
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Study on enhanced Karnik–Mendel algorithms: Initialization explanations
and computation improvements q

Xinwang Liu a,b,⇑, Jerry M. Mendel b, Dongrui Wu b,c

a School of Economics and Management, Southeast University, Nanjing, Jiangsu 210096, China
b Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-2564, USA
c Industrial Artificial Intelligence Lab, GE Global Research, Niskayuna, NY 12309, USA

a r t i c l e i n f o

Article history:
Received 24 August 2010
Received in revised form 13 July 2011
Accepted 24 July 2011
Available online 11 August 2011

Keywords:
Enhanced Karnik–Mendel (EKM) algorithms
Weighted EKM (WEKM) algorithms
Interval type-2 fuzzy set (IT2 FS)
Numerical integration
Centroid computation

a b s t r a c t

Computing the centroid of an interval type-2 fuzzy set is an important operation in a type-
2 fuzzy logic system, and is usually implemented by Karnik–Mendel (KM) iterative algo-
rithms. By connecting KM algorithms and continuous KM algorithms together, this paper
gives theoretical explanations on the initialization methods of KM and Enhanced Karnik–
Mendel (EKM) algorithms, proposes exact methods for centroid computation of an interval
type-2 fuzzy set, and extends the Enhanced Karnik–Mendel (EKM) algorithms to three dif-
ferent forms of weighted EKM (WEKM) algorithms. It shows that EKM algorithms become a
special case of the WEKM algorithms when the weights of the latter are constant value. It
also shows that, in general, the weighted EKM algorithms have smaller absolute error and
faster convergence speed than the EKM algorithms which make them very attractive for
real-time applications of fuzzy logic system. Four numerical examples are used to illustrate
and analyze the performance of WEKM algorithms.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Interval type-2 fuzzy sets (IT2 FSs) are the most widely used type-2 fuzzy sets because they are computationally simple to
use. Karnik–Mendel (KM) algorithms originated for computing the centroid of IT2 FSs [5], have been used in many applica-
tions of T2 FSs, and play an important role in type-2 fuzzy logic systems [4,10,13,17].

Mendel [11] used KM algorithms to compute the derivatives in interval type-2 fuzzy logic systems. Wang et al. [21] used
KM algorithms for optimal training of interval type-2 fuzzy neural networks. Wu and Mendel [23,24] applied them to com-
pute uncertainty measures, such as rank, similarity, variance and skewness of IT2 FSs. Zhai and Mendel [28] use KM algo-
rithms to compute the uncertainty measures of general type-2 fuzzy sets. Liu and Mendel [8] proposed new a-cut
algorithms for solving the fuzzy weighted average (FWA) problem using KM algorithms. Compared with other FWA algo-
rithms [1–3,6], they showed that the KM algorithms are the fastest to date. Mendel and Wu [18] proposed the continuous
form of KM algorithms. Mendel and Liu [15] also used continuous KM algorithms for theoretical analyses, and proved mono-
tonicity and super-exponential convergence of the algorithms. This work laid a theoretical foundation for the application of
KM algorithms. Mendel [12] applied the KM algorithms to type-2 based computing with words. Wu and Mendel [22] used
KM algorithms to compute the linguistic weighted average (LWA) of IT2 FSs, and this has been integrated into perceptual
computing [17,25,26]. Liu [7] used KM algorithms for computing the centroid of a general type-2 fuzzy set based on the

0020-0255/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.ins.2011.07.042

q The work is supported by the National Natural Science Foundation of China (NSFC) under Projects 70771025 and 71171048.
⇑ Corresponding author at: School of Economics and Management, Southeast University, Nanjing, Jiangsu 210096, China.

E-mail addresses: xwliu@seu.edu.cn (X. Liu), mendel@sipi.usc.edu (J.M. Mendel), drwu09@gmail.com (D. Wu).

Information Sciences 184 (2012) 75–91

Contents lists available at SciVerse ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins



Author's personal copy

a-plane decomposition of such a fuzzy set, and Mendel et al. [16] used such KM algorithms to design a triangle quasi-type-2
fuzzy logic system. Similar to the a-plane method, Wagner and Hagras [20] used KM algorithms to compute the centroid of
the zSlices of general T2 FLSs in robot control problems. Finally, Wu and Mendel [24] proposed Enhanced KM (EKM) algo-
rithms to reduce the computational cost of the standard KM algorithms. Yeh et al. [27] give an extension of EKM to the gen-
eral type-reduction problem.

In this paper, we propose continuous KM and EKM algorithms for computing the centroid of an interval type-2 fuzzy set.
By comparing the sum operation of KM algorithms and the integral operation in the continuous KM algorithms, EKM algo-
rithms are extended to weighted EKM (WEKM) algorithms that use numerical integration techniques. The new WEKM algo-
rithms are more precise and converge faster to the exact centroid values of the IT2 Fs sets than the EKM algorithms, and they
include the EKM algorithms as a special case.

The organization of the paper is as follows. Section 2 gives preliminaries about numerical integration in numerical anal-
ysis, and KM and EKM algorithms for centroid computation of IT2 FSs. Section 3 provides theoretical explanations on the
initialization methods of KM and EKM algorithms. Section 4 proposes a method to compute the exact value of the centroid
of an IT2 FS, and three new WEKM algorithms with three different weight assignment methods. Section 5 compares the per-
formances of our four specific algorithms using four numerical examples. Section 6 summarizes the main results and draws
conclusions.

2. Preliminaries

2.1. Numerical integration

The goal of numerical integration is to approximate the definite integral of f(x) over the interval [a,b] by evaluating f(x) at
a finite number of sample points.1

Definition 1 (Quadrature formula). Suppose that a = x0 < x1 < � � � < xm = b. A formula of the form

Qðf Þ ¼
Xm

k¼0

wkf ðxkÞ ¼ w0f ðx0Þ þw1f ðx1Þ þw2f ðx2Þ þ � � � þwmf ðxmÞ ð1Þ

with the property thatZ b

a
f ðxÞdx ¼ Qðf Þ þ Eðf Þ ð2Þ

is called a numerical integration or quadrature formula. The term E[f] is called the truncation error for integration. The values
fxkgm

k¼0 are called the quadrature nodes and fwkgm
k¼0 are called the weights.

For all applications, it is necessary to know something about the accuracy of the numerical solution. This leads us to:

Definition 2. Degree of precisionThe degree of precision of a quadrature formula is the positive integer n such that E(Pi) = 0
for all polynomials Pi(x) of degree i 6 n, but for which E(Pi+1) – 0 for some polynomial Pi+1(x) of degree n + 1, that is,R b

a PiðxÞdx ¼ QðPiÞ when degree i 6 n, and
R b

a Piþ1ðxÞdx – QðPiþ1Þ when degree i = n + 1.

When the polynomial Pm(x) of degree m is used to approximate f(x), the integral of f(x) is approximated by the integral of
Pm(x), and the resulting formula is called a Newton–Cotes quadrature formula. For approximating polynomials of degree m = 1,
2, 3, this formula is called Trapezoidal Rule, Simpson’s Rule, and Simpson 3/8 Rule, respectively. Because of the non-smooth or
oscillatory nature of the function f(x) in [a,b], one usually splits [a,b] with quadrature nodes, and applies the composite New-
ton–Cotes quadrature formula. For these three rules, the quadrature nodes fxkgm

k¼0 are chosen to be equally spaced.
The following composite Trapezoidal Rule approximates f(x) using straight lines.

Theorem 1 (Composite Trapezoidal Rule). Consider y = f(x) over [a,b]. Suppose that the interval [a,b] is subdivided into m
subintervals fxk�1; xkgm

k¼1 of equal width h ¼ b�a
m by using the equally spaced nodes xk = x0 + kh for k = 0,1,2, . . . ,m. The numerical

approximation to the integral of f(x) with the composite Trapezoidal Rule isZ b

a
f ðxÞdx ¼ h

2
f ðaÞ þ f ðbÞ þ 2

Xm�1

k¼1

f ðxkÞ
 !

