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Abstract—To facilitate the transition of brain-computer in-

terface (BCI) systems from laboratory settings to real-world

application, it is very important to minimize or even completely

eliminate the subject-specific calibration requirement. There

has been active research on calibrationless BCI systems for

classification applications, e.g., P300 speller. To our knowledge,

there is no literature on calibrationless BCI systems for regression

applications, e.g., estimating the continuous drowsiness level

of a driver from EEG signals. This paper proposes a novel

spectral meta-learner for regression (SMLR) approach, which

optimally combines base regression models built from labeled

data from auxiliary subjects to label offline EEG data from a new

subject. Experiments on driver drowsiness estimation from EEG

signals demonstrate that SMLR significantly outperforms three

state-of-the-art regression model fusion approaches. Although we

introduce SMLR as a regression model fusion in the BCI domain,

we believe its applicability is far beyond that.

Index Terms—Brain-computer interface, calibrationless BCI,

regression, EEG, ensemble learning, spectral meta-learner

I. INTRODUCTION

EEG-based brain-computer interface (BCI) systems have

gained increasing research interest in the last decade, and

they have demonstrated promising performance in various

applications [24], [25], [30], [33], [40], [41], [44], primarily

in laboratory settings. Most BCI systems require a subject-

specific calibration session, which could last 5-20 minutes. To

facilitate their real-world applications, it is very important to

minimize or even completely eliminate this calibration [10],

[24], [27].

Lots of approaches have been proposed to minimize the

calibration requirement [1], [11], [26], [31], [42], [45]–[52].

Generally they can be partitioned into two groups. The first

group focuses on feature extraction: it either extracts more

discriminative subject-specific features, e.g., common spatial

patterns [2], or extracts more robust and representative features

that are less likely to be affected by individual differences,

e.g., deep learning [17] and Riemannian geometry [3] features.

The second group uses advanced machine learning approaches

to achieve high calibration performance with a small amount

of subject-specific data, e.g., transfer learning [34], which

makes use of auxiliary data from similar/relevant tasks to

help the calibration for a new subject, active learning [39],

which selects the most informative samples to label, and their

combinations [46], [47], [50]. Interestingly, the two groups of

approaches are also complementary, and hence they can be

combined to further reduce the calibration effort, although a

lot of research is needed in this direction.

There has also been considerable literature on completely

eliminating subject-specific calibration in BCI [4], [9], [13],

[14], [16], [22], [23], [37], which is a very challenging

problem due to individual difference and nonstationarity. The

approaches here can again be roughly partitioned into two

groups: feature extraction and machine learning. For example,

[13], [14] performed subject-independent mental state clas-

sification by constructing an ensemble of classifiers derived

from subject-specific temporal and spatial filters, and then

fusing them for a new subject. [4], [9] developed a plug &

play BCI system by smartly initializing it using information

geometry and then continuously adapting it to the new sub-

ject. [22] built a calibrationless P300 speller by combining

unsupervised training, transfer learning and language models.

[23] performed an online study to verify that zero-training BCI

can be achieved through unsupervised learning in an auditory

event-related potential paradigm. [16] developed a calibration-

free BCI system that allows a user to control an agent to

solve a sequential task. It assumes a distribution of possible

tasks, and infers the interpretation of EEG signals and the

task by selecting the hypothesis that best explains the history

of interaction.

This paper focuses on calibrationless BCI in regression978-1-5090-1897-0/16/$31.00 c©2016 IEEE



problems. To our knowledge, this is the first work in this

direction. Our approach shares some similarity with [13], [14],

[37], which focus on classification problems: we construct an

ensemble of base regression models from relevant auxiliary

subjects, and then aggregate them for a new subject. Our

main contribution is that we propose a novel spectral meta-

learner for regression (SMLR) approach to optimally combine

the base regression models. Using a BCI application of driver

drowsiness estimation from EEG signals, we show that SMLR

can achieve significantly better performance than three other

popular regression model combination approaches in the liter-

ature.
The remainder of the paper is organized as follows: Sec-

tion II introduces the details of the SMLR approach. Sec-

tion III describes experiment setup and performance compar-

isons of SMLR with four other approaches, and also points

out future research directions. Section IV draws conclusions.

