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Abstract—Single-trial classification of Event-Related Potentials
(ERPs) is needed in many real-world brain-computer interface
(BCI) applications. However, because of individual differences,
the classifier needs to be calibrated by using some labeled subject-
specific training samples, which may be inconvenient to obtain.
In this paper we propose a weighted adaptation regularization
(wAR) approach for offline BCI calibration, which uses data from
other subjects to reduce the amount of labeled data required in
offline single-trial classification of ERPs. Our proposed model
explicitly handles class-imbalance problems which are common
in many real-world BCI applications. wAR can improve the
classification performance, given the same number of labeled
subject-specific training samples; or, equivalently, it can reduce
the number of labeled subject-specific training samples, given
a desired classification accuracy. To reduce the computational
cost of wAR, we also propose a source domain selection (SDS)
approach. Our experiments show that wARSDS can achieve com-
parable performance with wAR but is much less computationally
intensive. We expect wARSDS to find broad applications in offline
BCI calibration.

Index Terms—Brain-computer interface (BCI), EEG, event-
related potentials (ERP), domain adaptation, transfer learning

I. INTRODUCTION

Many real-world brain-computer interface (BCI) applica-
tions [11], [13], [21], [22] require single-trial classification of
Event-Related Potentials (ERPs) [4], [17]. However, people
demonstrate strong individual differences in neural responses
to tasks or stimuli, which make it very challenging to develop
a generic single-trial ERP classifier whose parameters fit all
subjects. Usually, the classifier needs to be calibrated by using
some labeled subject-specific training samples. These labeled
samples may either be difficult, time-consuming or impractical
to obtain. So, there is a critical need to reduce the number of
labeled subject-specific training samples required to initially
calibrate a BCI system.

Fortunately, although EEG responses from different subjects
are generally different, they still share some similarity in the
underlying ERP. So, the amount of labeled subject-specific data
in calibration could be reduced by making use of information
contained in other subjects’ data. This is the idea of transfer
learning (TL) [14], which has started to find applications in
the BCI domain [1], [9], [10], [18].

In [23] we proposed a simple TL approach for single-trial
ERP classification which achieved better performance than
baseline approaches that did not use TL. Several potential
improvements to that approach were also pointed out [23],
including using more sophisticated TL algorithms to make use
of the unlabeled subject-specific samples in offline calibration,
and selecting a subset of auxiliary subjects instead of using
all. This paper proposes a new algorithm, weighted adaptation
regularization with source domain selection (wARSDS), to
implement the above improvements. We show that wARSDS
significantly outperforms the TL algorithm in [23], and also
the original (unweighted) adaptation regularization algorithm
in [12], in offline BCI calibration. An online version of the
wARSDS algorithm can be found in [24].

The rest of the paper is organized as follows: Section II
introduces the details of the wARSDS algorithm. Section III
describes experimental results and performance comparisons
of different algorithms. Section IV draws conclusions.

II. WEIGHTED ADAPTATION REGULARIZATION WITH

SOURCE DOMAIN SELECTION (WARSDS)

This section introduces the wARSDS algorithm, which was
modified from the adaptation regularization - regularized least
squares (ARRLS) algorithm in [12] to handle class-imbalance
problems and multiple source domains, and to also make use
of labeled samples in the target domain. wARSDS consists of
two parts: source domain selection (SDS) to select the closest
source domains, and weighted adaptation regularization (wAR)
for each selected source domain. We will introduce wAR first,
and then SDS, because SDS relies on the results of wAR.

A. wAR: Problem Definition

Some notations used in wAR are first introduced.
Definition 1: (Domain) [12], [14] A domain D consists of

a d-dimensional feature space X and a marginal probability
distribution P (x), i.e., D = {X , P (x)}, where x ∈ X .

If two domains Ds and Dt are different, then they may
have different feature spaces, i.e., Xs �= Xt, and/or different
marginal probability distributions, i.e., Ps(x) �= Pt(x) [12].
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Definition 2: (Task) [12], [14] Given a domain D, a task
T consists of a label space Y and a prediction function f(x),
i.e., T = {Y, f(x)}.

Let y ∈ Y . Then f(x) = Q(y|x) can be interpreted as
the conditional probability distribution. If two tasks Ts and Tt
are different, then they may have different label spaces, i.e.,
Ys �= Yt, and/or different conditional probability distributions,
i.e., Qs(y|x) �= Qt(y|x) [12].

Definition 3: (Domain Adaptation) Given a source do-
main Ds with n labeled samples, {(x1, y1), ..., (xn, yn)},
and a target domain Dt with ml labeled samples
{(xn+1, yn+1), ..., (xn+ml

, yn+ml
)} and mu unlabeled sam-

ples {xn+ml+1, ...,xn+ml+mu
}, domain adaptation transfer

learning aims to learn a target prediction function f : xt �→ yt
with low expected error on Dt, under the assumptions Xs =
Xt, Ys = Yt, Ps(x) �= Pt(x), and Qs(y|x) �= Qt(y|x).