þ ETðf ;hÞ: ð3Þ

If f is second-order continuous differentiable on [a,b], i.e. f(x) 2 C2[a,b], the error term ETðf ;hÞ ¼ � ðb�aÞf 00ðnÞ
12 h2 ¼ Oðh2Þ, where

a < n < b, and O(h2) means that when the step size is reduced by a factor of 1/2 the error term ET(f,h) should be reduced by approx-
imately 1

2

� �2 ¼ 0:25.
Simpson’s Rule approximates f(x) using quadratic polynomial functions.

1 All the material in this section has been adapted from [9].

76 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

Theorem 2 (Composite Simpson’s Rule). Consider y = f(x) over [a,b]. Suppose that the interval [a,b] is subdivided into 2m
subintervals fxk�1; xkg2m

k¼1 of equal width h ¼ b�a
2m by using the equally spaced nodes xk = x0 + kh for k = 0,1,2, . . . ,2m. The numerical

approximation to the integral of f(x) with the composite Simpson’s Rule isZ b

a
f ðxÞdx ¼ h

3
f ðaÞ þ f ðbÞ þ 2

Xm�1

k¼1

f ðx2kÞ þ 4
Xm

k¼1

f ðx2k�1Þ
 !

þ ESðf ; hÞ: ð4Þ

If f is fourth-order continuous differentiable on [a,b], i.e. f(x) 2 C4[a,b], the error term ESðf ;hÞ ¼ � ðb�aÞf ð4ÞðnÞ
180 h4 ¼ Oðh4Þ, where

a < n < b, and O(h4) means that when the step size is reduced by a factor of 1/2 the error term ET(f,h) should be reduced by approx-
imately 1

2

� �4 ¼ 0:0625.
Simpson’s 3/8 Rule approximates f(x) using cubic polynomial functions.

Theorem 3 (Composite Simpson’s 3/8 Rule). Consider y = f(x) over [a,b]. Suppose that the interval [a,b] is subdivided into 3m
subintervals fxk�1; xkg3m

k¼1 of equal width h ¼ b�a
3m by using the equally spaced sample points xk = x0 + kh for k = 0,1,2, . . . , 3m. The

numerical approximation to the integral of f(x) with the composite Simpson’s 3/8 Rule isZ b

a
f ðxÞdx ¼ 3h

8

Xm

k¼1

ðf ðx3k�3Þ þ 3f ðx3k�2Þ þ 3f ðx3k�1Þ þ f ðx3kÞÞ þ ESCðf ; hÞ; ð5Þ

that isZ b

a
f ðxÞdx ¼ 3h

8
f ðaÞ þ f ðbÞ þ

Xm�1

k¼1

2f ðx3kÞ þ
Xm

k¼1

3f ðx3k�2Þ þ
Xm

k¼1

3f ðx3k�1Þ
 !

þ ESCðf ; hÞ: ð6Þ

If f is fourth-order continuous differentiable on [a,b], i.e. f(x) 2 C4[a,b], the error term ESCðf ;hÞ ¼ � ðb�aÞf ð4ÞðnÞ
80 h4 ¼ Oðh4Þ, where

a < n < b.
It should be noted that we have assumed all the integral functions in (4)–(6) are measurable, i.e. the integrals make sense

in a in Lebesgue sense.

2.2. Karnik–Mendel algorithms for computing the centroid of an IT2 FS

The Karnik–Mendel (KM) algorithms were developed to compute the centroid of an IT2 FS [5]. Let xi(i = 1,2 . . . ,N) repre-
sent the discretiztion of IT2 FS eA; leAðxiÞ and �leAðxiÞ are the lower and upper membership functions that are associated with eA
respectively. Using the wavy-slice representation theorem for a type-2 fuzzy set [14], the centroid of eA, ceA ¼ ½cl; cr �, can be
computed as the optimal solutions of the following interval weighted average problems [5,15]:

cl ¼ min
8hi2½leA ðxiÞ;�leA ðxiÞ�

PN
i¼1xihiPN

i¼1hi

; ð7Þ

cr ¼ max
8hi2½leA ðxiÞ;�leA ðxiÞ�

PN
i¼1xihiPN

i¼1hi

: ð8Þ

It is well known that cl and cr can be expressed, as:

Table 1
KM algorithms for computing the centroid end-points of an IT2 FS, eA [5,13,17].

Stepa KM algorithm for cl KM algorithm for cr

cl ¼min
8hi2 leA ðxiÞ;�leA ðxiÞ
h i PN

i¼1xihi=
PN

i¼1hi

� �
cr ¼max

8hi2 leA ðxiÞ;�leA ðxiÞ
h i PN

i¼1xihi=
PN

i¼1hi

� �
1 Initialize hi by setting hi ¼ leA ðxiÞ þ �leA ðxiÞ

h i
=2; i ¼ 1;2 . . . ;N and then compute c0 ¼ cðh1; h2; . . . ; hNÞ ¼

PN
i¼1xihij=

PN
i¼1hi .

2 Find k0(1 6 k0 6 N � 1) such that xk0 6 c0 6 xk0þ1.
3 Set hi ¼ �leA ðxiÞ when i 6 k0 , and hi ¼ leA ðxiÞ when i P k0 + 1, and then

compute

Set hi ¼ leA ðxiÞ when i 6 k0 , and hi ¼ �leA ðxiÞ when i P k0 + 1, and then

compute

clðk0Þ ¼
PN

i¼1
xihiPN

i¼1
hi

: crðk0Þ ¼
PN

i¼1
xihiPN

i¼1
hi

:

4 Check if cl(k0) = c0 . If yes, stop and set cl(k0) = cl and k0 = L. If no, go to
Step 5.

Check if cr(k0) = c0 . If yes, stop and set cr(k0) = cr and k0 = R. If no, go to
Step 5.

5 Set c0 = cl(k0) and go to Step 2. Set c0 = cr(k0) and go to Step 2.

a Note that x1 6 x2 6 � � � 6 xN.

X. Liu et al. / Information Sciences 184 (2012) 75–91 77



Author's personal copy

cl ¼
PL

i¼1xi �leAðxiÞ þ
PN

i¼Lþ1xileAðxiÞPL
i¼1 �leAðxiÞ þ

PN
i¼Lþ1leAðxiÞ

; ð9Þ

cr ¼
PR

i¼1xileAðxiÞ þ
PN

i¼Rþ1xi �leAðxiÞPR
i¼1 �leAðxiÞ þ

PN
i¼Lþ1leAðxiÞ

; ð10Þ

where L and R are called switch points with xL 6 cl 6 xL+1 and xR 6 cr 6 xR+1. The determination of L and R are performed by
using KM algorithms that are summarized in Table 1 [5,13,17].

Mendel and Liu [15] proved that the KM algorithms converge monotonically and super-exponentially fast. Recently, Wu
and Mendel [24] proposed Enhanced KM (EKM) algorithms, which are summarized in Table 2. The EKM algorithms improve
the KM algorithms in the following three ways [24]:

1. A better initialization method k = [N/2.4] for cl and k = [N/1.7] for cr is used to reduce the number of iterations;
2. A subtle computing techniques is used to reduce the computational cost of each of the algorithm’s iterations by using

intermediate values a, b, in which only the differences of the sum operator are computed in every new iteration; and,
3. The termination condition of the iterations is changed from c(k) = c0 in Step 4 to k0 = k in Step 3, which saves the compu-

tation of the last iteration.

3. On the Initializations of KM and EKM Algorithms

3.1. Continuous KM and EKM Algorithms

Continuous KM algorithms [18,19] were proposed for studying the theoretical properties of IT2 FS centroid computations.
They can also be found in [15].

Observing the relationships between (7) and (9), and (8) and (10), cl and cr can be expressed as:

cl ¼ min
k¼0;1;2;...;N

clðkÞ ¼ min
k¼0;1;2;...;N

Pk
i¼1xi �leAðxiÞ þ

PN
i¼kþ1xileAðxiÞPl

i¼1 �leAðxiÞ þ
PN

i¼kþ1
leAðxiÞ

; ð11Þ

cr ¼ max
k¼0;1;2;...;N

crðkÞ ¼ max
k¼0;1;2;...;N

Pk
i¼1xileAðxiÞ þ

PN
i¼kþ1xi �leAðxiÞPl

i¼1leAðxiÞ þ
PN

i¼kþ1 �leAðxiÞ
: ð12Þ

We assume all the xis are different, and a = x1 < x2 < � � � < xN = b, where a, b are the left-hand (smallest) and the right-hand
(largest) sampled values, respectively.2 Then, the continuous versions of (11) and (12) are

Table 2
EKM algorithms for computing the centroid end-points of an IT2 FS, eA [17,24].