II. SMLR FOR REGRESSION MODEL AGGREGATION

This section introduces the proposed SMLR approach for

regression model aggregation. We consider regression prob-

lems with a continuous value input space X and a continuous

value output space Y . We assume there are n unlabeled

samples, {xj}
n
j=1, with unknown true outputs {yj}

n
j=1, and m

base regression models, {fi}
m
i=1. The ith regression model’s

prediction for xj is fi(xj).
Our goal is to accurately estimate yj by optimally combin-

ing {fi(xj)}
m
i=1. The SMLR approach consists of two steps:

1) estimate the accuracy of each base regression model; and,

2) select and combine the strong base regression models.

A. Estimate the Accuracy of the Base Regression Models

The derivation here closely resembles that in [18], which

was in turn inspired by [35]. [35] proposed an SML approach

for binary classification, which first uses a spectral approach

to estimate the accuracies of multiple base binary classifiers

from their predictions, and then a meta-learning approach

to combine them. [18] proposed Eigen and Eigen-PC, two

approaches to extend SML to prediction scores with arbitrary

continuous distributions. Our derivation follows the Eigen-PC

approach for its simplicity.

First, we normalize {fi(xj)}
n
j=1 to make its mean µi =

0 and standard deviation equal 1. We then treat fi(xj) as

belonging to a 2-component mixture distribution, where the

two components are corresponding to two distinct states {0, 1}
in the output space, e.g., Non-drowsy and Drowsy in driver

drowsiness estimation. Let Cj be an indicator variable of the

true state of sample xj , and π = P(Cj = 1). Then, fi(xj)
can be expressed as:

fi(xj) = πg1,i(xj) + (1− π)g0,i(xj) (1)

where g1,i(xj) and g0,i(xj) are the conditional distributions

of xj when xj belongs to State 1 and State 0, respectively.

Let µl,i = E[fi(xj)|Cj = l] = E[gl,i(x)], l = 0, 1. Then, by

taking the expectation on both sides of (1), it follows that

µi = πµ1,i + (1− π)µ0,i (2)

Because µi = 0, we can easily derive

µ1,i =
π − 1

π
µ0,i (3)

Let Q be the covariance matrix of {fi(xj)}
m
i=1, i.e., its

(i1, i2)th element Qi1,i2 is the population covariance of two

base regression models fi1(xj) and fi2(xj):

Qi1,i2 = Cov(fi1 (xj), fi2(xj))

= πE[fi1(xj)fi2(xj)|Cj = 1]

+ (1− π)E[fi1(xj)fi2(xj)|Cj = 0]

= πE[(fi1(xj)− µ1,i1)(fi2 (xj)− µ1,i2)|Cj = 1]

+ πµ1,i1µ1,i2

+ (1− π)E[(fi1 (xj)− µ0,i1)(fi2(xj)− µ0,i2)|Cj = 0]

+ (1− π)µ0,i1µ0,i2

= πCov(fi1 (xj), fi2(xj)|Cj = 1)

+ (1− π)Cov(fi1 (xj), fi2(xj)|Cj = 0)

+ πµ1,i1µ1,i2 + (1− π)µ0,i1µ0,i2 (4)

Under the assumption that the base regression models are

conditionally independent given Cl, we have

Cov(fi1 (xj), fi2(xj)|C1 = 1) = 0, i1 6= i2 (5)

Cov(fi1 (xj), fi2(xj)|C0 = 1) = 0, i1 6= i2 (6)

and hence

Qi1,i2 = πµ1,i1µ1,i2 + (1 − π)µ0,i1µ0,i2 , i1 6= i2 (7)

Substituting (3) into (7), it follows that

Qi1,i2 = π ·
π − 1

π
µ0,i1 ·

π − 1

π
µ0,i2 + (1− π)µ0,i1µ0,i2

=
1− π

π
µ0,i1µ0,i2 , i1 6= i2 (8)

Define a rank-one matrix

R =
1− π

π
µ0µ

T
0 (9)

where µ0 = (µ0,1, µ0,2, ..., µ0,m)T is the mean vector of

the m base regression models given Cj = 0. Then, it is easy

to see that the off-diagonal entries of the covariance matrix Q

are identical to those of R.

