), and choose the best algorithm.

2. Fuzzy logic system (FLS) applications, where an FOU is created prior to type reduction. Now, one must fix the sampling
rate (1/N) in advance because of design constraints, and has to then choose the best algorithm.

In the former case, our examples indicate that WEKM algorithms at N = 300 have smaller errors than the results of EKM
algorithms even at N = 10000. This means that WEKM algorithms may obtain nearly exact centroid values with much less

Table 10

Average of the relative errors |, — c;|/|c;| for N =100 to 500.
Algorithms EKM TWEKM SWEKM S3/8WEKM
A, 0.000007 0.000007 0.000004 0.000028
A, 0.035899° 0.000099 0.000006 0.000131
As 0.001973 0.000008 0.000006 0.000002
Ag 0.000229 0.000024 0.000008 0.000009
Overall average 0.009527 0.000034 0.000006 0.000042

2 Bold-faced numbers are explained in the text.
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data sampling than required by the EKM algorithms, and with a precision the latter can not attain. In the latter case, the
WEKM algorithms appear to be vastly superior to the EKM algorithms, especially when N is small, e.g. N € [100,500], which
can be observed clearly from Figs. 2-4(a) and (b), whose statistics are summarized in Table 10.

From Table 10, the biggest average relative error for EKM algorithms is 3.5899%, whereas the biggest average relative
error for WEKM algorithms is 0.0131%. In a similar way, the overall average relative error of EKM algorithms for all IT2
FSs is 0.9527%, whereas the overall average relative error of WEKM algorithms for all IT2 FSs is less than 0.0042%.

Note, finally, that if one has a FLS for which accuracy may not be important, then EKM algorithms will give acceptable
results.

5.3. Computation time comparisons and analysis

Next, we compare the computation times for these algorithms, something that is useful in applications, especially for
those that have real-time requirements. Unlike the computation of ¢, in Figs. 1-4, where one always gets the same results
that are independent of the hardware and software environments, the computing times of the algorithms are not exactly
repeatable. Simulations were conducted to examine the performance of our algorithms. The platform used is Microsoft
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Table 11
Least squares computation time regression model coefficients for the four algorithms.
Regression EKM TWEKM SWEKM S3/8WEKM
Coefficients c/107> o/1078 c/107° o/1078 c/107° o/1078 c/107° o/1078
7\1 5.291 3.261 5.713 3.428 6.172 6.339 6.181 5.775
Az 6.714 3.261 7.727 3.409 8.317 6.403 8.172 5.882
7;3 7.106 2.261 7.353 2.463 7.766 5.406 7.804 4928
]\4 6.909 2.239 7.389 2.409 7.765 5.368 7.870 4.839
Average 6.505 2.756 7.046 2.927 7.505 5.879 7.057 5.356
Table 12
Recommended algorithms for different application purposes.
Case Approximation theory FLS
Linear MFs (TW) EKM (TW) EKM
Nonlinear MFs S (3/8) WEKM S (3/8) WEKM
Mixture MFs SWEKM TWEKM

(TW) EKM means EKM or TWEKM; S (3/8) WEKM means SWEKM or S3/8WEKM.

Windows XP Professional, Version2002, Service Pack 3, Intel (R) Core (2) DUO CPU, E8400@3.00 GHz, 2.99 GHz, 3.25 Gb RAM.
The algorithms were programmed with Matlab 2009b. Figs. 5-8 show the total computation times for N = 100,200,...,2000,
which were obtained using Matlab time functions tic and toc in seconds.

Observe that, if the fluctuations of computation times for different N are not considered, the computation times of these
algorithms approximately change with the sampling size N in a linear way. The least squares regression models t = ¢ + aN for
these algorithms can be obtained, with the coefficients listed in Table 11.

From Figs. 5-8 and Table 11, one observes that EKM and TWEKM algorithms are very similar, and those of SWEKM and
S3/8WEKM algorithms are also very similar because of their similar weight assignment methods in Table 6. The computation
time of EKM algorithms is slightly better than TWEKM algorithms because of the weight assignment values at the two end
points. The computation time of S3/8EKM algorithms is also slightly better than SWEKM algorithms because the former has a
relatively simpler weight assignment method than the latter. If these four kinds of algorithms are classified into two families,
the computation times of the SWEKM and S3/8WEI(M algorithms are less than double those of the EKM and TWEKM algo-
rithms. The difference ratios of these four algorlthms for A1 , Az, A37A4 range between 18% ~ 27% at N =100 and 70% ~ 72% at
N =2000.