Step a EKM algorithm for cl EKM algorithm for cr

cl ¼min
8hi2 leA ðxiÞ;�leA ðxiÞ
h i PN

i¼1xihi=
PN

i¼1hi

� �
cr ¼max

8hi2 leA ðxiÞ;�leA ðxiÞ
h i PN

i¼1xihi=
PN

i¼1hi

� �
1 Set k = [N/2.4](the nearest integer to N/2.4) and compute: Set k = [N/1.7](the nearest integer to N/1.7) and compute:

a ¼
Pk

i¼1xi �leA ðxiÞ þ
PN

i¼kþ1xileA ðxiÞ; a ¼
Pk

i¼1xileA ðxiÞ þ
PN

i¼kþ1xi �leA ðxiÞ;

b ¼
Pk

i¼1 �leA ðxiÞ þ
PN

i¼kþ1leA ðxiÞ: b ¼
Pk

i¼1leA ðxiÞ þ
PN

i¼kþ1 �leA ðxiÞ:
Compute c0 = a/b.

2 Find k0 2 [1,N � 1] such that xk0 6 c0 6 xk0þ1.
3 Check if k0 = k. If yes, stop and set c0 = cl and k = L. If no, go to Step 4. Check if k0 = k. If yes, stop and set c0 = cr and k = R. If no, go to Step 4.
4 Compute s = sign(k0 � k) and: Compute s = sign(k0 � k) and:

a0 ¼ aþ s
Pmaxðk;k0 Þ

i¼minðk;k0 Þþ1
xi½�leA ðxiÞ � leA ðxiÞ�, a0 ¼ a� s

Pmaxðk;k0 Þ
i¼minðk;k0 Þþ1

xi½�leA ðxiÞ � leA ðxiÞ�:

b0 ¼ bþ s
Pmaxðk;k0 Þ

i¼minðk;k0 Þþ1
½�leA ðxiÞ � leA ðxiÞ�: b0 ¼ b� s

Pmaxðk;k0 Þ
i¼minðk;k0 Þþ1

½�leA ðxiÞ � leA ðxiÞ�:
Compute c00(k0) = a0/b0.

5 Set c0 = c00(k0),a = a0 ,b = b0 and k = k0 and go to Step 2.

a Note that x1 6 x2 6 � � � 6 xN.

2 As noted in [19, p. 363], if Gaussian MFs are used, the theoretical results can be extended to a ? �1, b ? +1; but, in practice and in algorithm design,
when truncations are used, a and b are again finite numbers.

78 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

cl ¼ min
n2½a;b�

flðnÞ ¼ min
n2½a;b�

R n
a x�leAðxÞdxþ

R b
n xleAðxÞdxR n

a
�leAðxÞdxþ

R b
n leAðxÞdx

; ð13Þ

cr ¼max
n2½a;b�

frðnÞ ¼max
n2½a;b�

R n
a xleAðxÞdxþ

R b
n x�leAðxÞdxR n

a leAðxÞdxþ
R b

n
�leAðxÞdx

: ð14Þ

From Table 1, continuous versions of the KM algorithms for cl and cr, which give the optimal solution of (13) and (14), can be
expressed as in Table 3. Similar expressions can also be found in [15,18,19] with infinite integral domain (�1, +1) instead
of [a,b].

Using the notations of fl in (13) and fr in (14), from Steps 2 and 4 of Table 3, one can observe that

nl ¼ flðn0Þ and nl ¼ n0; ð15Þ
nr ¼ frðn0Þ and nr ¼ n0: ð16Þ

These are fixed point iteration formulas, i.e. when iterations terminate at Step 3, cl = nl and cr = nr, so that

cl ¼ flðclÞ; cr ¼ frðcrÞ: ð17Þ

Note that cl and cr are the fixed points of fl(n) and fr(n), respectively.
In the same way, continuous versions of EKM algorithms are given Table 4, for which the relationships of (17) still hold.

3.2. Theoretical interpretations of KM algorithm and EKM algorithm initialization methods

In this subsection, new interpretations are provided for the initialization methods of the KM and EKM algorithms that are
given in Tables 1 and 2, whose continuous forms are in Tables 3 and 4, respectively. In addition, a new initialization method

Table 3
Continuous KM (CKM) algorithms for computing the centroid end-points of an IT2 FS, eA.

Step CKM algorithm for cl CKM algorithm for cr

cl ¼min8hðxÞ2½leA ðxÞ;�leA ðxÞ�
R b

a
xhðxÞdxR b

a
hðxÞdx

cr ¼max8hðxÞ2½leA ðxÞ;�leA ðxÞ�
R b

a
xhðxÞdxR b

a
hðxÞdx

1
Let hðxÞ ¼ ðleA ðxÞ þ �leA ðxÞÞ=2, and compute the initial value n0 , as n0 ¼

R b

a
xhðxÞdxR b

a
hðxÞdx

:

2 Set hðxÞ ¼ �leA ðxÞ when x 6 n0 , and hðxÞ ¼ leA ðxÞ when x P n0 , and then

compute

Set hðxÞ ¼ leA ðxÞ when x 6 n0 , and hðxÞ ¼ �leA ðxÞ when x P n0 , and then

compute

nl ¼
R b

a
xhðxÞdxR b

a
hðxÞdx

: nr ¼
R b

a
xhðxÞdxR b

a
hðxÞdx

:

3 Check if jn0 � nlj 6 e (e is a given error bound of the algorithms). If yes,
stop and set cl = nl. If no, go to Step 4.

Check if jn0 � nrj 6 e (e is a given error bound of the algorithms). If yes,
stop and set cr = nr. If no, go to Step 4.

4 Set n0 = nl and go to Step 2. Set n0 = nr and go to Step 2.

Table 4
Continuous EKM (CEKM) algorithms for computing the centroid end-points of an IT2 FS, eA.

Step CEKM algorithm for cl CEKM algorithm for cr

cl ¼min8hðxÞ2½leA ðxÞ;�leA ðxÞ�
R b

a
xhðxÞdxR b

a
hðxÞdx

cr ¼max8hðxÞ2½leA ðxÞ;�leA ðxÞ�
R b

a
xhðxÞdxR b

a
hðxÞdx

1a Set c = a + (b � a)/2.4, and compute Set c = a + (b � a)/1.7, and compute

a ¼
R c

a x�leA ðxÞdxþ
R b

c xleA ðxÞdx; a ¼
R c

a xleA ðxÞdxþ
R b

c x�leA ðxÞdx;

b ¼
R c

a
�leA ðxÞdxþ

R b
c leA ðxÞdx: b ¼

R c
a xleA ðxÞdxþ

R b
c x�leA ðxÞdx:

Compute c0 = a/b.
2 Check if jc0 � cj 6 e (e is a given error bound of the algorithms). If yes,

stop and set c0 = cl. If no, go to Step 4.
Check if jc0 � cj 6 e (e is a given error bound of the algorithms). If yes,
stop and set c0 = cr. If no, go to Step 4.

3 Compute s = sign(c0 � c) and: Compute s = sign(c0 � c) and:

a0 ¼ aþ s
Rmaxðc;c0 Þ

minðc;c0 Þ x �leA ðxÞ � leA ðxÞh i
dx; a0 ¼ a� s

Rmaxðc;c0 Þ
minðc;c0 Þ x½�leA ðxÞ � leA ðxÞ�dx;

b0 ¼ bþ s
Rmaxðc;c0 Þ

minðc;c0 Þ ½�leA ðxÞ � leA ðxÞ�dx: b0 ¼ b� s
Rmaxðc;c0 Þ

minðc;c0 Þ ½�leA ðxÞ � leA ðxÞ�dx:

Compute c00 = a0/b0.
4 Set c = c0 , c0 = c00 , a = a 0 , b = b0 and go to Step 2.

a The initialization step utilizes the shift-invariant property of computing the centroid of an IT2 FS [19], i. e. one can always set a = 0, so that the total
sample number N corresponds to the integral length b � a.

X. Liu et al. / Information Sciences 184 (2012) 75–91 79



Author's personal copy

is provided which combines the initialization methods of these algorithms, and includes the Tables 1 and 2 initialization
methods as special cases.