From (3) we have

µ0,i − µ1,i =
1

π
µ0,i, (10)

i.e., |µ0,i| is a measure on the distance between the two con-

ditional distributions for fi. This distance may be an indirect

indicator of the performance of fi because, intuitively, a large

distance means the two states {0, 1} can be well separated

from the outputs of fi. So, if we view fi as a classifier,

then it would have good distinguishability, and we expect that

this good classification performance also generalizes to good

regression performance. However, we must point out that this

conclusion is based on intuition, and we do not have a rigorous

mathematical proof so far. This is one of our future research

directions.



If we know R, then µ0 can be easily computed as its

first leading eigenvector. The question is how to estimate R

from fi(xj), i = 1, ...,m, j = 1, ..., n. Multiple approaches

have been proposed in [18], [35]. In this paper we use the

simple Eigen-PC approach [18], R ≈ Q, i.e., to approximate

R directly by the population covariance matrix Q.

B. Combine Base Regression Models

Once the accuracies of the m base regression models are

estimated, a simple weighted average may be used to combine

them, i.e.,

f(xj) =

∑m

i=1 µ0,ifi(xj)
∑m

i=1 µ0,i
(11)

The Eigen-PC approach in [18] used a similar idea, but it

considered binary classification problems, so a weighted sum

instead of weighted average was used.

However, (11) may not be optimal, because:

1) Maybe not all m base regression models are necessary

in the final aggregation, because outlier models could

significantly deteriorate the ensemble performance. So,

it is important to identify and exclude the outliers and

maybe also the weak models from the final aggregation.

2) Although µ0,i is an indirect indicator of the performance

of fi, there is no guarantee that using it directly in (11)

will give the best performance. It’s possible that some

transformation of µ0,i can serve as a better weight.

In the following we will propose a simple approach to accom-

modate the first issue. The second one will be considered in

our future research.

We first use k-means clustering (k = 3) on the absolute

values of the elements of µ0 to partition the m base regression

models into three groups:

1) The first group has the smallest centroid, which consists

of the outliers.

2) The second group has the median centroid, which con-

sists of the weak models.

3) The third group has the largest centroid, which consists

of the strong models.

Clearly, the outliers should be excluded from the final aggrega-

tion, and the strong models should be included. The question

is whether the weak models should be included or not. Our

empirical results show that generally it is beneficial to exclude

them, and this approach is used in this paper.

Once the m′ strong models {fi}
m′

i=1 are identified, we again

use a simple weighted average to aggregate them:

f(xj) =

∑m′

i=1 µ0,ifi(xj)
∑m′

i=1 µ0,i

(12)

C. The Complete SMLR Algorithm

The complete SMLR algorithm is shown in Algorithm 1.

It first uses the spectral approach to estimate the accuracy of

the m base regression models, then uses k-means clustering

(k = 3) to identify the strong models, and finally employs a

weighted average to aggregate them.

Algorithm 1: The SMLR algorithm.

Input: n unlabeled samples, {xj}
n
j=1;

m base regression models, {fi}
m
i=1.

Output: The n estimated outputs, {f(xj)}
n
j=1.

Compute the covariance matrix Q of {fi}
m
i=1;

Compute the first leading eigenvector, µ0, of Q;

Perform k-means clustering (k = 3) on the absolute

values of the elements of µ0;

Identify the m′ strong regression models as those belong

to the cluster with the maximum centroid;

Return {f(xj}
n
j=1 computed by (12).

III. EXPERIMENT AND RESULTS

This section presents the experiment setup that is used to

evaluate the performance of SMLR, the performance compar-

ison of SMLR with four other approaches, and discussions on

our future research directions.

