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a b s t r a c t 

This study addresses the set-membership estimation problem for a class of discrete time- 

varying systems with incomplete observations. A set-membership filter is developed and 

a recursive algorithm is proposed to calculate the state estimate ellipsoid which contains 

the true value. To solve the problem that the conventional set-membership filter cannot 

guarantee the stability when applied to discrete time-varying systems with incomplete 

observations, a quantitative analysis method about incomplete observations is developed 

and a tight bound of the estimation error is found based on interval analysis and some 

bounded noise assumptions. In terms of bounded assumptions, the relationship between 

the bound of estimated error and the data dropout rate is obtained. If the data dropout 

rate is less than a maximal value, the set-membership filter is asymptotically stable. The 

proposed filter is applied to a two-state example to demonstrate the effectiveness of the- 

oretical results. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

It is well known that the commonly used Kalman filtering algorithm requires the process and noise to be white Gaussian

processes [17] . This noise model is widely applied in a lot of applications and has obtained great success. Sometimes we

only know that the process and measurement noises are unknown but bounded (UBB) (e.g. [4,31] ). To follow the set based

noise model, it is natural to consider all the possible state vectors into a set of state estimates in which the true states are

contained. In this case, the result of estimation is a set rather than a vector. This kind of estimation problem is generalized

as a set-membership filtering problem (e.g. [3,4,16,31,37–39] ). 

It should be noted that the possible state estimation (such as the set-membership filtering) is a kind of recursive state-

bounding approach. After receiving the successive observations, the feasible sets which include all the possible state values

consistent with the state and observation equations are updated. For linear systems, if the exact additive state noise bounds

are known, we can calculate an exact convex polytope in the state space. Unfortunately, its computational complexity grows

rapidly with observations updates (e.g. [5] ). Various methods can be applied to reduce the computational complexity. For

instance, to limit the feasible set in simple polytopes such as parallelotopes (e.g. [7] ). Another way to avoid increasing com-

plexity is to apply the ellipsoidal approximation algorithm introduced in [31] . In this algorithm, the feasible set can be

approximated by ellipsoids. Compared with other algorithms, the outer bounded ellipsoids based algorithm has the advan-

tage of simplicity and computational efficiency (e.g. [12,18,20] ). 
∗ School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China 

E-mail addresses: huang_jan@mail.hust.edu.cn (J. Huang), drwu@hust.edu.cn (D. Wu). 

https://doi.org/10.1016/j.ins.2019.12.087 

0020-0255/© 2019 Elsevier Inc. All rights reserved. 

https://doi.org/10.1016/j.ins.2019.12.087
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.12.087&domain=pdf
mailto:huang_jan@mail.hust.edu.cn
mailto:drwu@hust.edu.cn
https://doi.org/10.1016/j.ins.2019.12.087


38 Y. Wang, J. Huang and D. Wu et al. / Information Sciences 517 (2020) 37–51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Recently, many researchers are interested in dealing with the set-membership filtering problems for various uncertain

systems. A nonlinear set-membership filtering approach which applies the ellipsoidal approximation algorithm is developed

in [30] . A computationally efficient algorithm for set-membership filtering with ellipsoidal approximations is introduced in

[21] . A set-membership based framework for the designing of nonlinear system is proposed in [1] . A set-based estimation

method for T-S fuzzy systems with unknown output delay signals is introduced in [43] . A set-membership identification

approach is used in [15] to design a fault detection system for mating a pair of electric connectors. In [27] , a set-membership

identification method is used to control the power kites for wind energy conversion. Except for ellipsoids, there are also

set-membership state estimation methods based other geometrical forms such as zonotopes [8] , positive invariant sets [22] ,

polytopes [34] , etc. 

It is assumed that the observation is always consecutive in much literature (see for example [19,40,41] ). In applications,

however, the observation cannot always be perfectly obtained. For example, packet loss in the networked control systems

[29] , or sensor failure in a real system, will both lead to the missing observations. The filtering problem with missing obser-

vations was first studied in [14] and [24] . Such a problem has attracted much attention during past few years because the

network is widely used in modern applications. One of the modeling methods for missing data is using a binary switching

sequence specified by a conditional probability distribution (see [14] , [24] and [32] ). Based on this model, the statistical

convergence properties of Kalman filter with missing observations have been discussed in [32] , and robust finite-horizon

filtering with missing observations is presented in [35] . To the best of our knowledge, limited literature can be found on

the topic of set-membership filtering with missing observations. Wei studied the probability-guaranteed set-membership 

filtering problem for a class of time-varying systems with incomplete measurements [37] . Yang addressed the robust set-

membership filtering algorithm with missing observations [42] . In [9] , the set based method with limited communication

was proposed to design a self-triggered and event-triggered observer. At the same time, we noticed that the convergence of

the algorithm was rarely discussed. There is still much room for improvement of the studies in this field. In [8] , a zonotopic

Kalman filter was proposed, and a bridge between the zonotopic set-membership and the stochastic paradigms for Kalman

filtering was built. In [23] , an H-infinity set-membership observer was proposed and the estimation error was bounded by

an ellipsoid robustly positive invariant set. The advantage is that this approach does not need online computation of sets. 

In this paper, we model the missing observations by an unknown but limited sequence. The realistic background of

this missing observation model is motivated by the features of packet loss in intermittent communication. We usually do

not know when the packet loss will happen. However, when the packet loss happens, it is reasonable to assume that the

communication will be recovered within finite time. In other words, the maximum packet loss period is supposed to be

known in this model. This work follows the line of optimal bounding ellipsoid (OBE) algorithm (e.g. [6,25] ), which calculates

the updated sets online and solves an optimization problem to guarantee that the volume is minimized. The advantage is

that this class of algorithms has a relatively small estimated set compared with the original ellipsoid estimation approach

in [31] . The main contributions of our work are: 1) the convergence of the proposed set-membership filter with incomplete

observations is theoretically studied; 2) the effect of the missing observations to the estimation error of filtering algorithm

is analyzed and some quantitative results are obtained. 

The remainder of this paper is presented as follows. Several definitions used in this paper are described in Section 2 .

A set-membership filtering algorithm with incomplete observations is proposed in Section 3 . The stability analysis of the

proposed algorithm is given in Section 4 . Section 5 firstly provides a numerical example to demonstrate the effectiveness of

our algorithm, then compares our proposed algorithm to a related Kalman filter. Conclusions and future work are described

in Section 6 . 

2. Notation 

Let R denote the set of real numbers and N the set of natural numbers. For vectors in R 

n , we use ‖ · ‖ as the Euclidean

norm. 