For the purpose of algorithm initialization, suppose leAðxÞ ¼ �leAðxÞ ¼ hðxÞ for all x 2 [a,b]; then, observe that
hðxÞ ¼ ðleAðxÞ þ �leAðxÞÞ=2, which agrees with Step 1 in Table 3. In this case, (13) and (14) become the same, so that

cl ¼ cr ¼
R b

a xhðxÞdxR b
a hðxÞdx

¼

R b
a x

leA ðxÞþ�leA ðxÞ
2

� �
dx

R b
a

leA ðxÞþ�leA ðxÞ
2 dx

: ð18Þ

(18) is the continuous KM algorithm’s initialization method given in Table 3, denoted here as n(1):

nð1Þ ¼
R b

a xhðxÞdxR b
a hðxÞdx

; ð19Þ

where hðxÞ ¼ ðleAðxÞ þ �leAðxÞÞ=2.
The discrete form of n(1) is found in Steps 1 and 2 in Table 1, and is

kð1Þ ¼ kjxk 6

PN
i¼1xiðleAðxiÞ þ �leAðxiÞÞPN

i¼1ðleAðxiÞ þ �leAðxiÞÞ
6 xkþ1;1 6 k 6 N � 1

8<:
9=;: ð20Þ

This KM algorithm initialization method should provide good results when leAðxÞ and �leAðxÞ are very close to each other, be-
cause we have just shown that it becomes the exact optimal solution of (13) or (14) when leAðxÞ ¼ �leAðxÞ.

Next, we give interpretations of the initialization methods for EKM algorithms, and show that its initialization methods
are based on the difference between leAðxÞ and �leAðxÞ. Suppose now thatR b

a
�leAðxÞdxR b

a leAðxÞdx
¼D q: ð21Þ

Note that q P 1, because leAðxÞ 6 �leAðxÞ for all x 2 [a,b]. Suppose, also, for the purpose of initializing the EKM algorithms, it is
assumed that leAðxÞ and �leAðxÞ are constants for all x 2 [a,b], namely leAðxÞ � m > 0 and �leAðxÞ � qm, so that (21) is satisfied.
Then, from (13),

flðnÞ ¼
R n

a x�leAðxÞdxþ
R b

n xleAðxÞdxR n
a

�leAðxÞdxþ
R b

n leAðxÞdx
¼
R n

a qmxdxþ
R b

n mxdxR n
a qmdxþ

R b
n mdx

¼
R n

a qxdxþ
R b

n xdxR n
a qdxþ

R b
n dx

¼ qðn2 � a2Þ þ ðb2 � n2Þ
2ðqðn� aÞ þ ðb� nÞÞ ;

so that

f 0l ðnÞ ¼
ðq� 1Þðqðn� aÞ2 � ðb� nÞ2Þ

2ðqðn� aÞ þ ðb� nÞÞ2
: ð22Þ

Setting f 0l ðnÞ ¼ 0, it follows that:

ðb� nÞ2

ðn� aÞ2
¼ q;

b� n
n� a

¼ ffiffiffiffi
q
p

: ð23Þ

Solving (23) for n, one obtains

nl ¼
bþ a

ffiffiffiffiqp
1þ ffiffiffiffiqp ¼ aþ b� a

1þ ffiffiffiffiqp : ð24Þ

From (22), it can be verified that for all n 2 ½a; nlÞ; f 0l ðnÞ < 0, and for all n 2 ðnl; bÞ; f 0l ðnÞ > 0, so nl is the minimum value of fl(n)
for n 2 [a,b]. It can also be verified that fl(nl) = nl, which means that cl = fl(nl) = nl, confirming the relationship for cl in (17).

Proceeding in a similar manner in (14), it follows, that

frðnÞ ¼
ðn2 � a2Þ þ qðb2 � n2Þ
2ððn� aÞ þ qðb� nÞÞ ;

so that

f 0r ðnÞ ¼ �
ðq� 1Þððn� aÞ2 � qðb� nÞ2Þ

2ððn� aÞ þ qðb� nÞÞ2
: ð25Þ

80 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

Setting f 0r ðnÞ ¼ 0, it follows that:

ðb� nÞ2

ðn� aÞ2
¼ 1

q
;

b� n
n� a

¼
ffiffiffiffiffiffiffiffiffi
1=q

p
: ð26Þ

Solving (26) for n, one obtains

nr ¼
bþ a

ffiffiffiffiffiffiffiffiffi
1=q

p
1þ

ffiffiffiffiffiffiffiffiffi
1=q

p ¼ aþ b� a

1þ
ffiffiffiffiffiffiffiffiffi
1=q

p : ð27Þ

From (25), it can be verified that for for all n 2 ½a; nrÞ; f 0r ðnÞ > 0, and for all n 2 ðnr; bÞ; f 0r ðnÞ < 0, so nr is the maximum value of
fr(n) for n 2 [a,b]. It can also be verified that fr(nr) = nr, which means cr = fr(nr) = nr, confirming the relationship for cr in (17).

Combining (24) and (27) together, our new initialization method for n, denoted n(2), is:

nð2Þ ¼
aþ b�a

1þ ffiffiffiqp for cl;

aþ b�a
1þ

ffiffiffiffiffiffi
1=q
p for cr :

8<: ð28Þ

Because q P 1, it follows that nð2Þ 6 aþ 1
2 ðb� aÞ for cl, and nð2Þ P aþ 1

2 ðb� aÞ for cr.
Based on the footnote of Table 4, letting a = 0 (or by comparing the initialization expressions in Table 2 for the EKM algo-

rithms and in Table 4 for the CEKM algorithms, the discrete form of (28) is:

kð2Þ ¼
½N=ð1þ ffiffiffiffiqp Þ� for cl;

½N=ð1þ
ffiffiffiffiffiffiffiffiffi
1=q

p
Þ� for cr:

(
ð29Þ

where

q ¼
PN

i¼1 �leAðxiÞPN
i¼1leAðxiÞ

: ð30Þ

When q = 2,

1þ
ffiffiffi
p
p
¼ 1þ

ffiffiffi
2
p
� 2:4; ð31Þ

1þ
ffiffiffiffiffiffiffiffi
1=p

p
¼ 1þ

ffiffiffiffiffiffiffiffi
1=2

p
¼ 1þ

ffiffiffi
2
p

=2 � 1:7: ð32Þ

so that (28) and (29) become

nð2Þ2 ¼
aþ ðb� aÞ=2:4 for cl;

aþ ðb� aÞ=1:7 for cr:

	
ð33Þ

kð2Þ2 ¼
½N=2:4� for cl;

½N=1:7� for cr :

	
ð34Þ

These are the initialization methods for the CEKM and EKM algorithms that are given in Tables 4 and 2, respectively.
Wu and Mendel [24] determined EKM algorithm initialization parameters L0 = [N/2.4] and R0 = [N/1.7] from empirical

simulations. Observe that their results coincides with (29) when q = 2, which means that their EKM algorithm initialization
parameter can be seen as a special case of our initialization method.

From the above analyses, observe that the KM algorithm initialization method nð1Þ0 and k(1) in (19) and (20) should be suit-
able when leAðxÞ and �leAðxÞ are very close; and, our just proposed new initialization method nð2Þ0 and k(2) in (28) and (29)
should be suitable when the differences between leAðxÞ and leAðxÞ are large. In practice, one can take a combination of both
initialization algorithms by using a parameter a, i.e.:

nð0Þ ¼ ð1� aÞnð1Þ þ anð2Þ for continuous algorithms;

kð0Þ ¼ ½ð1� aÞkð1Þ þ akð2Þ� for discrete algorithms:

(
ð35Þ

where a 2 [0,1]. In general, a weights the difference between leAðxÞ and �leAðxÞ. One can choose a = 1/2 to simultaneously take
equal advantage of these two initialization methods. Of course, with some additional data, it may be possible to optimize a in
order to obtain a better initialization.

We have tested the new initialization method (35) with many examples. Although our results show that using (35) can
improve the initiation to the optimal solution, (35) is not as simple as the EKM algorithm’s initialization method. Further-
more, we have observed that (35) can only improve the total computation cost for problems whose total iteration number is
greater than 6. Consequently, in the rest of this paper, we continue to use the EKM algorithm’s initialization method.

