
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 2, APRIL 2018 771

Spatial Filtering for EEG-Based Regression Problems
in Brain–Computer Interface (BCI)

Dongrui Wu , Senior Member, IEEE, Jung-Tai King, Chun-Hsiang Chuang , Chin-Teng Lin , Fellow, IEEE,
and Tzyy-Ping Jung , Fellow, IEEE

Abstract—Electroencephalogram (EEG) signals are frequently
used in brain–computer interfaces (BCIs), but they are easily con-
taminated by artifacts and noise, so preprocessing must be done
before they are fed into a machine learning algorithm for clas-
sification or regression. Spatial filters have been widely used to
increase the signal-to-noise ratio of EEG for BCI classification
problems, but their applications in BCI regression problems have
been very limited. This paper proposes two common spatial pat-
tern (CSP) filters for EEG-based regression problems in BCI,
which are extended from the CSP filter for classification, by us-
ing fuzzy sets. Experimental results on EEG-based response speed
estimation from a large-scale study, which collected 143 sessions
of sustained-attention psychomotor vigilance task data from 17
subjects during a 5-month period, demonstrate that the two pro-
posed spatial filters can significantly increase the EEG signal qual-
ity. When used in LASSO and k-nearest neighbors regression for
user response speed estimation, the spatial filters can reduce the
root-mean-square estimation error by 10.02−19.77%, and at the
same time increase the correlation to the true response speed by
19.39−86.47%.

Index Terms—Brain–computer interface (BCI), common
spatial pattern (CSP), electroencephalogram (EEG), fuzzy sets,
psychomotor vigilance task (PVT), response speed (RS) estima-
tion, spatial filtering.

I. INTRODUCTION

E LECTROENCEPHALOGRAM (EEG) is the most widely
used signal for brain–computer interfaces (BCIs) [24],

[25], [29], [34], [47], [53], mainly due to the convenience
to obtain them, compared with magnetoencephalography
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[32], functional magnetic resonance imaging [44], functional
near-infrared spectroscopy [33], and invasive recordings such
as electrocorticography [30], [35]. However, EEG signals are
often contaminated by ocular, muscular, and cardiac artifacts
and other noise (power line, changes in electrode impedances,
etc.) [4], [34], [49]. Usually some preprocessing, either
manually or automatically [4], [34], is needed to remove the
artifacts, and then temporal and spatial filters are applied to
further improve the EEG signal quality before feeding the EEG
data into a classification or regression algorithm. The most com-
monly used temporal filters are bandpass filters and notch filters
(at 50 or 60 Hz power-line frequency).

This study focuses on spatial filtering for improving the EEG
signal quality. Many such approaches have been proposed in the
literature [2], [7], [15], [17], [37], [38], [40], [41], [54]. How-
ever, almost all of them focus primarily on EEG classification
problems in BCI, whereas EEG regression problems have been
largely overlooked. Nevertheless, the latter is also very impor-
tant in BCIs. One example is driver drowsiness (or alertness)
estimation from EEG signals, which has been extensively stud-
ied in our previous research [26]–[28], [56], [59]–[61]. This is
a very important problem because drowsy driving is among the
most important causes of road crashes, following only to alco-
hol, speeding, and inattention [43]. According to the National
Highway Traffic Safety Administration [52], 2.5% of fatal mo-
tor vehicle crashes (on average 886/year in U.S.) and 2.5% of
fatalities (on average 1004/year in U.S.) between 2005 and 2009
involved drowsy driving.

This study proposes two spatial filters for EEG-based regres-
sion problems in BCI. We also validate their performance of
response speed (RS) estimation from EEG signals measured
in a large-scale sustained-attention psychomotor vigilance task
(PVT) [21], which collected 143 sessions of data from 17 sub-
jects in a 5-month period.

The remainder of this paper is organized as follows.
Section II reviews the state-of-the-art spatial filters for EEG-
based classification problems in BCI. Section III introduces
our proposed spatial filters for supervised BCI regression prob-
lems. Section IV describes the experimental setup, RS, and EEG
data preprocessing techniques, and the procedure to evaluate
the performances of different spatial filters. Section V presents
the results of the comparative studies and parameter sensitivity
analysis for the proposed spatial filter. Section VI discusses the
limitations of the proposed approaches and outlines several fu-
ture research directions. Finally, Section VII draws conclusions.
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II. SPATIAL FILTERS FOR EEG CLASSIFICATION IN BCI

Many spatial filters have been proposed for the EEG classi-
fication in BCI. The most basic ones include common average
reference [48], Laplacian filters [23], and principal component
analysis [19]. Some of the more recent and also more sophisti-
cated ones are as follows.