Definition 2.1. The description of an ellipsoid is given by a set � ∈ R 

n 

� = { x : (x − a ) T P −1 (x − a ) ≤ σ 2 } , 
where a ∈ R 

n is the center of the ellipsoid, x ∈ R 

n is an arbitrary possible value within the ellipsoid, and P ∈ R 

n ×n is a

positive definite matrix which determines the shape of the ellipsoid. σ ∈ R is not a physically interpretable measure of the

size of the ellipsoid. It has been noted in [11] that σ is usually considered as a measure of optimality in OBE algorithms.

We represent the ellipsoid as �( a, P, σ ). 

Definition 2.2. The vector sum ψ of two ellipsoids �1 and �2 is defined as 

ψ = { x : x = x 1 + x 2 , x 1 ∈ �1 , x 2 ∈ �2 } . 
ψ is also described by ψ = �1 � �2 . 

Definition 2.3. The outer bounding ellipsoid �s is the ellipsoid which includes the vector sum ψ , i.e. we have ψ⊆�s . In

the two-dimensional case, we can depict it as Fig. 1 . 



Y. Wang, J. Huang and D. Wu et al. / Information Sciences 517 (2020) 37–51 39 

Fig. 1. The outer bounding ellipsoid of the vector sum in the two-dimensional case. 

Fig. 2. The outer bounding ellipsoid of the intersection in the two-dimensional case. 

 

 

 

 

 

 

 

 

 

 

Definition 2.4. The intersection � of two ellipsoids �1 and �2 is defined as � = { x : x ∈ �1 ∩ x ∈ �2 } . In what follows, � is

denoted by � = �1 ∩ �2 . 

Definition 2.5. The outer bounding ellipsoid �i is the ellipsoid which includes the intersection set �, i.e. we have �⊆�i . In

the two-dimensional case, we can depict it as Fig. 2 . 

Definition 2.6. The lower and upper bounds of time varying matrix X k are defined as x ≤ || X k || ≤ x̄ , where the matrix norm

|| X|| = 

√ 

λ1 , λ1 is the largest eigenvalue of X 

T X . 

At time k , the estimated and predicted value of vector x k are denoted by ˆ x k and x k | k −1 , respectively. 

Definition 2.7. The worst-case estimation error is defined as 

|| ̂  �k | | max ≡ sup 

x ∈ ̂ �k 

|| x − ˆ x k || = ˆ σk 

√ 

λmax ( P k ) , 

where λmax ( P k ) is the maximum eigenvalue of matrix P k . 

3. Set-membership filter with incomplete observations 

3.1. Problem setup 

Consider the following class of linear discrete time-varying systems 

x k +1 = A k x k + w k , (1)

where x k ∈ R 

n x is the state vector. A k ∈ R 

n x ×n x is a known time-varying matrix with appropriate dimensions and w k ∈ R 

n x is

the UBB noise which belongs to the given set W k = �(0 , Q k , σ̄w 

) , where Q k is the known positive matrix and σ̄w 

is a known

positive scalar which represents the upper bound of the noise. 

The output measurement, which may have missing data, is represented as follows 

y k = ϒk ( C k x k + v k ) , (2)

where y k ∈ R 

n y is the output vector of measures and usually n y < n x . { ϒk } is an unknown binary sequence composed of 0

and 1. That is, y k is available if ϒk = 1 and y k is missing if ϒk = 0 . C k ∈ R 

n y ×n x is also a known time-varying matrix with

appropriate dimensions. v k ∈ R 

n y is the sensor noise which belongs to the given set �(0, I, γ ), where γ is a known positive

scalar which represents the upper bound of the noise. 

The initial state, x 0 , is bounded by the ellipsoid �( ̂  x 0 , P 0 , σ0 ) . 

3.2. Time update 

At time k , assume that the state vector x k is bounded by an ellipsoid �( ̂  x k , P k , σk ) . 

According to (1) , the state vector at time k + 1 satisfies 

x k +1 = { x + w : x ∈ A k �k , w ∈ W k } 
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where A k �k = { x : ( x k − 	 

x k ) 
T 

	 

P 
−1 

k ( x k −
	 

x k ) ≤
	 

σ
2 

k } , and 

	 

x k = A k ̂  x k , 
	 

P k = A k P k A 

T 
k 
, 

	 

σ k = σk . 

Based on the Appendix A of reference [20] , considering ellipsoids �1 , �2 and the outer bounding ellipsoid � which

includes their vector sum, the following equation is satisfied 

�( a 1 , Q 1 , σ1 ) � �( a 2 , Q 2 , σ2 ) = �( a 1 + a 2 , Q(p) , σ ) , (3)

where Q(p) = (1 + p) 
σ 2 

1 

σ 2 Q 1 + (1 + p −1 ) 
σ 2 

2 

σ 2 Q 2 , p > 0 . The selection of parameter p determines the property of the outer

bounding ellipsoid �. Parameter σ > 0 and can be selected arbitrarily. 

The prediction ellipsoid containing the state at time k + 1 is defined as �k +1 | k = �(x k +1 | k , P k +1 | k , σk +1 | k ) . 
From (3) , it follows that 

x k +1 | k = A k ̂  x k , (4) 

P k +1 | k = (1 + p k ) 
σ 2 

k 

σ 2 
k +1 | k 

A k P k A 

T 
k + (1 + p −1 

k 
) 

σ̄ 2 
w 

σ 2 
k +1 | k 

Q k . (5) 

Since parameter σ > 0 and it can be selected arbitrarily, we select σ 2 
k +1 | k = σ 2 

k 
. Then we have 

P k +1 | k = (1 + p k ) A k P k A 

T 
k + (1 + p −1 

k 
) 
σ̄ 2 

w 

σ 2 
k 

Q k . (6) 

Remark 3.1. Actually, the selection of σ 2 
k +1 | k has no influence on the shape of the prediction ellipsoid �k +1 | k . The reason is

illustrated in the following. 

From the definition of �k +1 | k and (5) , we have 

�k +1 | k = { x : (x − x k +1 | k ) T 
(

(1 + p k ) 
σ 2 

k 

σ 2 
k +1 | k 

A k P k A 

T 
k + (1 + p −1 

k 
) 

σ̄ 2 
w 

σ 2 
k +1 | k 

Q k 

)
−1 (x − x k +1 | k ) ≤ σ 2 

k +1 | k } . 

After simple manipulation, it follows that 

�k +1 | k = { x : (x − x k +1 | k ) T ((1 + p k ) σ
2 
k A k P k A 

T 
k + (1 + p −1 

k 
) ̄σ 2 

w 

Q k ) 
−1 (x − x k +1 | k ) ≤ 1 } . (7) 

From (7) we know that the selection of σ 2 
k +1 | k does not have any influence in the property of the prediction ellipsoid �k +1 | k .