X. Liu et al. / Information Sciences 184 (2012) 75–91 81



Author's personal copy

Based on this decision, one may view the results in this section as providing a mathematical derivation of the EKM algo-
rithm’s empirical initialization results that were observed by Wu and Mendel [24].

4. Weighted EKM algorithms

To date, the CKM algorithms in Table 3 (or their somewhat different forms in [15,18,19]) have only been used to obtain a
better theoretical understanding of KM (EKM) algorithms. In this section, we obtain a new class of EKM algorithms, called
weighted EKM algorithms–WEKM algorithms, whose results can be compared with the EKM algorithms.

WEKM algorithms are numerical implementations of CEKM algorithms. Comparing the KM algorithms in Table 1 and the
continuous KM algorithms in Table 3, and the corresponding EKM algorithms in Tables 2 and 4, observe that the sum oper-
ations in the KM (EKM) algorithms at the sampling points xi play the role of integration of the corresponding functions. Using
the general quadrature formula (1), one can assign weights wi to the membership function values at sampling points xi, and
obtain more accurate values of cl and cr. In this way, we extended the EKM algorithms to weighted EKM (WEKM) algorithms,
as given in Table 5.

The EKM algorithms are a special case of WEKM algorithms when wi = 1(i = 1,2, . . . ,N). In Table 5, there are various weight
assignment methods according to the quadrature formula (1) [9]. Here, we only give the weight assignment methods for the
three numerical integration methods described in Section 2: Trapezoidal Rule, Simpson’s Rule and Simpson’s 3/8 Rule, whose
quadrature formulas are (3), (4) and (6), respectively. The corresponding WEKM algorithms are called TWEKM, SWEKM and
S3/8WEKM algorithms, respectively. Table 6 gives the weight assignment methods on the EKM, TWEKM, SWEKM and S3/
8WEKM algorithms. For all three WEKM algorithms, the sampling points are distributed evenly in [a,b] with
xi ¼ aþ i�1

N�1 ðb� aÞ; i ¼ 1;2; . . . ;N, according to Theorems 1–3.
In Table 6, except for the weight assignment method of the EKM, the three WEKM algorithm’s weight assignment meth-

ods are obtained from (3)–(6) using the following steps:

1. xk(k = 0,1, . . . ,m) and x0 = a, xm = b in (3); xk(k = 0,1, . . . ,2m) and x0 = a, x2m = b in (4); and xk(k = 0,1, . . . ,3m) and x0 = a,
x3m = b in (6), are each replaced by xi(i = 1,2, . . . ,N) and x1 = a, xN = b.

Table 6
Weight assignment methods of WEKM (EKM) algorithms.

Algorithms Integration Rule Weight value

EKM — wi = 1(i = 1,2, . . . ,N)
TWEKM Trapezoidal Rule

wi ¼
1=2 if i ¼ 1;N;
1 if i – 1;N:

	
SWEKM Simpson’s Rule

wi ¼
1=2 if i ¼ 1;N
1 if i ¼ 1 mod að2Þ and i – 1;N;
2 if i ¼ 0 mod ð2Þ and i – N:

8<:
S3/8WEKM Simpson’s 3/8 Rule

wi ¼
1=3 if i ¼ 1;N
2=3 if i ¼ 1 modð3Þ and i – 1;N;
1 if i ¼ 2 modð3Þ and i – N;
1 if i ¼ 0 modð3Þ and i – N:

8>><>>:
amod is modular arithmetic operator. i = j mod (d) means i = nd + j, where n is an integer.

Table 5
Weighted EKM (WEKM) algorithms for computing the centroid end-points of IT2 FS, eA,.

Stepa WEKM algorithm for cl WEKM algorithm for cr

cl ¼min8hi2½leA ðxiÞ;�leA ðxiÞ�

PN

i¼1
wi xihiPN

i¼1
wihi

cr ¼max8hi2½leA ðxiÞ;�leA ðxiÞ�

PN

i¼1
wi xihiPN

i¼1
wihi

1 Set k = [N/2.4](the nearest integer to N/2.4) and compute: Set k = [N/1.7](the nearest integer to N/1.7) and compute:

a ¼
Pk

i¼1wixi �leA ðxiÞ þ
PN

i¼kþ1wixileA ðxiÞ; a ¼
Pk

i¼1wixileA ðxiÞ þ
PN

i¼kþ1wixi �leA ðxiÞ;

b ¼
Pk

i¼1wi �leA ðxiÞ þ
PN

i¼kþ1wileA ðxiÞ: b ¼
Pk

i¼1wileA ðxiÞ þ
PN

i¼kþ1wi �leA ðxiÞ:
Compute c0 = a/b.

2 Find k0 2 [1,N � 1] such that xk0 6 c0 6 xk0þ1.
3 Check if k0 = k. If yes, stop and set c0 = cl and k = L. If no, go to Step 4. Check if k0 = k. If yes, stop and set c0 = cr and k = R. If no, go to Step 4.
4 Compute s = sign(k0 � k) and: Compute s = sign(k0 � k) and:

a0 ¼ aþ s
Pmaxðk;k0 Þ

i¼minðk;k0 Þwixi½�leA ðxiÞ � leA ðxiÞ�; a0 ¼ a� s
Pmaxðk;k0 Þ

i¼minðk;k0 Þwixi½�leA ðxiÞ � leA ðxiÞ�;

b0 ¼ bþ s
Pmaxðk;k0 Þ

i¼minðk;k0 Þwi½�leA ðxiÞ � leA ðxiÞ�: b0 ¼ b� s
Pmaxðk;k0 Þ

i¼minðk;k0 Þwi½�leA ðxiÞ � leA ðxiÞ�:
Compute c00 = a0/b0 .

5 Set c0 = c00 ,a = a0 , b = b0 and k = k0 and go to Step 2.

a Note that x1 6 x2 6 � � � 6 xN.

82 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

2. The common coefficients of h (i. e., h/2,h/3,3h/8) in (3), (4), and (6) are neglected because they cancel in the quotient of
two integrals in Table 4.

3. The TWEKM and SWEKM algorithm weight values in Table 6 also use one-half of the coefficients in the parentheses of (3)
and (4), and the S3/8WEKM algorithm weight values use one-third of the coefficients in the parentheses of (6).

4. The number of points N of SWEKM and S3/8WEKM algorithms are not restricted to N = 2m + 1 and N = 3m + 1 (i. e.,
N = 1mod (2) and N = 1mod (3)), as (4) and (6) require.

According to the relationships between Table 6 and (3)–(6), the TWEKM, SWEKM and S3/8WEKM algorithms approxi-
mate the numerical integrations of the membership functions with polynomials of order n = 1, 2, 3, respectively, which
are special cases of the Newton–Cotes formula, as explained in Section 2.1.

Remark 1. In theory, any degree n Newton–Cotes formula could be used to obtain more general WEKM algorithms;
however, for large n, numerical integration can sometimes suffer from catastrophic Runge’s phenomenon, where the error
grows when n increases, which is contrary to the goal of approximation theory [9].

Regarding which of the WEKM algorithms to use, one should first observe the nonlinear nature of the upper and lower
membership functions, and then select approximate numerical integration rules for the WEKM algorithms. Because of the
piecewise integrals of the LMF and UMF in Tables 3 and 4, one could also mix more than one Table 6 weight assignment
method depending upon the natures of the LMF and UMF.

The relationships between the CEKM algorithms in Table 4 and WEKM algorithms in Table 5 for computing the centroid of
IT2 FS are that:

1. WEKM algorithms compute the centroid value based on the addition operations applied to sample data xi(i = 1,2, . . . ,N),
and find the optimal switch points as the approximation of the centroid value when the iteration terminates. CEKM algo-
rithms compute the centroid value using integral operations and obtain the exact centroid values of an IT2 FS. The solu-
tion of WEKM algorithms approaches to that of CEKM algorithms when the sample size N ? +1.

2. For WEKM algorithms, more accurate results are obtained by increasing the sample size N. For CEKM algorithms, more
accurate results are obtained by setting a smaller accuracy level e to control the differences between two adjacent iter-
ation values.

3. WEKM algorithms are computed numerically with addition operations, whereas CEKM algorithms are computed symbol-
ically with integral operations. WEKM algorithms are numerical implementations of CEKM algorithms using numerical
integration methods.