In our application, EEG epochs from the new subject are
in the target domain, while EEG epochs from an existing
subject (usually different from the new subject) are in the
source domain. There could be more than one source domain,
but in wAR we consider each source domain separately. A
single data sample would consist of the feature vector for
a single EEG epoch from a subject, collected as a response
to a specific stimulus. Though the features in source and
target domains are computed in the same way, generally their
marginal and conditional probability distributions are different,
i.e., Ps(x) �= Pt(x) and Qs(y|x) �= Qt(y|x), because the
two subjects usually have different neural responses to the
same stimulus. As a result, the auxiliary data from a source
domain cannot represent the primary data in the target domain
accurately, and must be integrated with some labeled data in
the target domain to induce the target predictive function.

B. wAR: The Learning Framework

Because

f(x) = Q(y|x) =
P (x, y)

P (x)
=

Q(x|y)P (y)

P (x)
, (1)

to use the source domain data in the target domain, we need to
make sure1 Ps(xs) is close to Pt(xt), and Qs(xs|ys) is also
close to Qt(xt|yt).

Let the classifier be f = w
Tφ(x), where w is the classifier

parameters, and φ : X �→ H is the feature mapping function
that projects the original feature vector to a Hilbert space H.
The learning framework of wAR is formulated as:

f =argmin
f∈HK

n∑
i=1

ws,i�(f(xi), yi) + wt

n+ml∑
i=n+1

wt,i�(f(xi), yi)

+ σ‖f‖2K + λ[Df,K(Ps, Pt) +Df,K(Qs, Qt)] (2)

where � is the loss function, K ∈ R(n+ml+mu)×(n+ml+mu)

is the kernel function induced by φ such that K(xi,xj) =
〈φ(xi), φ(xj)〉, and σ and λ are non-negative regularization

1Strictly speaking, we should also make sure Ps(y) is also close to Pt(y).
However, in this paper we assume all subjects conduct similar VEP tasks, so
Ps(y) and Pt(y) are intrinsically close. Our future research will consider the
general case that Ps(y) and Pt(y) are different.

parameters. wt is the overall weight for target domain samples,
which should be larger than 1 so that more emphasis is given
to target domain samples than source domain samples. ws,i is
the weight for the ith sample in the source domain, and wt,i

is the weight for the ith sample in the target domain, i.e.,

ws,i =

{
1, xi ∈ Ds,1

n1/(n− n1), xi ∈ Ds,2
(3)

wt,i =

{
1, xi ∈ Dt,1

m1/(ml −m1), xi ∈ Dt,2
(4)

in which Ds,c = {xi|xi ∈ Ds∧yi = c} is the set of samples in
Class c of the source domain, Dt,c = {xj |xj ∈ Dt ∧ yj = c}
is the set of samples in Class c of the target domain, nc =
|Ds,c| and mc = |Dt,c|. The goal of ws,i (wt,i) is to balance
the number of samples from difference classes in the source
(target) domain.

Briefly speaking, the meanings of the four terms in (2) are:
1) The 1st term minimizes the loss on fitting the labeled

samples in the source domain.
2) The 2nd term minimizes the loss on fitting the labeled

samples in the target domain.
3) The 3rd term minimizes the structural risk of the classi-

fier.
4) The 4th term minimizes the distance between the

marginal probability distributions Ps(xs) and Pt(xt),
and the distance between the conditional probability
distributions Qs(xs|ys) and Qt(xt|yt).

By the Representer Theorem [2], [12], the solution of (2)
admits an expression:

f(x) =

n+ml+mu∑
i=1

αiK(xi,x) = α
TK(X,x) (5)

where X = [x1, ...,xn+ml+mu
]T , and α =

[α1, ..., αn+ml+mu
]T are coefficients to be computed.

Note that the formulation and derivation of wAR closely
resemble the ARRLS algorithm proposed by Long et al. [12];
however, there are several major differences:

1) wAR assumes a user is available to label the samples in
the target domain, whereas ARRLS assumes all samples
in the target domain are unlabeled. As a result, wAR can
be iterative, and classification can be updated every time
new labeled target domain samples are added.

2) wAR explicitly considers the class imbalance problem
in both source and target domains by introducing the
weights on samples from different classes.

3) ARRLS also includes manifold regularization [2]. We
investigated it but was not able to achieve improved
performance in our application, so we excluded it in this
paper.

Additionally, with the help of SDS, wARSDS can effectively
handle multiple source domains, whereas ARRLS only con-
siders one source domain.

Finally, [12] considered both squared loss and Hinge loss.
We only consider the squared loss and 2-class classification in
this paper due to space constraints. An analysis with the Hinge
loss will be considered in a forthcoming paper.
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C. wAR: Loss Functions Minimization

The squared loss for regularized least squares (RLS)

�(f(xi), yi) = (yi − f(xi))
2 (6)

is considered in this paper. Let

y = [y1, ..., yn+ml+mu
]T (7)

where {y1, ..., yn} are known labels in the source domain,
{yn+1, ..., yn+ml

} are known labels in the target domain, and
{yn+ml+1, ..., yn+ml+mu

} are pseudo labels for the unlabeled
target domain samples, i.e., labels estimated using another clas-
sifier and known samples in both source and target domains.