Remark 3.2. The selection of parameter p k determines the property of ellipsoid �k +1 | k . Traditionally, a minimum trace

algorithm is provided in reference [6] . According to the method in [6] , if the parameter p k satisfies p k = 

σ̄w 
σk 

√ 

tr( Q k ) 

tr( A k P k A 
T 
k 
) 
, then

the trace of matrix P k +1 | k (which is a measure of the ellipsoid’s volume) achieves its minimum. In order to guarantee the

stability of the proposed set-membership filtering algorithm, we need to select a lower bound of the parameter p k , which

is discussed in Theorem 4.1 . 

3.3. Observation update 

Due to the possible loss of measurements, we need to categorize the observation into two cases, i.e. the case where the

observation is available and the case where the observation is missing. 

3.3.1. Observation update when the observation is available at time k + 1 

In this case, ϒk +1 = 1 holds. From (2) and the property of measurement noise, we know that the state vector is bounded

by the following set with observation 

	 

E k +1 = { x : || y k +1 − C k +1 x | | 2 ≤ γ 2 } . 
According to Proposition 2 in [26] and Theorem 2.1 in [10] , the estimated ellipsoid �k +1 at time k + 1 can be obtained from

the linear combination of �k +1 | k and 

	 

E k +1 . That is, we have 

�k +1 = { �k +1 | k ∩ 

	 

E k +1 } = { x : ( x k +1 − ˆ x k +1 ) 
T P −1 

k +1 
( x k +1 − ˆ x k +1 ) ≤ σ 2 

k +1 } 
= { x : (x − x k +1 | k ) T P −1 

k +1 | k (x − x k +1 | k ) + q k +1 || y k +1 − C k +1 x | | 2 ≤ σ 2 
k +1 | k + q k +1 γ

2 } , 
where q k +1 is the parameter which determines the volume of ellipsoid �k +1 satisfying q k +1 ≥ 0 . From the mathematical

derivation proposed in [25] , we have: 

P −1 
k +1 

= P −1 
k +1 | k + q k +1 C 

T 
k +1 C k +1 , (8) 
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σ 2 
k +1 = σ 2 

k +1 | k + q k +1 γ
2 − q k +1 e 

T 
k +1 S 

−1 
k +1 

e k +1 , (9)

ˆ x k +1 = x k +1 | k + q k +1 P k +1 C 
T 
k +1 e k +1 , (10)

where S k +1 = I + q k +1 C k +1 P k +1 | k C T k +1 
, and e k +1 = y k +1 − C k +1 x k +1 | k . 

Remark 3.3. The optimal problem of selecting parameter q k +1 also has been discussed in [26] , the objective of optimization

is to minimize σ 2 
k +1 

with respect to parameter q k +1 . According to the optimal bounding ellipsoid(OBE) algorithm which is

introduced in [26] , if q k +1 = q ∗
k +1 

satisfying 

q ∗k +1 = 

{
0 , e k +1 ≤ γ
1 

g k +1 
( 

| e k +1 | 
γ − 1) , e k +1 > γ , 

(11)

where g k +1 is the maximum singular value of C k +1 P k +1 | k C T k +1 
, then σ 2 

k +1 
achieves its minimum. 

3.3.2. Observation update when the observation is missing at time k + 1 

In this case we directly choose the ellipsoid �k +1 as �k +1 | k . That is, we have P 
k +1 

= P k +1 | k , σ 2 
k +1 

= σ 2 
k +1 | k and ˆ x k +1 =

x k +1 | k . 

3.3.3. Set-membership filtering algorithm with incomplete observations 

Now we summarize our set-membership filter with incomplete observation as algorithm 1. 

Algorithm 1 Set-membership filtering algorithm with incomplete observations. 

Require: ˆ x k , A k , σk , σ̄w 

, P k , Q k , ϒk +1 , γ
1: Calculate the center of prediction ellipsoid x k +1 | k from (4) 

2: Select the parameter p k = 

σ̄w 
σk 

√ 

tr( Q k ) 

tr( A k P k A 
T 
k 
) 

3: Let σk +1 | k = σk 

4: Calculate P k +1 | k from (6) 

5: if ϒk +1 = 1 then 

6: Select the parameter q k from (11) 

7: Calculate P k +1 , σk +1 , ˆ x k +1 from (8), (9), (10) 

8: else 

9: if ϒk +1 = 0 then 

10: Calculate P 
k +1 

= P k +1 | k , σ 2 
k +1 

= σ 2 
k +1 | k and ˆ x k +1 = x k +1 | k 

11: end if 

12: end if 

13: return ˆ x k +1 , σk +1 , P k +1 . 

4. Main results 

4.1. Stability analysis if observations are available all the time 

First of all, we rewrite (6), (8) and (10) as follows: 

P k +1 | k = αk A k P k A 

T 
k + Q 

∗
k , (12)

P k +1 = (I − K k +1 C k +1 ) P k +1 | k , (13)

ˆ x k +1 = x k +1 | k + K k +1 ( y k +1 − C k +1 x k +1 | k ) , (14)

where 

K k +1 = q k +1 P k +1 C 
T 
k +1 = P k +1 | k C T k +1 

(
1 

q k +1 

I + C k +1 P k +1 | k C T k +1 

)−1 

, 

and αk = 1 + p k , Q 

∗
k 

= (1 + p −1 
k 

) 
σ̄ 2 

w 

σ 2 Q k . 

k 
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In order to prove the asymptotical stability of the proposed set-membership filter when there is no noise ( w k = v k = 0 ),

we introduce a result in reference [28] . Considering two non-singular square matrices M and N and (M + N 

−1 ) is invertible,

the following equation holds 

(M 

−1 + N) −1 = M − M (M + N 

−1 ) −1 M. (15) 

The following lemma gives the relationship between P k +1 | k and P k | k −1 , which is necessary for the analysis in the following

theorem. 

Lemma 4.1. If the discrete time-varying system (1) and (2) is observable, ( A k , C k ) is in the form of Luenberger second observable

canonical form, then A k (I − K k C k ) is invertible and 

P −1 
k +1 | k ≤ α−1 

k 
A 

−T 
k ( I − K k C k ) 

−T · [ P −1 
k | k −1 

− P −1 
k | k −1 

( P −1 
k | k −1 

+ αk (I − K k C k ) 
T A 

T 
k Q 

∗−1 
k 

A k (I − K k C k )) 
−1 P −1 

k | k −1 
] ·

( I − K k C k ) 
−1 A 

−1 
k 

. (16) 

Sketch of the Proof : This inequality comes from equalities (13) . At first, we must show that A k (I − K k C k ) is invertible.

Assuming that A k and C k follow the Luenberger second observable canonical form, it is known that A k (I − K k C k ) follows a

full rank matrix form. By applying (15) and some transformation, we can obtain the inequality (16) . Detailed proof could be

found in the Appendix 6.1 . 

Next some assumptions used in this study are given. 