5. Experimental evaluation of the proposed methods

5.1. Introduction

In this section, centroid computations are considered for the four IT2 FSs eA1 � eA4 in Table 7, that correspond to the FOUs
used in the examples in [15,16].

For eA1 � eA4, if the FOUs of these IT2 FSs are approximated with different order polynomials, and the order of polynomials
is used to describe the linear-nonlinear properties of these FOUs, it can be observed intuitively that the nonlinear property
becomes greater from eA1 to eA4, which means the higher order polynomials are required to approximate the FOUs in the se-
quence of eA1 to eA4. This is used to explain the performances of the three kinds of WEKM algorithms and EKM algorithms
below.

As in [15], the algorithms are only illustrated for computing cl, because the results for cr are very similar to those for cl.

5.2. Accuracy performance comparison and analysis

From footnote 2 on page 5, the centroid computation of IT2 FS can always be limited to a finite domain [a,b]; the contin-
uous EKM (CEKM) algorithms in Table 4 can be used to compute the exact centroid value of an IT2 FS. The exact centroid
computations for eA1 � eA4 using CEKM algorithms are given in Table 8. The same value in the last two iterations corresponds
to the termination conditions of the algorithms in Table 4.

The exact left centroid values of these IT2 FSs are:

c�l ðeA1Þ ¼ 3:660534; c�l ðeA2Þ ¼ 0:445924; c�l ðeA3Þ ¼ 3:155741; c�l ðeA4Þ ¼ 3:595542:

The performances of WEKM algorithms are studied next.
When the number of samples, N is fixed, [x1,xN] � [a,b] where xi ¼ x1 þ i�1

N�1 ðb� aÞ; i ¼ 1;2; . . . ;N. N ranges from 100 to
2000 with step length equal to 100.

Computation results are given in Figs. 1–4. Part (a) of each figure gives cl versus N for EKM algorithms and the three
WEKM algorithms (TWEKM, SWEKM and S3/8WEKM), so that one can observe the convergence process to c�l as N increases.
Part (b) of each figure gives absolute error cl � c�l



 

 for each algorithm as a function of N, so that the performance of each

X. Liu et al. / Information Sciences 184 (2012) 75–91 83



Author's personal copy

algorithm can be observed more clearly. Part (c) of each figure gives cl for the three WEKM algorithms in the same way as
part (a), but with a magnified scale. Part (d) of each figure gives absolute error cl � c�l



 

 for the three WEKM algorithms as in
part (b) also with a magnified scale. Parts (a) and (b) are mainly used to compare the performances of EKM algorithms and
the three WEKM algorithms, whereas parts (c) and (d) are used to compare the performances of the three WEKM algorithms.

To measure the performance of each algorithm for eAiði ¼ 1; . . . ;4Þ, for each sample size N the relative error cl � c�l


 

= c�l



 


was computed. The average of the relative errors cl � c�l



 

= c�l


 

 over the values of N for each eAiði ¼ 1; . . . ;4Þ is given in Table 9.

The last line of Table 9 gives the overall average of the relative errors, averaged over the four eAi for each algorithm.
From Figs. 1–4 and Table 9, observe that:

1. From parts (a) and (b) of Figs. 1–4, except for eA1, all WEKM algorithms lead to smaller absolute errors than the EKM algo-
rithms, and they also converge to the accurate values faster than do the EKM algorithms. The reason for both of these results
is that the EKM algorithms only use a simple sum. Both EKM and WEKM algorithms for eA1 are very good due to the linear
property of the FOU of eA1(this is discussed further in Item 2(d)). From Table 9, the biggest average relative error for EKM
algorithms is 1.4141%, while the biggest average relative error for WEKM algorithms is 0.0038%. In a similar way, the

Table 7
IT2 FS examples.

MF Type MF Expression MF Plot

(1) Piecewise
linear MFs
[16]

leA1
ðxÞ ¼max

ðx� 1Þ=2 if 1 6 x 6 3;
ð7� xÞ=4 if 4 6 x 6 7;
0 otherwise:

264
375; ðx� 2Þ=5 if 2 6 x 6 6;
ð16� 2xÞ=5 if 6 6 x 6 8;
0 otherwise:

264
375

8><>:
9>=>;

�leA1
ðxÞ ¼max

ðx� 1Þ=6 if 1 6 x 6 3;
ð7� xÞ=6 if 3 6 x 6 7;
0 otherwise:

264
375; ðx� 3Þ=6 if 2 6 x 6 5;
ð8� xÞ=9 if 5 6 x 6 8;
0 otherwise:

264
375

8><>:
9>=>;

26666666664
(2) Triangular

LMF and
Gaussian
UMF [15] leA2

ðxÞ ¼
0:6ðxþ5Þ

19 if x 2 ½�5;2:6�;
0:4ð14�xÞ

19 if x 2 ½2:6;14�:

(

�leA2
ðxÞ ¼

exp � 1
2

x�2
5

� �2
h i

if x 2 ½�5;7:185�;

exp � 1
2

x�9
1:75

� �2
h i

if x 2 ½7:185;14�:

8><>:

266666664
(3) Piecewise

Gaussian
MFs [16] leA3

ðxÞ ¼max exp � ðx�3Þ2
8

h i
;0:8 exp � ðx�6Þ2

8

h in o
�leA3
ðxÞ ¼max 0:5 exp � ðx�3Þ2

2

h i
;0:4 exp � ðx�6Þ2

2

h in o
264 x 2 ½0;10�:

(4) Gaussian
MFs with
uncertain
deviation
[15]

leA4
ðxÞ ¼ exp � 1

2
x�5
0:25

� �2
h i

�leA4
ðxÞ ¼ exp � 1

2
x�5
1:75

� �2
h i

264 x 2 ½0;10�:

Table 8
CEKM algorithms iterations for cl with e = 10�6.

t a 0 1 2 3 4 5

eA1
3.916667 3.664327 3.660535 3.660534 3.660534eA2
2.916667 0.761481 0.452688 0.445927 0.445924 0.445924eA3
4.166667 3.222779 3.156043 3.155741 3.155741eA4
4.166667 3.663813 3.596623 3.595542 3.595542

a t is the iteration number. t = 0 corresponds to the initialization step.

84 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

Fig. 1. Computation results for eA1 (EKM and TWEKM lie on top of each other in (a) and (b)).

Fig. 2. Computation results for eA2 (TWEKM, SWEKM and S3/8WEKM lie on top of each other in (a) and (b)).

X. Liu et al. / Information Sciences 184 (2012) 75–91 85



Author's personal copy

Fig. 3. Computation results for eA3 (TWEKM, SWEKM and S3/8WEKM lie on top of each other in (a) and (b)).

Fig. 4. Computation results for eA4 (SWEKM and S3/8WEKM lie on top of each other in (a)–(d)).

86 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

overall average relative error of EKM algorithms for all IT2 FSs is 0.3754%, whereas the overall average relative error of
WEKM algorithms for all IT2 FSs is less than 0.0012%. This implies that the computational accuracy of WEKM algorithms
is greatly improved over the EKM algorithms. Comparing the vertical axis scales of Figs. 1–4, from parts (a) and (b), one
can observe that the error bounds of EKM algorithms are different for different IT2 FSs, but from parts (c) and (d), the
error bounds of WEKM algorithms for different IT2 FSs are on the same scale. This means that WEKM algorithms also have
better error stability than EKM algorithms.

2. From parts (c) and (d) of Figs. 1–4, the statistics of Table 9, and recalling that TWEKM, SWEKM and S3/8WEKM algorithms
approximate membership functions with polynomial orders 1(linear), 2 (quadratic) and 3 (cubic), respectively:
(a) For eA1 in Fig. 1, the results of linear polynomial approximation TWEKM algorithms and quadratic polynomial approx-

imation SWEKM algorithms are very close, and both are better than that of S3/8WEKM algorithms. The cubic poly-
nomial approximation of S3/8WEKM algorithms seems unsuitable because of eA1’s piecewise linear lower and
upper membership functions. The linearity of the membership functions can also be used to explain why the non-
weighted EKM algorithms for eA1 has almost the same good results as the TWEKM algorithms in Fig. 1 (a)and (b).