A. Experiment Setup

The experimental setup was identical to that in [45]. We

recruited 16 healthy subjects with normal/corrected-to-normal

vision to participant in a sustained-attention driving exper-

iment [7], [8], consisting of a real vehicle mounted on a

motion platform with 6 degrees of freedom immersed in a 360-

degree virtual-reality (VR) scene. The Institutional Review

Board of the Taipei Veterans General Hospital approved the

experimental protocol, and each participant read and signed

an informed consent form before the experiment began. Each

experiment lasted for about 60-90 minutes and was conducted

in the afternoon when the circadian rhythm of sleepiness

reached its peak. To induce drowsiness during driving, the

VR scenes simulated monotonous driving at a fixed speed

(100 km/h) on a straight and empty highway. During the

experiment, random lane-departure events were applied every

5-10 seconds, and participants were instructed to steer the

vehicle to compensate for them immediately. The response

time was recorded and later converted to a drowsiness index,

as research has shown that it has strong correlation with fatigue

[21]. Participants’ scalp EEG signals were recorded using a

500Hz 32-channel Neuroscan system (30-channel EEGs plus

2-channel earlobes), and their cognitive states and driving

performance were also monitored via a surveillance video

camera and the vehicle trajectory throughout the experiment.

B. Preprocessing and Feature Extraction

The preprocessing and feature extraction methods were

almost identical to those in our previous research [45], except

that herein we used principal component features instead of

the theta band power features for better regression performance

[49].

The 16 subjects had different lengths of experiment, because

the disturbances were presented randomly every 5-10 seconds.

Data from one subject was not correctly recorded, so we used



only 15 subjects. To ensure fair comparison, we used only the

first 3,600 seconds data for each subject.

We defined a function [42], [45] to map the response time

τ to a drowsiness index y ∈ [0, 1]:

y = max

{

0,
1− e−(τ−τ0)

1 + e−(τ−τ0)

}

(13)

τ0 = 1 was used in this paper, as in [45]. The drowsiness

indices were then smoothed using a 90-second square moving-

average window to reduce variations. This does not reduce the

sensitivity of the drowsiness index because the cycle lengths

of drowsiness fluctuations are longer than 4 minutes [28].

We used EEGLAB [?] for EEG signal preprocessing. A 1-

50 Hz band-pass filter was applied to remove high-frequency

muscle artifacts, line-noise contamination and direct current

drift. Next the EEG data were downsampled from 500 Hz to

250 Hz and re-referenced to averaged earlobes.

We tried to predict the drowsiness index for each subject

every 10 seconds. All 30 EEG channels were used in feature

extraction. We epoched 30-second EEG signals right before

each sample point, and computed the average power spectral

density (PSD) in the theta band (4-7.5 Hz) for each channel

using Welch’s method [43], as research [29] has shown that

theta band spectrum is a strong indicator of drowsiness.

Next, we converted the 30 theta band powers to dBs. To

remove noises or bad channel readings, we removed channels

whose maximum dBs were larger than 20. We then normalized

the dBs of each remaining channel to mean zero and stan-

dard deviation one, and extracted a few (usually around 10)

leading principal components, which accounted for 95% of

the variance. The projections of the dBs onto these principal

components were then normalized to [0, 1] and used as our

features.

C. Evaluation Method and Performance Measures

This work is a step towards calibrationless BCI systems,

the goal of which is to design BCI systems without using

any labeled subject-specific calibration data. Our complete

approach is shown in Fig. 1. Let the 15th subject be a new

subject to our BCI system, who has only unlabeled EEG

data, and our goal is to map these data to his/her drowsiness

indices without asking for any labels. We first use labeled data

from the other 14 subjects to build 14 base ridge regression

(RR) models, feed the unlabeled data from the 15th subject

into them, and then use different model fusion approaches to

aggregate the 14 RR models to get the final predictions. Finally

we compare the predictions with the true drowsiness indices

of the 15th subject and compute the root mean squared error

(RMSE) and correlation coefficient (CC) as our performance

measures. We repeat this process 15 times so that each subject

has a chance to be the “15th” subject.