Assumption 4.1. The UBB noise is bounded by || w k || ≤ w̄ , q ≤ || Q 

∗
k 
|| ≤ q̄ , || v k || ≤ v̄ . The system matrix is bounded by a ≤

|| A k || ≤ ā , c ≤ || C k || ≤ c̄ . 

Assumption 4.2. The discrete time-varying systems (1) and (2) are observable. 

Based on the two assumptions and Lemma 2 in reference [30] , if P 0 is a positive define matrix, then there exist real num-

bers s̄ and s such that s · I ≤ P k ≤ s̄ · I and s · I ≤ P k | k −1 ≤ s̄ · I. We know that K k = q k P k C 
T 
k 
, and then I − K k C k is also bounded.

We write that k 
∗ ≤ || I − K k C k || ≤ k̄ ∗. The state estimation error is written as ζk = x k − x k | k −1 . Now we are ready to present

the first main result. 

Theorem 4.1. Suppose Assumptions 4.1 and 4.2 are satisfied, ( A k , C k ) is in the Luenberger second observable canonical form. Then

the estimation error of the set-membership filtering algorithm 1 will converge to a bound ε1 satisfying 

ε 1 = 

κ3 + 

√ 

κ2 
3 

+ 4 κ1 κ2 

2 κ2 

, 

where κ1 = 

n̄ 2 

s , κ2 = 

1 −α−1 
k 

s̄ 
+ 

1 

αk ̄s 
2 ( s −1 + αk k̄ 

∗2 ā 2 / q ) 
, κ3 = 

2 ̄a ̄n ̄k ∗
s . n̄ is the upper bound of n k which satisfies n k = w k − A k K k v k . 

Sketch of the Proof : We first construct a Lyapunov candidate for the estimated error vector ζ k . Since Assumptions 4.1 and

4.2 are satisfied, it is known that the system parameters are bounded and the inequality discussed in Lemma 4.1 holds.

By applying the bounds of system parameters and the inequality (16) , we can prove that when || ζ k || > ε1 , the Lyapunov

candidate is negative. Detailed proof could be found in Appendix 6.2 . 

Without loss of generality, it should be noted that our proposed estimator also works for a class of systems that is not

in the form of Luenberger second observable canonical form. If we can find a state space transformation x k = T o x o 
k 

which

brings the original system to the Luenberger second observable canonical form, then our estimator still works for the original

system. If we cannot find such a state space transformation, from the analysis in Appendix 6.1 it is known that our analysis

requires the matrix A k (I − K k C k ) to be invertible. If the original system satisfies this condition, our analysis still holds and

thus the estimator works for it. 

4.2. The effect of data loss duration to the maximum estimation error 

Theorem 4.1 gives the convergence condition of algorithm 1 if the observations are completely available. On the other

hand, the convergence and the estimation error of proposed filtering algorithm are obviously influenced by the missing

observations. In this subsection, we investigate the relationship between the maximum estimation error of filtering algo-

rithm 1 and the duration of observation loss. In the following, εmax is used to denote the maximum estimation error which

is tolerable in the application of algorithm 1. n is used to denote the number of continuous missing observations, i.e. the

observations are lost from time k + 1 to k + n with n ≥ 1 for some k ∈ N . 

Theorem 4.2. If the system state estimation error of the filtering algorithm 1 during the observation loss is bounded by ‖ ζk + i ‖ ≤
ε max , where i = (1 , · · · , n ) , k ≥ 0 , then the number of continuous missing observations has the following properties: 

1. If ā = 1 , then n ≤ ε max −|| ζk || 
w̄ 

. 

2. If ā > 1 , then we have 

n ≤ ln [ ( ̄a − 1 ) ε max + w̄ ] − ln [ ( ̄a − 1 ) · ‖ 

ζk ‖ 

+ w̄ ] 
. (17) 
ln ā 
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3. If ā < 1 and ( ̄a − 1) · ε max + w̄ > 0 , then we have (17) . 

4. If ā < 1 and ( ̄a − 1) · ε max + w̄ ≤ 0 , then the missing observations do not affect the estimation. 

Sketch of the Proof : Assuming that the observations are lost from time k + 1 to k + n with n ≥ 1 for some k ∈ N , the

estimation error ζ k may increase as time goes on during this period. We first need to derive the relationship between ζ k

and ζk + n . For all the four cases of this theorem, we can obtain the corresponding maximum bounds that ζk + n may reach.

If the maximum tolerable estimation error εmax is given, by solving the equality ζk + n ≤ ε max we can obtain the maximum

tolerable number of continuous missing observations. Detailed proof could be found in Appendix 6.3 . 

Theorem 4.2 has revealed the relationship between the desired maximum estimation error and the allowable duration

of observation loss. It should be noted that the accurate estimation error ζ k is not known in the filtering process. What

we know is only the updated ellipsoid which contains the true state value. For the practicability, we propose the following

corollary. 

Corollary 4.1. Assume that all the assumptions in Theorem 4.2 hold, the estimation error of Algorithm 1 is bounded by εmax if

the following conditions are satisfied: 

1. If ā = 1 , then n ≤ ε max −|| �k | k −1 | | max 

w̄ 

. 

2. If ā > 1 , then 

n ≤ ln [( ̄a − 1) ε max + w̄ ] − ln [( ̄a − 1) · || �k | k −1 | | max + w̄ ] 

ln ā 
. (18)

3. If ā < 1 and ( ̄a − 1) · ε max + w̄ > 0 , then we have (18) . 

4. If ā < 1 and ( ̄a − 1) · ε max + w̄ ≤ 0 , then the missing observations do not affect the estimation. 

Here || �k | k −1 | | max = σ
k | k −1 

√ 

λmax ( P k | k −1 ) . 

Sketch of the Proof : The proof generally follows the line of Theorem 4.2 . We replace the role of estimation error ζ k with

the worst case estimation error for predicted ellipsoid �k | k −1 . Detailed proof could be found in Appendix 6.4 . 

The corollary shows that if there is only limited observation loss during time k + 1 to k + n, the estimation error can

then be guaranteed to be smaller than the maximum estimation error εmax . Since || �k | k −1 | | max can be obtained in each

period, this corollary may be used for monitoring the proposed filtering algorithm online. 

4.3. Estimation error tightened based on constraint observation dropout rate 

From Theorem 4.1 , we know that if the observations are available all the time, the estimation error will converge to a

bound ε1 . Theorem 4.2 gives the relationship between the duration of data dropout and the maximum bound of estimation

error. Based on the conditions of Theorem 4.2 , actually, we can further reduce the estimation error if the data dropout rate

is small enough. To explain this, we first introduce a result coming from the analysis of Theorem 4.1 in reference [2] , we

represent it as a lemma here. 