(b) For eA2 in Fig. 2, all three WEKM algorithms have very good performances (Fig. 2 (a), (b)), and SWEKM algorithms per-
forms the best among them (Fig. 2 (c), (d)). Because of its mixed linear LMF and nonlinear UMF, both the linear
approximation of TWEKM algorithms and cubic polynomial approximation of S3/8WEKM algorithm are not the best
choices.

(c) For eA3 in Fig. 3, all three WEKM algorithms have very good performances (Fig. 3(a) and (b)), but the S3/8WEKM algo-
rithms performs the best among them (Fig. 3(c) and (d)), which is different from the case of eA2. The nonlinear nature
of eA3 is greater than eA2, and that of eA2 is greater than eA1 (see Table 7). This can be used to explain why the SWEKM
algorithms is the best choice for eA2, and the S3/8WEKM algorithm is the best choice for eA3. On the other hand, for eA1,
the S3/8WEKM algorithm is the worst choice because of the Runge’s phenomenon described in Remark 1.

(d) For eA4 in Fig. 4, the three WEKM algorithms still greatly outperform the EKM algorithms. The results of SWEKM and
S3/8WEKM algorithms are very good and similar, but the linear polynomial approximation of TWEKM algorithms
become the worst of all the WEKM algorithms. This is contrary to the case of eA1, where the cubic polynomial approx-
imation of S3/8WEKM algorithms performs the worst. The reason for this is the cubic polynomial approximation of
S3/8WEKM algorithm over-fits for the linear FOU of eA1, and the linear approximation of TWEKM algorithms under-fit
the nonlinear FOU of eA4.

In summary, from eA1 to eA4, as the nonlinear nature of the FOU increases, the WEKM algorithms also perform better and better
consistent with the nature of the higher order of polynomials in the sequence of EKM, TWEKM, SWEKM, S3/8WEKM.

In general, there are two ways to view these centroid computations:

1. Approximation theory, where one wants to obtain high-precision results. To accomplish this, one may have to adjust the
sample rate (1/N), and choose the best algorithm.

2. Fuzzy logic system (FLS) applications, where an FOU is created prior to type reduction. Now, one must fix the sampling
rate (1/N) in advance because of design constraints, and has to then choose the best algorithm.

In the former case, our examples indicate that WEKM algorithms at N = 300 have smaller errors than the results of EKM
algorithms even at N = 10000. This means that WEKM algorithms may obtain nearly exact centroid values with much less

Table 9
Average of the relative errors cl � c�l



 

= c�l


 

, for N = 100 to 2000.

Algorithms EKM TWEKM SWEKM S3/8WEKM

eA1
0.000002 0.000002 0.000001 0.000007eA2
0.014141a 0.000028 0.000002 0.000038eA3
0.000779 0.000002 0.000002 0.000001eA4
0.000093 0.000006 0.000002 0.000003

Overall average 0.003754 0.000010 0.000002 0.000012

a Bold-faced numbers are explained in the text.

Table 10
Average of the relative errors cl � c�l



 

= c�l


 

 for N = 100 to 500.

Algorithms EKM TWEKM SWEKM S3/8WEKM

eA1
0.000007 0.000007 0.000004 0.000028eA2
0.035899a 0.000099 0.000006 0.000131eA3
0.001973 0.000008 0.000006 0.000002eA4
0.000229 0.000024 0.000008 0.000009

Overall average 0.009527 0.000034 0.000006 0.000042

a Bold-faced numbers are explained in the text.

X. Liu et al. / Information Sciences 184 (2012) 75–91 87



Author's personal copy

data sampling than required by the EKM algorithms, and with a precision the latter can not attain. In the latter case, the
WEKM algorithms appear to be vastly superior to the EKM algorithms, especially when N is small, e.g. N 2 [100,500], which
can be observed clearly from Figs. 2–4(a) and (b), whose statistics are summarized in Table 10.

From Table 10, the biggest average relative error for EKM algorithms is 3.5899%, whereas the biggest average relative
error for WEKM algorithms is 0.0131%. In a similar way, the overall average relative error of EKM algorithms for all IT2
FSs is 0.9527%, whereas the overall average relative error of WEKM algorithms for all IT2 FSs is less than 0.0042%.

Note, finally, that if one has a FLS for which accuracy may not be important, then EKM algorithms will give acceptable
results.

5.3. Computation time comparisons and analysis

Next, we compare the computation times for these algorithms, something that is useful in applications, especially for
those that have real-time requirements. Unlike the computation of cl in Figs. 1–4, where one always gets the same results
that are independent of the hardware and software environments, the computing times of the algorithms are not exactly
repeatable. Simulations were conducted to examine the performance of our algorithms. The platform used is Microsoft

Fig. 5. Computation time comparisons for eA1.

Fig. 6. Computation time comparisons for eA2.

Fig. 7. Computation time comparisons for eA3.

88 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

Windows XP Professional, Version2002, Service Pack 3, Intel (R) Core (2) DUO CPU, E8400@3.00 GHz, 2.99 GHz, 3.25 Gb RAM.
The algorithms were programmed with Matlab 2009b. Figs. 5–8 show the total computation times for N = 100,200, . . . ,2000,
which were obtained using Matlab time functions tic and toc in seconds.

Observe that, if the fluctuations of computation times for different N are not considered, the computation times of these
algorithms approximately change with the sampling size N in a linear way. The least squares regression models t = c + aN for
these algorithms can be obtained, with the coefficients listed in Table 11.

From Figs. 5–8 and Table 11, one observes that EKM and TWEKM algorithms are very similar, and those of SWEKM and
S3/8WEKM algorithms are also very similar because of their similar weight assignment methods in Table 6. The computation
time of EKM algorithms is slightly better than TWEKM algorithms because of the weight assignment values at the two end
points. The computation time of S3/8EKM algorithms is also slightly better than SWEKM algorithms because the former has a
relatively simpler weight assignment method than the latter. If these four kinds of algorithms are classified into two families,
the computation times of the SWEKM and S3/8WEKM algorithms are less than double those of the EKM and TWEKM algo-
rithms. The difference ratios of these four algorithms 3 for eA1; eA2; eA3; eA4 range between 18% � 27% at N = 100 and 70% � 72% at
N = 2000.

5.4. Algorithm recommendations for applications

From the computational accuracy statistics in Tables 9 and 10, one observes that, the SWEKM algorithms are the best
choice if only the accuracy requirement is considered. Considering computational accuracy statistics in Tables 9 and 10
and computational times in Figs. 5–8 together, the recommended centroid IT2 FS computation algorithms for approximation
and FLS application purposes are given in Table 12. The former requires high-precision and the sampling rate (1/N) is

Fig. 8. Computation time comparisons for eA4.

Table 11
Least squares computation time regression model coefficients for the four algorithms.

Regression EKM TWEKM SWEKM S3/8WEKM

Coefficients c/10�5 a/10�8 c/10�5 a/10�8 c/10�5 a/10�8 c/10�5 a/10�8

eA1
5.291 3.261 5.713 3.428 6.172 6.339 6.181 5.775eA2
6.714 3.261 7.727 3.409 8.317 6.403 8.172 5.882eA3
7.106 2.261 7.353 2.463 7.766 5.406 7.804 4.928eA4
6.909 2.239 7.389 2.409 7.765 5.368 7.870 4.839

Average 6.505 2.756 7.046 2.927 7.505 5.879 7.057 5.356

Table 12
Recommended algorithms for different application purposes.

Case Approximation theory FLS

Linear MFs (TW) EKM (TW) EKM
Nonlinear MFs S (3/8) WEKM S (3/8) WEKM
Mixture MFs SWEKM TWEKM

(TW) EKM means EKM or TWEKM; S (3/8) WEKM means SWEKM or S3/8WEKM.

3 The difference ratios are computed as (maxi=1,. . .,4{ti} �mini=1,. . . ,4{ti})/mini=1,. . .,4{ti}, where ti(i = 1, . . .,4) are the computation time of these four algorithms.

X. Liu et al. / Information Sciences 184 (2012) 75–91 89



Author's personal copy

changeable, and the latter may require real-time computation and the sampling rate (1/N) is usually fixed (during the design
of the FLS).