D. Algorithms

We compare SMLR with a slighted modified Eigen-PC

approach [18], where the weighted sum is replaced by a

weighted average, as stated in Section II-B, and two other

Unlabeled 

data from the 

15th subject

Model 1: RR 

on labeled 

data from the 

1st subject

Model 14: RR 

on labeled 

data from the 

14th subject

Final 

predictions

Performance 

evaluation

Fig. 1. Illustration of the performance evaluation method.

popular regression model combination approaches in the liter-

ature [32], [38]:

1) Average [36], which simply takes the average of the m

base regression models as the final prediction.

2) Median [6], [15], which uses the median of the m base

regression models as the final prediction.

Additionally, we also constructed an Oracle approach, which

assumes that we know the true RMSEs of the m base regres-

sion models (which is impossible in practice), uses k-means

clustering (k = 3) to partition the m models into three groups,

and finally employs a weighted average to aggregate the m′

strong models from the group with the smallest centroid.

The weights were again determined from the 1st leading

eigenvector of Q. Generally the Oracle approach represents

the upper bound of the performance the SMLR approach could

reach if the performances of the m base regression models are

estimated perfectly. So, it is used as a benchmark to evaluate

how much SMLR can be further improved.

Note that there is another popular regression model fusion

approach called stacked regression [5], which fits an optimal

linear regression model on top of the base regression models

to fuse them. However, the objective function in the fitting

requires some labeled data from the new subject, which are

not available in our application. So, stacked regression is not

considered in this paper.

E. Experimental Results and Discussions

The prediction outputs of the five algorithms, along with

the groundtruth drowsiness index computed from the response

time, are shown in Fig. 2. Observe that without using any

labeled data from the new subject, the predictions from the five

algorithms all have strong correlations with the groundtruth.

The RMSEs and CCs of the five approaches are shown in

Figs. 3(a) and 3(b), respectively, where the last group in each

figure shows the average performance across the 15 subjects.

Observe from Fig. 3(a) that SMLR achieved smaller RMSE

than Average, Median and Eigen-PC for 12 of the 15 subjects,

and comparable RMSE for the remaining three subjects (8,

11 and 14). The average RMSE of SMLR was also much

smaller than those of Average, Median and Eigen-PC. How-

ever, Oracle achieved smaller RMSE than SMLR for most

of the subjects, suggesting that SMLR can still be improved,
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Fig. 2. Predicted drowsiness indices from the five algorithms.

by making better estimations of the performances of the base

regression models.
Fig. 3(b) shows that the CC differences among the five

approaches were not as significant as the RMSE differences,

because our primary objective was to optimize the RMSE in-

stead of the CC. However, SMLR still achieved larger CC than

Average, Median and Eigen-PC for nine of the 15 subjects, and

comparable CC for the remaining six subjects. SMLR also had

the largest average CC among the five approaches, although

it was only slightly better than the CCs of Average, Eigen-PC

and Oracle.
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Fig. 3. (a) RMSEs and (b) CCs of the five approaches on the 15 subjects.
The last group in each subfigure shows the average performance across the
15 subjects.

We also performed paired t-tests to check if the RMSE and

CC differences between SMLR and the other four approaches

were statistically significant, using α = 0.05 and Bonferroni

correction [12]. The results are shown in Table I, where the sta-

tistically significant ones are marked in bold. Observe that the

RMSE differences between SMLR and three other approaches

(Average, Median, and Eigen-PC) were statistically significant,

suggesting that SMLR significantly outperformed Average,

Median and Eigen-PC in terms of RMSE. The RMSE differ-

ence between SMLR and Oracle was marginally statistically

significant, indicating that still significant enhancements could

be made to SMLR to reach its full potential (represented by

Oracle). The CC differences between SMLR and Median was

also statistically significant, but the CC differences between

SMLR and the other three approaches were not.