Lemma 4.2. If the following assumptions are satisfied: 

a 1 I n ≤
k + m −1 ∑ 

i = k 
˜ A k + m,i +1 Q i ̃

 A 

T 
k + m,i +1 ≤ a 2 I n , 

b 1 I n ≤
k + s k (m ) ∑ 

i = k 
˜ A 

T 
i,k + s k (m ) 

C T i R i C i ̃  A i,k + s k (m ) 
≤ b 2 I n , 

where ˜ A k + j,k = 

˜ A k + j,k + j−1 ̃
 A k + j −1 ,k + j −2 · · · ˜ A k +1 ,k , 

˜ A k +1 ,k = A k , 
˜ A k + j,k = 

˜ A 

−1 
k,k + j , ˜ A k,k = I n , s k ( m ) (respectively s k (m ) − m ) is the

length of the sequence ϒk among which m is the number of ϒk = 1 (respectively ϒk = 0 ). Then the matrices P k +1 | k and P k
are bounded and given by s 0 · I ≤ P k +1 | k ≤ s̄ 0 · I, s 0 · I ≤ P k ≤ s̄ 0 · I. 

The following definition is introduced to quantitatively describe the data dropout rate which is proposed in our previous

work [13] . 

Definition 4.1. Let r ( N ): {1, 2, ���} → [0, 1], then r ( N ) is said to be the data dropout rate over N steps (DRNS) of system (1),

(2) , if ∀ N ∈ {1, 2, ���}, r ( N ) satisfies 

r(N) = 

N ∑ 

k =1 

1 − ϒk 

N 

. 

With limited missing observations period and data dropout rate, we can obtain an tighter bound than the bound εmax

which is discussed in Theorem 4.2 . Then we would like to introduce the following result. 
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Fig. 3. Estimation error || ζ ( k )|| during observations missing period. 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4.3. Suppose that Assumptions 4.1 , 4.2 and all conditions in Theorem 4.2 and Lemma 4.2 are satisfied. Selecting an

estimation error bound ε2 which satisfies 
−κ30 −

√ 

κ2 
30 

+4 κ10 κ20 

−2 κ20 
< ε 2 ≤ ε max , then the estimation error’s bound will be tightened

from εmax to ε2 if the following inequality satisfies: 

r ( N ) ≤
s 0 

(
κ20 ε 

2 
2 − κ30 ε 2 − κ10 

)
(
2 ̄a ̄w ε max + w̄ 

2 
)

+ s 0 
(
κ20 ε 2 2 

− κ30 ε 2 − κ10 

) , (19) 

where 

κ10 = 

n̄ 

2 

s 0 
, κ20 = 

(1 − αk 
−1 ) 

s 0 
+ 

1 

ᾱs̄ 2 
0 
( s 0 −1 + αk ̄k 

∗2 ā 2 / q ) 
, κ30 = 

2 ̄a ̄n ̄k ∗

s 0 
. 

Sketch of the Proof : The sketch for the proof of Theorem 4.3 can be explained as follows. We consider the whole system:

either observations are available or no observations are available. In the first case the system is stable and we have a

decreasing Lyapunov candidate like �V k, 1 ≤ −c 1 , where c 1 is a positive constant. In the second case, the system is unstable.

We have an increasing Lyapunov candidate like �V k ,0 ≥ c 2 , where c 2 is a positive constant. If the data dropout rate is

limited so that it is possible to find a decreasing overall Lyapunov candidate �V k, 1 + �V k, 0 < 0 , then we can say that the

whole system is stable. The detailed proof can be found in Appendix 6.5 . 

5. Numerical examples 

Consider the following discrete time-varying system with incomplete observation 

x k +1 = 

[
0 0 . 4 + αk 

1 0 . 9 

]
x k + w k 

y k = ϒk ( 
[
0 1 

]
x k + v k ) . 

Note that this system is observable and ( A k , C k ) follows the Luenberger second observable canonical form. In this system,

we have ā > 1 . The state is x k = [ 
x 1 ,k 
x 2 ,k 

] and αk belongs to the known range [ αmin , αmax ]. 

In all simulations, we consider that the system works in a finite-time interval of 50 samples. The initial state of this

simulation is: x 0 = [ 
0 . 4 

0 . 4 
] , ˆ x 0 = [ 

0 . 41 

0 . 39 
] , P 0 = [ 

1 0 

0 1 
] , σ0 = 0 . 01 . The other system parameters are w k = [ 

0 . 003 

0 . 003 
] , Q k = [ 

1 0 

0 1 
] ,

v k = 0 . 01 , αk ∈ [0, 0.05]. 

An application of the proposed set-membership filter with incomplete observation has been reported in our previous

work [36] . Indoor localization could be realized by data from wearable sensors and the RFID reading subsystem which
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Fig. 4. Estimation error || ζ ( k )|| dynamics with r(N) = 0 . 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

provides the observations. Note that the RFID tags were distributed at separate areas so that the observations are not guar-

anteed to be obtained at each time. Experimental results show that the proposed set-membership filter can significantly

reduce the accumulated error of indoor localization system. 

5.1. Checking the effectiveness of Theorems 4.2 and 4.3 

First, we conducted a simulation to verify the effectiveness of Theorem 4.2 . In this case, the prior bound of maximum

estimation error is set as ε max = 0 . 1 . According to Theorem 4.2 , we can calculate that n ≤ 6.41 at time k = 5 . Assume that

the measured signal y k is missing from time k = 6 to k = 11 , the estimation error || ζ ( k )|| versus time is represented in

Fig. 3 . It is shown that the estimation error will not surpass εmax if the duration of data loss satisfies the constraint given

by Theorem 4.2 . The curve also shows that the initial estimation error will decrease to a certain level if there are no missing

observations. 

Secondly, a simulation was conducted to verify the results of Theorem 4.3 . In this case, according to Theorem 4.1 , we

can obtain ε 1 = 0 . 005 . Choosing ε 2 = 0 . 05 , then according to Theorem 4.3 we can calculate the DRNS of this system. It

should satisfy r ( N ) < 0.47. Selecting the DRNS of this system as r(N) = 0 . 4 , m = 30 and s k (30) = 50 satisfy the assumptions

in Lemma 4.2 . Fig. 4 shows the dynamics of estimation error using the proposed filtering algorithm. 

From Fig. 4 we can easily find that if the conditions in Theorem 4.3 are satisfied, we can tighten the estimation bound

from εmax to ε2 , which verifies the effectiveness of Theorem 4.3 . 

5.2. Comparison with the Kalman interval filter 

This section is devoted to the comparison of our algorithm with the Interval Kalman Filter proposed in [33] . The Interval

Kalman Filter of [33] has not been designed to deal with missing observations, so the idea of this comparison is to show that

our algorithm can provide better results when there are such missing observations. Note that in [33] , an interval Kalman

filter is introduced to deal with the parameter uncertainties, whereas we do not consider parameter uncertainties here so

that the related intervals are taken as exact system parameters. We use the same UBB noise and apply the predicted value

as the final estimated value when observations are missing from step 11 to 16, and step 31 to 33. The comparison result is

shown in Fig. 5 . From this plot we can see that the proposed set-membership filter achieved better performance in the case

of UBB noise, which shows that our algorithm for dealing with incomplete observations worked. 