1) Independent component analysis (ICA) [9], [17], [54]
decomposes a multivariate signal into independent non-
Gaussian signals. ICA has been widely used in the EEG
research community to detect and remove stereotyped eye,
muscle, and line noise artifacts [20], [26], [49].
Generally ICA works on an unepoched long block of EEG
data, instead of epoched short EEG trials. Let the un-
epoched EEG data be X ∈ RC×T , where C is the number
of EEG channels, and T is the number of time samples.
ICA assumes that X is the linear combination of c inde-
pendent sources, i.e., X = AS, where A ∈ RC×c is the
mixing matrix, and the source signals, which are the rows
of S ∈ Rc×T , are supposed to be stationary, independent,
and non-Gaussian. ICA can use various different princi-
ples [9], [17], [49], [54] to estimate both unknown A and
unknown S simultaneously from X. Once S is obtained,
cleaner and more representative features may be extracted
from it than from the original X [26].

2) xDAWN algorithm [38]–[40] is often used to increase
the signal to signal-plus-noise ratio (SNR) in P300-based
BCIs.
Like ICA, xDAWN also works on the unepoched long
block of EEG data X ∈ RC×T . It assumes that X =
PDT + N, where P ∈ RC×S represents the P300 sig-
nal in an EEG epoch, and D ∈ RT ×S is a Toeplitz matrix
whose first column is defined as

Dτk ,1 =

⎧
⎨

⎩

1, τk is the onset of the
kth target stimulus

0, otherwise
(1)

and N ∈ RC×T represents the ongoing background brain
activity as well as the artifacts and noise. xDAWN then
designs a spatial filtering matrix W∗ ∈ RC×F , where F
is the number of spatial filters, to maximize the signal to
SNR, i.e.,

W∗ = arg max
W∈RC ×F

Tr(WT PDT DPT W)
Tr(WT XXT W)

(2)

where Tr(·) is the trace of a matrix. Equation (2) is a gen-
eralized Rayleigh quotient [14], and its solution W∗ is the
concatenation of the F eigenvectors associated with the F
largest eigenvalues of the matrix (XXT )−1PDT DPT .
The spatially filtered trial for Xn is then computed as

X′
n = W∗T Xn , n = 1, . . . , N. (3)

3) Canonical correlation analysis (CCA) [15], [41] finds lin-
ear transformations to maximize the correlations between
two datasets. It has been used to improve BCI perfor-
mance in code-modulated visual evoked potentials [5],

steady-state visual evoked potentials [6], and event-related
potentials like P300 and error-related potentials [45].
Unlike ICA and xDAWN, CCA works on epoched EEG
trials. Consider a binary classification problem with N1
training examples in Class 1 and N2 training examples in
Class 2. Let (Xn , yn ) be the nth training example, where
Xn ∈ RC×S (C is the number of channels, and S is the
number of time samples in each trial), and yn ∈ {1, 2}. Let
X̄k ∈ RC×S be the average of Xn in Class k (k = 1, 2).
We then construct X̃ = [X̃1 X̃2 ] and Z̃ = [Z̃1 Z̃2 ], where
X̃k is the concatenation of all Nk Xn in Class k, and Z̃k

is the concatenation of Nk X̄k . CCA first finds two vector
filters wX̃ and wZ̃ such that the correlation between wT

X̃
X̃

and wT
Z̃
Z̃ is maximized. wT

X̃
X and wT

Z̃
Z̃ are called the

first pair of canonical variables. CCA then finds the second
pair of canonical variables in a similar way, subject to the
constraint that they are uncorrelated with the first pair of
canonical variables. This procedure can be continued up
to C times.
Finally, the spatial filtering matrix is the concatenation of
all wX̃ , which can be applied to each Xn to increase its
SNR.