5.4. Algorithm recommendations for applications

From the computational accuracy statistics in Tables 9 and 10, one observes that, the SWEKM algorithms are the best
choice if only the accuracy requirement is considered. Considering computational accuracy statistics in Tables 9 and 10
and computational times in Figs. 5-8 together, the recommended centroid IT2 FS computation algorithms for approximation
and FLS application purposes are given in Table 12. The former requires high-precision and the sampling rate (1/N) is

3 The difference ratios are computed as (maxi-1,. _4{t;} — mini;. . 4{t;})/mini_4{t;}, where t(i=1,...,4) are the computation time of these four algorithms.
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changeable, and the latter may require real-time computation and the sampling rate (1/N) is usually fixed (during the design
of the FLS). N

The linear membership function case of Table 12 is A;, whose computation results are shown in Figs. 1 and 5 for such an
FOU. The non-weighted EKM algorithms or linear weighted TWEKM algorithms are recommended; both have similar com-
putation results and computation time. The nonlinear membership function cases of Table 12 are A; and A4, whose compu-
tation results are shown in Figs. 3, 4 and 7, 8. The quadratic weighted SWEKM algorithms or cubic weighted S3/8WEKM
algorithms are recommended, also because of their similar computation results and computation time. The mixed linear
and nonlinear membership function case of Table 12 is A,, whose computing results are shown in Figs. 2 and 6. SWEKM algo-
rithms are recommended for best approximation results, but TWEKM algorithms are recommended for FLS applications
where the approximation accuracy and computation time must be considered simultaneously.

From Figs. 5-8, the centroid computation of IT2 FSs is very fast, i.e. the times are within 3 x 107 seconds. This strongly
suggests that our algorithms can be used in fuzzy logic control systems, where centroid type reduction is usually avoided
because of its iterative nature.

Finally, it should be noted that, in comparisons between EKM and WEKM algorithms, we have only concentrated on the
theoretical performances of the algorithms. From the numerical examples, for very high accuracy, we can see that the family
of WEKM algorithms can greatly improve the accuracy over EKM algorithms using the same number of sample points; or, the
samples points can be greatly reduced for the WEKM algorithms over the EKM algorithms to obtain the same accuracy. How-
ever, if the accuracy requirement is not very high, such as two significant figures, then the simple EKM algorithms provide
good enough results, i.e. WEKM algorithms and EKM algorithms return the same results. WEKM maybe not always needed
and their advantages can not be demonstrated.

6. Conclusions

After comparing discrete and continuous KM (EKM) algorithms, a theoretical explanation for the initialization methods of
both KM and EKM algorithms has been provided. Continuous KM and EKM algorithms have been used to compute the exact
centroid values of an IT2 FS. EKM algorithms have been extended to weighted EKM (WEKM) algorithms using quadrature
formulas from numerical integration. Three weight assignment methods for WEKM algorithms have been proposed. Four
numerical examples have shown that, although the EKM and WEKM algorithms return the same values at low accuracy
requirements, if very high accuracy is needed, the WEKM algorithms have smaller absolute error and converge faster to
the exact centroid values of an IT2 FS than do EKM algorithms, for the same sampling rates. Recommended choices of a prop-
er centroid algorithm have been given at the end of Section 5, and depend on the nature of the LMF and UMF as well as
whether the centroid is to be used for approximation, where high accuracy is required, or for a FLS, where computations
are usually constrained by a pre-specified sampling rate.

Finally, it is important to understand that KM and EKM algorithms are also used for many other kinds of problems in
which the x;s are not naturally ordered and do not correspond to the sampled values of a continuous variable, e.g. interval
weighted average, fuzzy weighted average, linguistic weighted average and generalized centroid [8,17,22]. For such applica-
tions, there is no numerical integral integration for the KM (EKM) algorithms; hence the results of this paper can not be used
for such problems.
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