6. Conclusions 

This paper deals with the set-membership filtering problem with incomplete observation for discrete time-varying sys-

tems. The relationship between missing observations and estimation error is discussed and a recursive algorithm has been

proposed to calculate an ellipsoid which always contains the true value. The algorithm is very suitable for online applica-

tions with missing observations such as networked control system. In the future, we also would like to extend our method

to more complicated systems, e.g., the switched or hybrid systems. 
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Appendix A 

6.1. Proof of Lemma 4.1 

We first show that A k (I − K k C k ) is invertible. Write A k , C k and K k in a partitioned form of Luenberger second observable

canonical form, then we have 

A k = 

[
0 a a 1 

I n −1 a n −1 

]
, C k = 

[
0 c 1 c 

]
, K k = 

[
k 1 

k 

]
, 

where zero vector 0 a ∈ R 

1 ×(n x −1) , identity matrix I n −1 ∈ R 

(n x −1) ×(n x −1) , zero matrices 0 c ∈ R 

n y ×(n x −1) , 1 c ∈ R 

n y is a vector

with elements equal to 1. For matrices K k ∈ R 

n x ×n y , k 1 ∈ R 

1 ×n y , k ∈ R 

(n x −1) ×n y . Then we can write A k (I − K k C k ) in partitioned

form 

A k (I − K k C k ) = 

[
0 a l 1 

I n −1 l n −1 

]
. 

Obviously, A k (I − K k C k ) is invertible. 

Note that (13) can be written as 

P k +1 = (I − K k +1 C k +1 ) P k +1 | k (I − K k +1 C k +1 ) 
T + 

1 

q k +1 

K k +1 K 

T 
k +1 . (20) 

The reason is explained in the following. 

https://doi.org/10.13039/501100001809
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From the notion of K k +1 , we know that 

P k +1 | k C T k +1 

(
1 

q k +1 

I + C k +1 P k +1 | k C T k +1 

)−1 

= K k +1 , 

P k +1 | k C T k +1 = K k +1 · ( C k +1 P k +1 | k C T k +1 + 

1 

q k +1 

I) , 

P k +1 | k C T k +1 K 

T 
k +1 = K k +1 C k +1 P k +1 | k C T k +1 K 

T 
k +1 + 

1 

q k +1 

K k +1 K 

T 
k +1 . (21)

It follows from (21) that 

(I − K k +1 C k +1 ) P k +1 | k = (I − K k +1 C k +1 ) P k +1 | k (I − K k +1 C k +1 ) 
T + 

1 

q k +1 

K k +1 K 

T 
k +1 . 

Thus we can obtain (20) . 

From (20) it follows that 

P k +1 ≥ (I − K k +1 C k +1 ) P k +1 | k (I − K k +1 C k +1 ) 
T . (22)

From (12) we have 

P −1 
k +1 | k = ( αk A k P k A 

T 
k + Q 

∗
k ) 

−1 . (23)

Substitute (22) into (23) , then we have 

P −1 
k +1 | k ≤ ( [ α−1 

k 
A 

−T 
k 

( I − K k C k ) 
−T P −1 

k | k −1 
( I − K k C k ) 

−1 A 

−1 
k 

] −1 + Q 

∗
k ) 

−1 . (24)

By applying (15) into (24) , it follows that 

P −1 
k +1 | k ≤ α−1 

k 
A 

−T 
k ( I − K k C k ) 

−T P −1 
k | k −1 ( I − K k C k ) 

−1 A 

−1 
k 

− α−1 
k 

A 

−T 
k ( I − K k C k ) 

−T P −1 
k | k −1 ( I − K k C k ) 

−1 A 

−1 
k 

·[
α−1 

k 
A 

−T 
k ( I − K k C k ) 

−T P −1 
k | k −1 ( I − K k C k ) 

−1 A 

−1 
k 

+ Q 

∗−1 
k 

]−1 ·
α−1 

k 
A 

−T 
k ( I − K k C k ) 

−T P −1 
k | k −1 ( I − K k C k ) 

−1 A 

−1 
k 

= α−1 
k 

A 

−T 
k ( I − K k C k ) 

−T P −1 
k | k −1 ( I − K k C k ) 

−1 A 

−1 
k 

− α−1 
k 

A 

−T 
k ( I − K k C k ) 

−T P −1 
k | k −1 

·[
P −1 

k | k −1 
+ αk ( I − K k C k ) 

T A 

T 
k Q 

∗−1 
k 

A k ( I − K k C k ) 
]−1 ·

P −1 
k | k −1 ( I − K k C k ) 

−1 A 

−1 
k 

= α−1 
k 

A 

−T 
k ( I − K k C k ) 

−T ·[ 
P −1 

k | k −1 
− P −1 

k | k −1 

[
P −1 

k | k −1 
+ αk ( I − K k C k ) 

T A 

T 
k Q 

∗−1 
k 

A k ( I − K k C k ) 
]−1 

P −1 
k | k −1 

] 
·

( I − K k C k ) 
−1 A 

−1 
k 

. 

This completes the proof of lemma 4.1 . �

6.2. proof of Theorem 4.1 

Because there is no missing observation, it follows that 

ζk +1 = x k +1 − x k +1 | k = A k x k + w k − A k ̂  x k 

= A k x k + w k − A k 

(
x k | k −1 + K k ( y k − C k x k | k −1 ) 

)
= A k x k + A k K k C k x k − A k K k C k x k + w k − A k x k | k −1 − A k K k y k + A k K k C k x k | k −1 

= A k ( x k − x k | k −1 ) − A k K k C k ( x k − x k | k −1 ) + A k K k C k x k + w k − A k K k y k 

= A k (I − K k C k ) ζk + A k K k C k x k + w k − A k K k y k . (25)

Substitute (2) into (25) , we have 

ζk +1 = A k (I − K k C k ) ζk − A k K k v k + w k . 