4) Common spatial patterns (CSP) [7], [37] is a supervised
technique frequently used to enhance the binary classi-
fication performance of EEG data. The basic idea is to
separate the EEG signal into additive subcomponents that
have maximum differences in variance between the two
classes. In the following, we introduce the one-versus-the-
rest (OVR) CSP [11], which extends the traditional CSP
from binary classification to K classes.
Like CCA, OVR CSP also works on epoched EEG tri-
als. Let (Xn , yn ) be the nth training example, as defined
above. Assume the mean of Xn has been removed, e.g.,
by high-pass or bandpass filtering. Then, for Class k, OVR
CSP finds a spatial filter matrix W∗

k ∈ RC×F , where F
is the number of spatial filters, to maximize the variance
difference between Class k and the rest:

W∗
k = arg max

W∈RC ×F

Tr(WT Σ̄kW)
Tr[WT (

∑
i �=k Σ̄i)W]

(4)

where Σ̄k is the mean covariance matrix of trials in Class
k. Equation (4) is also a generalized Rayleigh quotient
[14], and the solution W∗

k is the concatenation of the F
eigenvectors associated with the F largest eigenvalues of
the matrix (

∑
i �=k Σ̄i)−1Σ̄k .

Finally, we concatenate the K individual OVR CSP spatial
filters to obtain the complete filter:

W∗ = [W∗
1 , . . . W∗

K ] ∈ RC×K F (5)

and compute the spatially filtered trial for Xn by (3).

III. SPATIAL FILTERS FOR SUPERVISED BCI REGRESSION

PROBLEMS

In this section, we propose two CSP for regression (CSPR) fil-
ters, which extend the multiclass CSP filters from classification
to regression by using fuzzy sets [63], as we have done in [60].
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Fig. 1. Examples of a fuzzy set.

Fig. 2. K fuzzy classes for yn , when triangular fuzzy sets are used.

First, a brief introduction of fuzzy sets is given below.

A. Fuzzy Sets

A fuzzy set A is comprised of a universe of discourse DA of
real numbers together with a membership function μA : DA →
[0, 1], i.e.,

A =
∫

DA

μA (x)/x. (6)

Here,
∫

denotes the collection of all points x ∈ DA with asso-
ciated membership degree μA (x). An example of a fuzzy set
is shown in Fig. 1. The membership degrees are μA (1) = 0,
μA (3) = 0.5, μA (5) = 1, μA (6) = 0.8, and μA (10) = 0. Ob-
serve that this is different from traditional (binary) sets, where
each element can only belong to a set completely (i.e., with
membership degree 1), or does not belong to it at all (i.e.,
with membership degree 0); there is nothing in between (i.e.,
with membership degree 0.5). Fuzzy sets are frequently used in
modeling concepts in natural language [22], [36], [55], which
may not have clear boundaries.

B. Common Spatial Patterns for Regression
One-Versus-the-Rest

Let Xn ∈ RC×S (n = 1, . . . N ) be the nth EEG trial, where
C is the number of channels and S is the number of time sam-
ples in each trial. We assume that the mean of each channel
measurement has been removed, which is usually performed by
bandpass filtering. Let yn ∈ {1, . . . ,K} be the RS of Xn .

With the help of fuzzy sets, we can define “fuzzy” classes to
connect regression problems and classification problems. As-
sume K fuzzy classes are used. First, we partition the interval
[0, 100] into K + 1 equal intervals, and denote the partition
points as {pk}k=1,...,K . It is easy to obtain that

pk =
100 · k
K + 1

, k = 1, . . . ,K. (7)

Algorithm 1: The CSPR-OVR spatial filter for supervised
BCI regression problems.

Input: EEG training examples (Xn , yn ), where
Xn ∈ RC×S , n = 1, . . . , N ;
K, the number of fuzzy classes for yn ;
F , the number of spatial filters for each

fuzzy class.
Output: Spatially filtered EEG trials X′

n ∈ RK F ×S .
Band-pass filter each Xn to remove the mean of each

channel;
Compute {pk}k=1,...,K in (7);
Compute the corresponding percentile values
{Pk}k=1,...,K for yn ;

Construct the K fuzzy classes as shown in Fig. 2;
Compute Σ̄k by (8);
Compute W∗

k by (4);
Construct W∗ by (5);
Return X′

n by (3)

For each pk , we then find the corresponding pk percentile value
of all training yn and denote it as Pk . Next, we define K fuzzy
classes from them, as shown in Fig. 2. In this way, we can
“classify” the training yn into K fuzzy classes, corresponding
to the K crisp classes in the CSP for classification. However,
note that in the CSP for classification, a yn belongs to a crisp
class either completely or not at all. For a fuzzy class here, a yn

can belong to it at a membership degree in [0, 1].
Next, for each fuzzy class, we compute its mean spatial co-

variance matrix as

Σ̄k =
∑N

n=1 μk (yn )XnXT
n

∑N
n=1 μk (yn )

, k = 1, . . . ,K (8)

where μk (yn ) is the membership degree of yn in fuzzy class
k. Substituting (8) into (4), we can solve for the spatial filter-
ing matrix W∗

k for fuzzy class k. Essentially, this W∗
k makes

those Xn in fuzzy class k different from those not in fuzzy
class k, which will help the regression performance, as we will
demonstrate in Section V.