The linear membership function case of Table 12 is eA1, whose computation results are shown in Figs. 1 and 5 for such an
FOU. The non-weighted EKM algorithms or linear weighted TWEKM algorithms are recommended; both have similar com-
putation results and computation time. The nonlinear membership function cases of Table 12 are eA3 and eA4, whose compu-
tation results are shown in Figs. 3, 4 and 7, 8. The quadratic weighted SWEKM algorithms or cubic weighted S3/8WEKM
algorithms are recommended, also because of their similar computation results and computation time. The mixed linear
and nonlinear membership function case of Table 12 is eA2, whose computing results are shown in Figs. 2 and 6. SWEKM algo-
rithms are recommended for best approximation results, but TWEKM algorithms are recommended for FLS applications
where the approximation accuracy and computation time must be considered simultaneously.

From Figs. 5–8, the centroid computation of IT2 FSs is very fast, i.e. the times are within 3 	 10�4 seconds. This strongly
suggests that our algorithms can be used in fuzzy logic control systems, where centroid type reduction is usually avoided
because of its iterative nature.

Finally, it should be noted that, in comparisons between EKM and WEKM algorithms, we have only concentrated on the
theoretical performances of the algorithms. From the numerical examples, for very high accuracy, we can see that the family
of WEKM algorithms can greatly improve the accuracy over EKM algorithms using the same number of sample points; or, the
samples points can be greatly reduced for the WEKM algorithms over the EKM algorithms to obtain the same accuracy. How-
ever, if the accuracy requirement is not very high, such as two significant figures, then the simple EKM algorithms provide
good enough results, i.e. WEKM algorithms and EKM algorithms return the same results. WEKM maybe not always needed
and their advantages can not be demonstrated.

6. Conclusions

After comparing discrete and continuous KM (EKM) algorithms, a theoretical explanation for the initialization methods of
both KM and EKM algorithms has been provided. Continuous KM and EKM algorithms have been used to compute the exact
centroid values of an IT2 FS. EKM algorithms have been extended to weighted EKM (WEKM) algorithms using quadrature
formulas from numerical integration. Three weight assignment methods for WEKM algorithms have been proposed. Four
numerical examples have shown that, although the EKM and WEKM algorithms return the same values at low accuracy
requirements, if very high accuracy is needed, the WEKM algorithms have smaller absolute error and converge faster to
the exact centroid values of an IT2 FS than do EKM algorithms, for the same sampling rates. Recommended choices of a prop-
er centroid algorithm have been given at the end of Section 5, and depend on the nature of the LMF and UMF as well as
whether the centroid is to be used for approximation, where high accuracy is required, or for a FLS, where computations
are usually constrained by a pre-specified sampling rate.

Finally, it is important to understand that KM and EKM algorithms are also used for many other kinds of problems in
which the xis are not naturally ordered and do not correspond to the sampled values of a continuous variable, e.g. interval
weighted average, fuzzy weighted average, linguistic weighted average and generalized centroid [8,17,22]. For such applica-
tions, there is no numerical integral integration for the KM (EKM) algorithms; hence the results of this paper can not be used
for such problems.

Acknowledgment

The authors would like to acknowledge Editor in Chief and the reviewers of this paper who made very useful suggestions
that have improved the presentation of our results.

References

[1] P.T. Chang, K.C. Hung, K.P. Lin, C.H. Chang, A comparison of discrete algorithms for fuzzy weighted average, IEEE Transactions on Fuzzy Systems 14 (5)
(2006) 663–675.

[2] Y.Y. Guh, C.C. Hon, K.M. Wang, E.S. Lee, Fuzzy weighted average: a max-min paired elimination method, Computers & Mathematics with Applications
32 (8) (1996) 115–123.

[3] S.M. Guu, Fuzzy weighted averages revisited, Fuzzy Sets and Systems 126 (3) (2002) 411–414.
[4] R.I. John, S. Coupland, Type-2 fuzzy logic: a historical view, IEEE Computational Intelligence Magazine 2 (1) (2007) 57–62.
[5] N.N. Karnik, J.M. Mendel, Centroid of a type-2 fuzzy set, Information Sciences 132 (1-4) (2001) 195–220.
[6] D.H. Lee, D.H. Park, An efficient algorithm for fuzzy weighted average, Fuzzy Sets and Systems 87 (1) (1997) 39–45.
[7] F. Liu, An efficient centroid type-reduction strategy for general type-2 fuzzy logic system, Information Sciences 178 (9) (2008) 2224–2236.
[8] F. Liu, J.M. Mendel, Aggregation using the fuzzy weighted average as computed by the Karnik–Mendel algorithms, IEEE Transactions on Fuzzy Systems

16 (1) (2008) 1–12.
[9] J.H. Mathews, K.K. Fink, Numerical Methods Using Matlab, Prentice-Hall Inc, Upper Saddle River, NJ, 2004.

[10] J.M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice-Hall, Upper Saddle River, NJ, 2001.
[11] J.M. Mendel, Computing derivatives in interval type-2 fuzzy logic systems, IEEE Transactions on Fuzzy Systems 12 (1) (2004) 84–98.
[12] J.M. Mendel, Computing with words and its relationships with fuzzistics, Information Sciences 177 (4) (2007) 988–1006.
[13] J.M. Mendel, On answering the question ‘where do I start in order to solve a new problem involving interval type-2 fuzzy sets?’, Information Sciences

179 (19) (2009) 3418–3431.
[14] J.M. Mendel, R.I. John, Type-2 fuzzy sets made simple, IEEE Transactions on Fuzzy Systems 10 (2) (2002) 117–127.

90 X. Liu et al. / Information Sciences 184 (2012) 75–91



Author's personal copy

[15] J.M. Mendel, F. Liu, Super-exponential convergence of the Karnik–Mendel algorithms for computing the centroid of an interval type-2 fuzzy set, IEEE
Transactions on Fuzzy Systems 15 (2) (2007) 309–320.

[16] J.M. Mendel, F. Liu, D. Zhai, a-plane representation for type-2 fuzzy sets: theory and applications, IEEE Transactions on Fuzzy Systems 17 (5) (2009)
1189–1207.

[17] J.M. Mendel, D. Wu, Perceptual Computing: Aiding People in Making Subjective Judgments, Wiley-IEEE Press, Hoboken, NJ, 2010.
[18] J.M. Mendel, H. Wu, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems, IEEE Transactions on Fuzzy Systems 14 (6)

(2006) 781–792.
[19] J.M. Mendel, H. Wu, New results about the centroid of an interval type-2 fuzzy set, including the centroid of a fuzzy granule, Information Sciences 177

(2) (2007) 360–377.
[20] C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zslices, IEEE Transactions on Fuzzy Systems 18 (4) (2010) 637–660.
[21] C.H. Wang, C.S. Cheng, T.T. Lee, Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN), IEEE Transactions on Systems Man and

Cybernetics Part B-Cybernetics 34 (3) (2004) 1462–1477.
[22] D. Wu, J.M. Mendel, Aggregation using the linguistic weighted average and interval type-2 fuzzy sets, IEEE Transactions on Fuzzy Systems 15 (6) (2007)

1145–1161.
[23] D. Wu, J.M. Mendel, Uncertainty measures for interval type-2 fuzzy sets, Information Sciences 177 (23) (2007) 5378–5393.
[24] D. Wu, J.M. Mendel, Enhanced Karnik–Mendel algorithms, IEEE Transactions on Fuzzy Systems 17 (4) (2009) 923–934.
[25] D. Wu, J.M. Mendel, Perceptual reasoning for perceptual computing: a similarity-based approach, IEEE Transactions on Fuzzy Systems 17 (6) (2009)

1397–1411.
[26] D.R. Wu, J.M. Mendel, Computing with words for hierarchical decision making applied to evaluating a weapon system, IEEE Transactions On Fuzzy

Systems 18 (3) (2010) 441–460.
[27] C.Y. Yeh, W.H.R. Jeng, S.J. Lee, An enhanced type-reduction algorithm for type-2 fuzzy sets, IEEE Transactions on Fuzzy Systems 19 (2) (2011) 227–240.
[28] D.Y. Zhai, J.M. Mendel, Uncertainty measures for general type-2 fuzzy sets, Information Sciences 181 (3) (2011) 503–518.

X. Liu et al. / Information Sciences 184 (2012) 75–91 91