Let the Lyapunov candidate be V k +1 ( ζk +1 ) = ζ T 
k +1 

P −1 
k +1 | k ζk +1 . Then we have 

V k +1 ( ζk +1 ) = ζ T 
k +1 P 

−1 
k +1 | k ζk +1 = ( A k (I − K k C k ) ζk + n k ) 

T P −1 
k +1 | k · ( A k (I − K k C k ) ζk + n k ) 

= ζ T 
k (I − K k C k ) 

T A 

T 
k P 

−1 
k +1 | k A k (I − K k C k ) ζk + ζ T 

k (I − K k C k ) 
T A 

T 
k P 

−1 
k +1 | k n k 

+ n 

T 
k P 

−1 
k +1 | k A k (I − K k C k ) ζk + n 

T 
k P 

−1 
k +1 | k n k . (26)
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By applying Lemma 4.1 in (26) , we have 

V k +1 ( ζk +1 ) ≤ ζ T 
k (I − K k C k ) 

T A 

T 
k { α−1 

k 
A 

−T 
k ( I − K k C k ) 

−T · (27) 

[ P −1 
k | k −1 

− P −1 
k | k −1 

(P −1 
k | k −1 

+ αk ( I − K k C k ) 
T A 

T 
k Q 

∗−1 
k 

A k ( I − K k C k ) ) 
−1 P −1 

k | k −1 
] ·

( I − K k C k ) 
−1 A 

−1 
k 

} A k (I − K k C k ) ζk + ζ T 
k (I − K k C k ) 

T A 

T 
k P 

−1 
k +1 | k n k + n 

T 
k P 

−1 
k +1 | k A k (I − K k C k ) ζk + n 

T 
k P 

−1 
k +1 | k n k 

= α−1 
k 

ζ T 
k [ P 

−1 
k | k −1 

− P −1 
k | k −1 

(P −1 
k | k −1 

+ αk ( I − K k C k ) 
T A 

T 
k Q 

∗−1 
k 

A k ( I − K k C k ) ) 
−1 ·

P −1 
k | k −1 

] ζk + ζ T 
k (I − K k C k ) 

T A 

T 
k P 

−1 
k +1 | k n k + n 

T 
k P 

−1 
k +1 | k A k (I − K k C k ) ζk + n 

T 
k P 

−1 
k +1 | k n k . (27) 

From Eq. (13) , we know that I − K k C k is positive definite matrix. According to Assumptions 4.1 and 4.2 , the matrices

I − K k C k is bounded. Using the appropriate upper and lower bounds in (27) , we have 

V k +1 ( ζk +1 ) ≤ α−1 
k 

ζ T 
k P 

−1 
k | k −1 

ζk −
1 

αk ̄s 
2 ( s −1 + αk ̄k 

∗2 ā 2 / q ) 
|| ζk | | 2 + 

2 ̄a ̄n ̄k ∗

s 
|| ζk || + 

n̄ 

2 

s 
. 

This results in 

V k +1 ( ζk +1 ) − V k ( ζk ) ≤ (α−1 
k 

− 1) V k ( ζk ) −
1 

αk ̄s 
2 ( s −1 + αk ̄k 

∗2 ā 2 / q ) 
|| ζk | | 2 + 

2 ̄a ̄n ̄k ∗

s 
|| ζk || + 

n̄ 

2 

s 
. 

Considering the bound of Lyapunov candidate, we have 

1 

s̄ 
|| ζk | | 2 ≤ V k ( ζk ) ≤

1 

s 
|| ζk | | 2 . 

It follows that 

V k +1 ( ζk +1 ) − V k ( ζk ) ≤
1 

s̄ 
(α−1 

k 
− 1) || ζk | | 2 − 1 

αk ̄s 
2 ( s −1 + αk ̄k 

∗2 ā 2 / q ) 
|| ζk | | 2 + 

2 ̄a ̄n ̄k ∗

s 
|| ζk || + 

n̄ 

2 

s 
. 

By applying the notion of κ1 , κ2 and κ3 , we have 

V k +1 ( ζk +1 ) − V k ( ζk ) ≤ −κ2 || ζk | | 2 + κ3 || ζk || + κ1 . (28) 

It is easy to see that V k +1 ( ζk +1 ) − V k ( ζk ) < 0 will hold for all || ζ k || satisfying || ζk || ≥
−κ3 −

√ 

κ2 
3 
+4 κ1 κ2 

−2 κ2 
. This completes the

proof. �

6.3. proof of Theorem 4.2 

In the case of missing observation, we have ˆ x k +1 = x k +1 | k and P k +1 = P k +1 | k . Thus the system estimation error in this case

is represented as 

ζk +1 = x k +2 − x k +2 | k +1 

= A k +1 x k +1 + w k +1 − A k +1 ̂  x k +1 

= A k +1 x k +1 + w k +1 − A k +1 x k +1 | k 
= A k +1 ( x k +1 − x k +1 | k ) + w k +1 . 

Obviously the dynamics of systems estimation error is: 

ζk +1 = A k +1 ζk + w k +1 . 

After n steps, we can obtain the estimation error ζk + n . Considering that the upper bound of w k is || ̄w || , we have 

|| ζk + n || = || A k + n −1 ζk + n −1 + w k + n −1 || 
= || A k + n −1 [ A k + n −2 ζk + n −2 + w k + n −2 ] + w k + n −1 || 
= · · ·
= || A k + n −1 A k + n −2 . . . A k ζk + w k + n −1 + A k + n −1 w k + n −2 

+ A k + n −1 A k + n −2 w k + n −3 + . . . + A k + n −1 A k + n −2 . . . A k +1 w k || 

≤ || 
n −1 ∏ 

i =0 

A k + i ζk || + w̄ + || A k + n −1 || · w̄ + · · · + || A k + n −1 A k + n −2 . . . A k +1 || 

= || 
n −1 ∏ 

i =0 

A k + i ζk || + w̄ + 

n −1 ∑ 

i =1 

i ∏ 

j=1 

|| A k + n − j ||·w̄ . 
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Thus we have 

|| ζk + n || ≤
n −1 ∏ 

i =0 

|| A k + i || · || ζk || + w̄ + 

n −1 ∑ 

i =1 

i ∏ 

j=1 

|| A k + n − j ||·w̄ . 

If ā = 1 , it follows that 

|| ζk + n || ≤ || ζk || + n ̄w , 

|| ζk || + n ̄w ≤ ε max . (29)

The second result of this theorem is then proved by the solution of (29) . 

If ā 
 = 1 , it follows that 

|| ζk + n || ≤ ā n · || ζk || + w̄ + 

n −1 ∑ 

i =1 

ā i · w̄ 

= ā n · || ζk || + 

1 − ā n 

1 − ā 
· w̄ . 

Since || ζk + i || ≤ ε max holds, we have 

ā n · ‖ ζk ‖ + 

1 − ā n 

1 − ā 
· w̄ ≤ ε max , 

ā n · || ζk || − w̄ 

1 − ā 
· ā n ≤ ε max − w̄ 

1 − ā 
, 

ā n · (|| ζk || + 

w̄ 

ā − 1 

) ≤ ε max + 

w̄ 

ā − 1 

. (30)

If ā > 1 , it follows that 

ā n · [( ̄a − 1) · || ζk || + w̄ ] ≤ ( ̄a − 1) ε max + w̄ , 

ā n ≤ ( ̄a − 1) ε max + w̄ 

( ̄a − 1) · || ζk || + w̄ 

. (31)

Taking the logarithm of both sides of (31) , then we have: 

n · ln ā ≤ ln [( ̄a − 1) ε max + w̄ ] − ln [( ̄a − 1) · || ζk || + w̄ ] . (32)

Part of the first result of this theorem is then proved by the solution of (32) . 