Next, we construct a concatenated spatial filtering matrix W∗

by (5), and finally perform the spatial filtering for each EEG trial
Xn by (3). The complete CSPR-OVR spatial filter for supervised
BCI regression problems is summarized in Algorithm 1.

C. CSPR One-Versus-All (OVA)

In (4), we construct the multiclass CSP using an OVR ap-
proach, but it can also be constructed using the following OVA
approach:

W∗
k = arg max

W∈RC ×F

Tr(WT Σ̄kW)

Tr[WT (
∑K

i=1 Σ̄i)W]
. (9)

The only difference between (9) and (4) is that the numerator of
(9) also includes the contribution from Class k itself. If we view
Class k as the signal of interest, and all other classes as noise,
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then (9) maximizes the signal to SNR, as (2) in the xDAWN
algorithm.

Equation (9) is also a generalized Rayleigh quotient [14],
and the solution W∗

k is the concatenation of the F eigenvec-
tors associated with the F largest eigenvalues of the matrix
(
∑K

i=1 Σ̄i)−1Σ̄k . The OVA CSP for classification still uses (5)
to construct the final spatial filter, and (3) to perform the filtering.

Using the technique introduced in the previous section, we
can easily develop the CSPR-OVA spatial filter for BCI re-
gression problems. Its procedure is almost identical to that in
Algorithm 1. The only difference is that W∗

k is computed by (9)
instead of (4).

IV. EXPERIMENTS AND DATA

This section introduces a PVT experiment that was used to
evaluate the performances of the proposed spatial filtering al-
gorithms, the corresponding RS and EEG data preprocessing
procedures, and the feature sets.

A. Experiment Setup

A total of 17 university students (13 males; average age 22.4,
standard deviation 1.6) from the National Chiao Tung University
(NCTU) in Taiwan volunteered to support the data-collection
efforts over a five-month period to study EEG correlates of
attention and performance changes under specific conditions of
real-world fatigue [21], as determined by the effectiveness score
of Readiband [42]. The voluntary, fully informed consent of the
participants of this research was obtained as required by federal
and army regulations [50], [51]. The Institutional Review Board
of NCTU approved the experimental protocol.

All participants registered their fatigue levels through a smart-
phone daily, and received notifications to report for laboratory
experiments when the effectiveness score deemed their condi-
tions fitted the experimental requirement (low fatigue: > 90;
normal: [70, 90]; and high fatigue: < 70). Upon completion of
the related questionnaires [Karolinska Sleepiness Scale (KSS)
[1], and electronically-adapted visual analog scale for fatigue
(VAS-F) and stress (VAS-S)] and the informed consent form,
subjects performed a PVT, a dynamic attention-shifting task, a
lane-keeping task, and selected surveys (KSS, VAS-F, VAS-S,
state-trait anxiety inventory, and mind wandering) before each
task. EEG data were recorded at 1000 Hz using a 64-channel
NeuroScan system. Most participants performed the laboratory
experiment thrice in each of the three fatigue states.

This study focuses on the PVT [10], which is a sustained-
attention task that uses RS to measure the speed with which a
subject responds to a visual stimulus. It is widely used, partic-
ularly by NASA, for its ease of scoring, simple metrics, con-
vergent validity, and free of learning effects. In our experiment,
the PVT was presented on a smartphone with each trial initiated
as an empty solid white circle centered on the touchscreen that
began to fill in red displayed as a clockwise sweeping motion
like the hand of a clock. The sweeping motion was programmed
to turn solid red in 1 s or terminate upon a response by the
participants, which required them to tap the touchscreen with
the thumb of their dominant hand. The RS was computed as

the inverse of the elapsed time between the appearance of the
empty solid white circle and the participant’s response. Fol-
lowing completion of each trial, the circle went back to solid
white until the next trial. Intertrial intervals consisted of random
intervals between 2 and 10 s.