TABLE I
p-VALUES (AFTER BONFERRONI CORRECTION) OF PAIRED t-TESTS

BETWEEN SMLR AND THE OTHER FOUR APPROACHES ON THE RMSES

AND CCS. α = 0.05.

Approach Average Median Eigen-PC Oracle

RMSE .0110 .0022 .0283 .0885
CC .3031 .0086 1.4716 1.6550

Finally, we performed in-depth analysis to study why SMLR

could significantly outperform Average, Median and Eigen-PC

in terms of RMSE. Recall that the two main novelties of SMLR

are the estimation of the performances of the base regression

models, and the identification of the strong models. We studied

these two novelties separately.

In Fig. 4 we show the values of the first leading eigenvector

of Q (representing the estimated performance of the corre-

sponding base regression models) versus the true RMSEs of

the corresponding base regression models on the testing data

for each subject. The averages across the 15 subjects are shown

in the last subfigure. We sorted the values of the eigenvector in

descending order to better visualize the trend. Ideally, a large

eigenvector value, which indicates good performance, should

corresponds to a small RMSE, and hence monotonically

decreasing eigenvector values should correspond to monoton-

ically increasing RMSEs. Observe from Fig. 4, especially the

last subfigure, that generally as the value of the eigenvector

decreased, the corresponding RMSE increased, although it was

not monotonic. This suggests that SMLR can indeed rank

the performances of the base regression models, although not

perfect.

To check whether the strong models selected by SMLR were

really among the best, we marked the selected models in shade

in Fig. 4. Observe, especially from the last subfigure, that

generally SMLR can indeed identify the strong base regression

models, although they were not necessary the best ones.

F. Discussions and Future Research

We have shown that our proposed SMLR can significantly

outperform Average, Median and Eigen-PC in terms of RMSE,

but still there is significant room for improvement until it

reaches or exceeds the performance of Oracle. We will in-

vestigate the following directions in our future research:
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Fig. 4. The values of the leading eigenvector of the covariance matrix (–
*–*–; sorted in descending order) versus the testing RMSEs (–*–*–) of the
corresponding base regression models. The points in shade are the base models
selected by SMLR. The last subfigure shows the averages across the 15
subjects.

1) More accurate estimations of the performances of the

base regression models, which better enables us to

identify the strongest models. In this paper we used the

simplest approach by equating R to Q. Several more

sophisticated approaches were proposed in [18], [35].

We implemented the Eigen approach in [18] but failed to

achieve noticeable performance improvement. In the fu-

ture we will investigate other possibilities. For example,

in [48] we estimated the classification accuracies of base

classifiers from their agreement rate (the probability that

two classifiers make errors simultaneously), and showed

that the resulting model fusion approach achieved better

performance than estimating the classification accuracies

from the covariance matrix. We will extend that work

from classification to regression.

2) As mentioned in Section II-B, we can estimate the

accuracies of the base regression models, but there is no

guarantee that using them directly as the weights in (11)

would give the best performance. Some transformation

of µ0,i could be better. Additionally, it has been shown

in [19], [20], [35], [48] that, for classification problems,

initializing the weights for the base classifiers using the

spectral or the agreement rate approach and then itera-

tively refining them using a maximum likelihood estima-

tor can improve the performance. It is also interesting

to extend this iterative approach from classification to

regression.

IV. CONCLUSIONS

Today most BCI systems require a calibration session before

it can be applied to a new subject, which may hinder their

real-world acceptances. There has been active research on

calibrationless BCI systems, but so far all of them focused on

classification problems. This paper for the first time considers

regression problems in calibrationless BCI systems. We pro-

posed a novel SMLR approach to aggregate base regression

models built from labeled data from auxiliary subjects, and

then apply the fused model to a new subject for offline BCI

applications, without requiring any labels from the new sub-

ject. Experiments on driver drowsiness estimation from EEG

signals demonstrated that SMLR significantly outperformed

three state-of-the-art regression model fusion approaches. We

believe that SMLR will have broad applications in regression

model fusion beyond BCI.
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