If ā < 1 , from (30) it follows that 

ā n · [( ̄a − 1) · || ζk || + w̄ ] ≥ ( ̄a − 1) ε max + w̄ . 

If ( ̄a − 1) ε max + w̄ > 0 , due to || ζ k || ≤ εmax we have ( ̄a − 1) · || ζk || + w̄ > 0 . This results in 

ā n ≥ ( ̄a − 1) ε max + w̄ 

( ̄a − 1) · || ζk || + w̄ 

. (33)

Taking the logarithm of both sides of (33) , we have 

n · ln ā ≥ ln [ ( ̄a − 1 ) ε max + w̄ ] − ln [ ( ̄a − 1 ) · ‖ 

ζk ‖ 

+ w̄ ] . (34)

Because ln ̄a < 0 holds, another part of the first result of this theorem can be proved by the solution of Eq. (34) . When

( ̄a − 1) ε 0 + w̄ ≤ 0 , it is obvious that the following inequality always holds 

ā n · [( ̄a − 1) · || ζk || + w̄ ] ≥ ā n · [( ̄a − 1) · ε max + w̄ ] ≥ ( ̄a − 1) · ε max + w̄ . 

This completes the proof. �
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6.4. proof of Corollary 4.1 

From the definition of ζ k we know that ζ k is the geometric distance between x k and x k | k −1 . It is easy to see that ζ k is

smaller than the worst-case estimation error which is defined in definition 7, so we have 

|| ζk || ≤ || �k | k −1 | | max 

Then we can easily obtain 

ln [ ( ̄a − 1 ) ε max + w̄ ] − ln 

[
( ̄a − 1 ) ·

∥∥�k | k −1 

∥∥
max 

+ w̄ 

]
ln ā 

≤ ln [ ( ̄a − 1 ) ε max + w̄ ] − ln [ ( ̄a − 1 ) · ‖ 

ζk ‖ 

+ w̄ ] 

ln ā 
. 

The rest of proof is similar to that of Theorem 4.2 . �

6.5. proof of Theorem 4.3 

At those time instants when the observations are lost, we have I − K k C k = I and n k = w k . Thus, we can obtain the follow-

ing Lyapunov candidate from (26) : 

V k +1 ( ζk +1 ) = ζ T 
k A 

T 
k P 

−1 
k +1 | k A k ζk + 2 w 

T 
k P 

−1 
k +1 | k A k ζk + w 

T 
k P 

−1 
k +1 | k w k 

Note that Lemma 4.1 still holds but I − K k C k = I in this case. By applying Lemma 4.1 , we have 

V k +1 ( ζk +1 ) ≤α−1 
k 

ζ T 
k [ P 

−1 
k | k −1 

− P −1 
k | k −1 

(P −1 
k | k + αk A 

T 
k Q k 

∗−1 A k ) 
−1 P −1 

k | k −1 
] ζk 

+ 2 w 

T 
k P 

−1 
k +1 | k A k ζk + w 

T 
k P 

−1 
k +1 | k w k . 

Using the appreciate upper and lower bound, it follows that 

V k +1 ( ζk +1 ) − V k ( ζk ) ≤
(
α−1 

k 
− 1 

)
V k ( ζk ) −

1 

αk ̄s 
2 
0 

(
s 0 −1 + αk ̄a 

2 /q 
) || ζk | | 2 + 

2 ̄a ̄w 

s 0 
|| ζk || + 

w̄ 

2 

s 0 
. (35)

Because inequality αk 
−1 − 1 < 0 always holds, then we have 

V k +1 ( ζk +1 ) − V k ( ζk ) ≤
2 ̄a ̄w 

s 0 
|| ζk || + 

w̄ 

2 

s 0 
≤ 1 

s 0 

(
2 ̄a ̄w ε max + w̄ 

2 
)
. 

At the time instants of no data missing, the similar conclusion to Theorem 4.1 can be obtained using the new upper and

lower bounds of P k in Lemma 4.2 . Meanwhile the notation of parameters κ1 , κ2 , κ3 should be changed to κ10 , κ20 , κ30 .

From (28) we know that 

V k +1 ( ζk +1 ) − V k ( ζk ) ≤ −κ20 || ζk | | 2 + κ30 || ζk || + κ10 . (36) 

If 
−κ30 −

√ 

κ2 
30 

+4 κ10 κ20 

−2 κ20 
< ε 2 ≤ || ζk || < ε max , we know that −κ20 || ζk | | 2 + κ30 || ζk || + κ10 < 0 . 

Let f (|| ζk || ) = −κ20 || ζk | | 2 + κ30 || ζk || + κ10 , then depending on the monotonic of f (|| ζ k ||), in the area of ε 2 ≤ || ζk || < ε max ,

the maximum value of f (|| ζ k ||) is 

f ( ε 2 ) = −κ20 ε 
2 
2 + κ30 ε 2 + κ10 < 0 . 

Let �V 0 be the one-step increment of Lyapunov candidate at the time instants of missing data, and �V 1 the one-step

decrement of Lyapunov candidate at the time instants of no missing data. In the whole N steps, if 

N ·r(N ) ∑ 

i =1 

�V 0 ,i + 

N −N ·r(N ) ∑ 

i =1 

�V 1 ,i < 0 , 

then we can say that the filter is stable. 

In the period of missing observations, from (35) it follows that 

�V 0 ≤ 1 

s 0 
(2 ̄a ̄w ε max + w̄ 

2 ) . 

Then we have 

�V 1 ≤ −κ20 ε 
2 
2 + κ30 ε 2 + κ10 . 

Thus, 

N ·r ( N ) ∑ 

i =1 

�V 0 ,i + 

N −N ·r ( N ) ∑ 

i =1 

�V 1 ,i < N r ( N ) · 1 

s 0 

(
2 ̄a ̄w ε max + w̄ 

2 
)

+ ( N − N r ( N ) ) ·
(
−κ20 ε 

2 
2 + κ30 ε 2 + κ10 

)
. 
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If inequality 

Nr ( N ) · 1 

s 0 

(
2 ̄a ̄w ε max + w̄ 

2 
)

+ ( N − Nr ( N ) ) ·
(
−κ20 ε 

2 
2 + κ30 ε 2 + κ10 

)
≤ 0 (37)

is satisfied, then the filter is stable, the solution of (37) is (19) . 

Therefore if the estimation error is within [ ε 2 , ε max ] , it will decrease and converge to ε2 . That is, the estimation bound

is tighten from ε max to ε2 . �
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