A total of 143 sessions of PVT data were collected from the 17
subjects, and each session lasted 10 min. Our goal is to predict
the RS using a three-s EEG trial immediately before it.

B. Performance Evaluation Process

The following procedure was performed to evaluate the per-
formances of different spatial filters:

1) EEG data preprocessing to suppress artifacts and noise;
2) RS data preprocessing to suppress outliers;
3) fivefold crossvalidation to compute the regression perfor-

mance for each combination of spatial filters and regres-
sion method: First, randomly partition the trials into five
equal folds; then, use four folds for supervised spatial
filtering and regression model training, and the remain-
ing fold for testing; repeat this five times so that every
fold is used in testing; finally, compute the regression per-
formances in terms of root-mean-square error (RMSE)
and correlation coefficient (CC). Two regression methods
were used: LASSO, whose adjustable parameter λ was op-
timized by an inner fivefold crossvalidation on the training
dataset, and k-nearest neighbors (kNN) regression, where
k = 5.

4) Repeat step 3) ten times and compute the average regres-
sion performance.

More details about the first two steps are given in the next
two sections.

C. EEG Data Preprocessing

We first downsampled the EEG data to 256 Hz, then epoched
them to 3-s trials according to the onset of the PVTs. Let the
onset time of the nth PVT be tn . Then, the 62-channel EEG trial
in [tn − 3, tn ] s was used to predict the RS, i.e., Xn ∈ R62×768 .
Each trial was then individually filtered by a [1, 20] Hz finite-
impulse response bandpass filter to make each channel zero-
mean and to remove unuseful high-frequency components.

Because the intertrial intervals consisted of random intervals
between 2 and 10 s, it is possible that a 3-s EEG trial covers part
of data from the previous trial. Additionally, a trial may also
contain the EEG oscillations related to motor reaction (tapping
the touchscreen) in the previous trial. To remedy these problems,
we removed overlapping trials: Let the RS of the nth trial be
yn (the corresponding response time is 1/yn ); then, the nth
trial is removed if tn − tn−1 < 1/yn−1 + 3, i.e., when the 3-s
EEG data for Trial n overlap with the data and response for the
previous trial.

D. RS Data Preprocessing

The raw response times for two subjects are shown in Fig. 3.
The top panel is from a typical subject, whose response times
were mostly shorter than 1 s. The lower panel is from a subject
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Fig. 3. Response times for a typical subject (top panel) and a subject with
possible data recording issues (bottom panel). The green line is the threshold,
and the red stars represent response times above the threshold, which will be
brought to the threshold.

with possible data recording issues, because lots of response
times were longer than 5 s, which are highly unlikely in practice.
So, we excluded that subject from the consideration in this paper,
and only used the remaining 16 subjects.

As shown in Fig. 3, the response times were very noisy, and
there were obvious outliers. It is very important to suppress the
outliers and noise so that the performances of different algo-
rithms can be more accurately compared. In addition to the step
in the previous section to remove overlapping trials, we also
employed the following two-step procedure for response time
preprocessing.

1) Outlier thresholding aimed to suppress abnormally large
response times. First, a threshold θ = my + 3σy was com-
puted for each subject, where my is the mean response
time from all sessions of that subject, and σy is the cor-
responding standard deviation. Then, all response times
larger than θ were replaced by θ. Note that the threshold
was different for different subjects.

2) Moving average smoothing replaced each response time
by the average response time during a 60 s moving window
centered at the onset of the corresponding PVT to suppress
the noise.

We then computed the RS as the inverse of the RT. The RSs
for the 16 subjects are shown in Fig. 4. Observe that they are
roughly in the same range, and many of them are approximately
Gaussian.

E. Feature Extraction

We extracted the following four feature sets for each prepro-
cessed EEG trial:

1) Raw: Theta and Alpha powerband features from the band-
pass filtered EEG trials. We computed the average power
spectral density in the Theta band (4–8 Hz) and Alpha
band (8–13 Hz) for each channel using Welch’s method
[57], and converted these 62 × 2 = 124 band powers to
decibel as our features.

2) CAR: Theta and Alpha powerband features from EEG
trials filtered by CAR. This procedure was almost identical
to Raw, except that the bandpass filtered EEG trials were

Fig. 4. Distributions of the preprocessed RSs for the 16 subjects.

also spatially filtered by CAR before the 62 × 2 = 124
powerband features were computed. CAR is one of the
most commonly used spatial filters for EEG, and in [31], it
has been showed that it helped improve EEG classification
performance. It simply removes the mean of all channels
from each channel.

3) OVR: Theta and Alpha powerband features from EEG
trials filtered by CSPR-OVR. This procedure was almost
identical to CAR, except that the CAR filter was replaced
by CSPR-OVR. We used three fuzzy classes for the RSs,
and 21 spatial filters1 for each fuzzy class, so that the spa-
tially filtered signals had dimensionality of 63 × 1280,
roughly the same as the dimensionality of the original
signals. We then extracted 63 × 2 = 126 band power fea-
tures for each trial.

4) OVA: Theta and Alpha powerband features from EEG tri-
als filtered by CSPR-OVA. This procedure was also almost
identical to CAR, except that the spatial filtering was per-
formed by CSPR-OVA instead of CAR. There were also
63 × 2 = 126 band power features for each trial.

V. EXPERIMENTAL RESULTS

This section compares the informativeness of the features
in Raw, CAR, OVR, and OVA, presents the regression perfor-
mances, and also performs parameter sensitivity analysis for
Algorithm 1.

A. Informativeness of the Features

Before studying the regression performances, it is important
to check if the extracted features in Raw, CAR, OVR and OVA are
indeed meaningful. We picked a typical subject, partitioned his

1We used 21 spatial filters here so that the filtered signals had roughly the
same dimensionality as the original signals, which ensured a fair performance
comparison. In Section V-C, we also performed sensitivity analysis on the
number of spatial filters.
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Fig. 5. Powerband features from different feature extraction methods, and the
corresponding training and testing CCs with the RS.

data random into 50% training and 50% testing, and extracted
Raw and CAR. We then designed the spatial filters using CSPR-
OVR and CSPR-OVA on the training data, and extracted the
corresponding OVR and OVA. For each feature set, we identified
the top three channels that had the maximum correlation with the
RS using the training data, and also computed the corresponding
CCs for the testing data.

The results are shown in Fig. 5, where in each subfigure the
data on the left of the black dotted line were used for training,
and the right for testing. The top thick curve is the RS, and
the bottom three curves are the maximally correlated features
(note that good features are negatively correlated with the RS)
identified from the training data. The training and testing CCs
are shown on the left and right of the corresponding channel,
respectively. Observe that the features from CAR had slightly
better correlations with the RS in training than those from Raw,
but not necessarily in testing. However, the features from OVR
and OVA had much higher training and testing correlations to
the RS than those from Raw and CAR, suggesting that CSPR-
OVR and CSPR-OVA can indeed increase the signal quality.
The reason is if we view Class k as the signal of interest, and
all other classes as noise, then CSPR-OVR in (4) enhances the
SNR of the EEG signal, and CSPR-OVA in (9) enhances the
signal to SNR.

B. Regression Performance Comparison

The RMSEs and CCs of LASSO and kNN using the four
feature sets are shown in Fig. 6 for the 16 subjects. Recall that
for each subject, the feature extraction methods were run ten
times, each with randomly partitioned training and testing data,
and the average regression performances are shown here. The
average RMSEs and CCs across all subjects are also shown in
the last group of each panel. Observe that CAR had comparable
or slightly better performance than Raw. Regardless of which
regression algorithm was used, generally OVR and OVA had
similar performance, and both of them achieved much smaller
RMSEs and much larger CCs than Raw and CAR, suggesting

TABLE I
p-VALUES OF TWO-WAY ANOVA TESTS FOR {Raw, CAR, OVR, OVA}

LASSO kNN

RMSE CC RMSE CC
p 0.0061 0.0000 0.0000 0.0000

TABLE II
p-VALUES OF NONPARAMETRIC MULTIPLE COMPARISON FOR

{Raw, CAR, OVR, OVA}

that our extension of CSP from a supervised classification to a
supervised regression can indeed improve the regression perfor-
mance. Finally, LASSO had better performance than kNN on
Raw and CAR, but kNN became better on OVR and OVA.

The corresponding percentage performance improvements of
LASSO and kNN using the four feature sets are shown in Fig. 7,
where the legend “LASSO,OVR/Raw” means the percentage
performance improvement of LASSO on OVR over LASSO
on Raw, and other legends should be interpreted in a similar
manner. For both LASSO and kNN, OVR and OVA achieved
similar performance improvements over Raw, and also over
CAR. For LASSO, on average OVR had 10.02% smaller RMSE
than Raw, and 19.39% larger CC. For kNN, on average OVR
had 19.77% smaller RMSE than Raw, and 86.47% larger CC.

We also performed a two-way analysis of variance (ANOVA)
for different regression algorithms to check if the RMSE and
CC differences among the four feature sets were statistically
significant, by setting the subjects as a random effect. The results
are shown in Table I, which indicated that there were statistically
significant differences in both RMSEs and CCs among different
feature sets for both LASSO and kNN.

Then, nonparametric multiple comparison tests based on
Dunn’s procedure [12], [13] were used to determine if the dif-
ference between any pair of algorithms was statistically signif-
icant, with a p-value correction using the false discovery rate
method [3]. The p-values are shown in Table II, where the sta-
tistically significant ones are marked in bold. Table II shows
that, except for the CC of kNN, generally there was no statis-
tically significant difference between Raw and CAR. However,
for both LASSO and kNN, the RMSE and CC differences be-
tween {OVR, OVA} and {Raw, CAR} were always statistically
significant. In all cases, there were no statistically significant
differences between OVR and OVA.

C. Parameter Sensitivity Analysis

There are two adjustable parameters in CSPR-OVR: K,
the number of fuzzy classes for the RSs, and F , the num-
ber of spatial filters for each fuzzy class. In this section, we
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Fig. 6. RMSEs and CCs of the 8 approaches on the 16 subjects.

Fig. 7. Pairwise percentage performance improvement of the algorithms on the 16 subjects.

study the sensitivity of the regression performance to these two
parameters.

The regression performances for K = {2, 3, 4, 5, 6, 7} (F
was fixed to be 21) are shown in Fig. 8. Algorithm 1 was re-
peated five times, each with a random partition of training and
testing data, and the average regression results are shown. For
both LASSO and kNN, on average K = 2 gave the worst per-
formance, but K = {3, 4, 5, 6, 7} resulted in roughly the same
RMSE and CC. Hence, K = 3 seems to be a good compromise
between performance and computational cost.

The regression performances for F = {5, 10, 20, 30, 40,
50, 60} (K was fixed to be 3) are shown in Fig. 9. Algorithm 1
was again repeated five times, and the average regression results
are shown. For both LASSO and kNN, generally a larger F re-
sulted in a smaller RMSE and a larger CC, but the performance
may reach a plateau at a certain F . Also, a larger F means
heavier computational cost, which should be taken into consid-
eration in choosing F . For the PVT experiment, F ∈ [20, 30]
seemed to achieve a good compromise between performance
and computational cost.

D. Different Fuzzy Set Shapes

In Section III, we used triangular fuzzy sets for simplicity, but
other shapes can also be used. Fig. 10 illustrates how Gaussian
fuzzy sets can be designed here: The center of the kth Gaussian
fuzzy class is at Pk [computed from (7)], and the spread is
specially designed so that two adjacent fuzzy sets intersect at
the midpoint with membership grade 0.5. As a result, generally
the Gaussian fuzzy classes are not symmetric.

When the Gaussian fuzzy classes in Fig. 10 are used in CSPR-
OVR and CSPR-OVA, the results are shown in Fig. 11, which
are almost identical to those obtained from triangular fuzzy sets
(see Fig. 6).

E. Robustness to Noise

It is also important to study the robustness of different spatial
filters to the noise. According to Zhu and Wu [64], there are
two types of noise: class noise, which is the noise on the model
outputs, and attribute noise, which is the noise on the model
inputs. In this section, we focus on the attribute noise.
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Fig. 8. (a) RMSEs and (b) CCs of LASSO and kNN with respect to K , the
number of fuzzy classes in Algorithm 1.

Fig. 9. (a) RMSEs and (b) CCs of LASSO and kNN with respect to F , the
number of spatial filters for each fuzzy class in Algorithm 1.

Fig. 10. Three fuzzy classes for yn , when Gaussian fuzzy sets are used.

Fig. 11. RMSEs and CCs of the 8 approaches on the 16 subjects, when the
three Gaussian fuzzy sets in Fig. 10 are used in CSPR-OVR and CSPR-OVA.

Fig. 12. Average RMSEs and CCs of the eight approaches wrt different at-
tribute noise levels.

As in [64], for each model input, we randomly replaced q%
(q = 0, 10, . . . , 40) of all trials from a subject with a uniform
noise between its minimum and maximum values. After this was
done for both the training and testing data, we extracted feature
sets Raw, CAR, OVR, and OVA, and trained LASSO and kNN, on
the corrupted training data. We then tested their performances
on the corrupted testing data. The results are shown in Fig. 12.
Generally, as the noise level increased, the performances de-
creased, which is intuitive. However, OVR and OVA achieved
better RMSEs and CCs than Raw and CAR at almost all noise
levels, suggesting that it is still beneficial to use CSPR-OVR
and CSPR-OVA even under high attribute noise.

F. Computational Cost

Observe from Algorithm 1 that in training, CSPR-OVR needs
to perform a matrix inversion and an eigen decomposition to
compute W∗; however, once the training is done, the filtering
of new EEG trials can be conducted very efficiently by a simple
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Fig. 13. Training time of CSPR-OVR and CSPR-OVA wrt N .

matrix multiplication [see (3)]. Let N be the number of train-
ing samples. Then, the actual training time of CSPR-OVR and
CSPR-OVA increased linearly with N , as shown in Fig. 13.
The platform was a Dell XPS15 laptop (Intel i7-6700HQ CPU
@2.60 GHz, 16 GB memory) running Windows 10 Pro 64-bit
and MATLAB 2016b. A least-squares curve fit shows that the
training time is 0.2216 + 0.0003 N s, which should not be a
problem for a practical N .

VI. DISCUSSIONS AND FUTURE RESEARCH

Recall that fivefold crossvalidation was used in the perfor-
mance evaluation in the previous section, i.e., we concatenated
the nine-session data from the same subject, randomly parti-
tioned them into five equal-length folds, and then used fourfolds
for training and the remaining one for testing. So, the training
and testing folds contained data from the same sessions. This is
equivalent to the case that we label some session-specific data in
offline regression. Our results showed that in this case, CSPR-
OVR and CSPR-OVA can significantly improve the regression
performance.

To avoid the use of session-specific data, we also investigated
a different validation method: leave-one-session-out validation,
in which for each subject, we trained the spatial filters using eight
sessions and tested them on the remaining session. Interestingly,
all four feature sets and both regression models achieved very
poor performance here. The reasons are as follows: 1) We need
a proper way to normalize the RSs from different sessions, as
done for the response times in [16]; and, 2) there is large intra-
subject variation, meaning that the EEG responses for the same
subject vary at different times (recall that these nine sessions
were collected at different days); so, the patterns learned from
the previous sessions become obsolete for the new session, and
hence spatial filtering alone does not help. However, our previ-
ous research [58], [60], [62] has shown that transfer learning can
cope well with the intersubject variation (individual differences)
in both classification and regression problems, and we conjec-
ture that it can also handle the intrasubject variation. One of our
future research directions is to demonstrate the performance of
CSPR-OVR and CSPR-OVA in a transfer learning framework
to individualize a generalized model for regression problems,
as done in [18] and [46] for EEG-based cognitive performance
classification.

Another direction of our future research will apply CSPR-
OVR and CSPR-OVA to other important EEG-based regression

problems, e.g., drowsiness (or alertness) estimation during driv-
ing, and integrate it with more sophisticated feature extraction
approaches, e.g., Riemannian geometry [8], for better regression
performance.

VII. CONCLUSION

EEG signals are easily contaminated by artifacts and noise,
so preprocessing is needed before they can be used by a machine
learning algorithm in BCI. Spatial filters, e.g., ICA, xDAWN,
CSP, and CCA, have been widely used to increase the EEG sig-
nal quality for classification problems, but their applications in
BCI regression problems have been very limited. In this paper,
we have proposed two CSP filters for EEG-based regression
problems in BCI, which were extended from the CSP filter for
classification, by making use of fuzzy sets. Extensive experi-
mental results on EEG-based RS estimation from a large-scale
study, which collected 143 sessions of PVT data from 17 sub-
jects during a 5-month period, demonstrated that the proposed
spatial filters can significantly increase the EEG signal quality.
When used in LASSO and kNN, the spatial filters can reduce
the estimation RMSE by 10.02–19.77%, and at the same time
increase the CC by 19.39–86.47%.
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