Define E ∈ R(n+ml+mu)×(n+ml+mu) as a diagonal matrix
with

Eii =

⎧⎨
⎩

ws,i, i ∈ [1, n]
wtwt,i, i ∈ [n+ 1, n+ml]
0, otherwise

(8)

Substituting (5) and (6) into the first two terms in (2), it
follows that

n∑
i=1

ws,i�(f(xi), yi) + wt

n+ml∑
i=n+1

wt,i�(f(xi), yi)

=

n∑
i=1

ws,i(yi − f(xi))
2 + wt

n+ml∑
i=n+1

wt,i(yi − f(xi))
2

=

n+ml+mu∑
i=1

Eii(yi − f(xi))
2

= ‖ (yT −α
TK)E

1

2 ‖2 (9)

D. wAR: Structural Risk Minimization

As in [12], we define the structural risk as the squared norm
of f in HK , i.e.,

‖f‖2K =

n+ml+mu∑
i=1

f(xi)×

n+ml+mu∑
j=1

f(xj)

=

n+ml+mu∑
i=1

n+ml+mu∑
j=1

αiαjK(xi,xj)

= α
TKα (10)

E. wAR: Marginal Probability Distribution Adaptation

Similar to [12], [15], we compute Df,K(Ps, Pt) using the
projected maximum mean discrepancy (MMD):

Df,K(Ps, Pt) =

[
1

n

n∑
i=1

f(xi)−
1

ml +mu

n+ml+mu∑
i=n+1

f(xi)

]2

= α
TKM0Kα (11)

where M0 ∈ R(n+ml+mu)×(n+ml+mu) is the MMD matrix:

(M0)ij =

⎧⎪⎪⎨
⎪⎪⎩

1
n2 , i ∈ [1, n], j ∈ [1, n]

1
(ml+mu)2

, i ∈ [n+ 1, n+ml +mu],

j ∈ [n+ 1, n+ml +mu]
−1

n(ml+mu)
, otherwise

(12)

F. wAR: Conditional Probability Distribution Adaptation

Similar to the idea proposed in [12], we first need to
compute pseudo labels for the unlabeled target domain samples
and construct the label vector y in (7). These pseudo labels
can be borrowed directly from the estimates in the previous
iteration if wAR is used iteratively, or estimated using another
classifier, e.g., a SVM. We then compute the projected MMD
w.r.t. each class.

Let Ds,c = {xi|xi ∈ Ds ∧ yi = c} be the set of samples in
Class c of the source domain, Dt,c = {xj |xj ∈ Dt ∧ yj = c}
be the set of samples in Class c of the target domain,
nc = |Ds,c|, and mc = |Dt,c|. Then, the distance between
the conditional probability distributions in source and target
domains is computed as:

Df,K(Qs, Qt)

=
2∑

c=1

⎡
⎣ 1

nc

∑
xi∈Ds,c

f(xi)−
1

mc

∑
xj∈Dt,c

f(xj)

⎤
⎦
2

(13)

Substituting (5) into (13), it follows that

Df,K(Qs, Qt)

=

2∑
c=1

⎡
⎣ 1

nc

∑
xi∈Ds,c

α
TK(X,x)−

1

mc

∑
xj∈Dt,c

α
TK(X,x)

⎤
⎦
2

=

2∑
c=1

α
TKMcKα

=α
TKMKα (14)

where

M = M1 +M2 (15)

in which M1 and M2 are MMD matrices computed as:

(Mc)ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1/n2
c, xi,xj ∈ Ds,c

1/m2
c, xi,xj ∈ Dt,c

−1/(ncmc), xi ∈ Ds,c,xj ∈ Dt,c,
or xj ∈ Ds,c,xi ∈ Dt,c

0, otherwise

(16)

G. wAR: The Closed-Form Solution

Substituting (9), (10), (11) and (14) into (2), it follows that

f =argmin
f∈HK

||(yT −α
TK)E

1

2 ||2 + σαTKα

+ λαTK(M0 +M)Kα (17)

Setting the derivative of the objective function above to 0 leads
to

α = [(E + λM0 + λM)K + σI]−1Ey (18)

32113211



H. Source Domain Selection (SDS)

When there are many source domains, performing wAR for
each source domain and then aggregating the results would be
very time-consuming; additionally, aggregating results from
source domains that are very noisy or very far away from
the target domain may also decrease the classification perfor-
mance. So, there is a need for source domain selection, which
selects the closest source domains to reduce the computational
cost, and also to (potentially) improve classification perfor-
mance.

Assume there are Z different source domains. For the zth

source domain, we first compute mz,c (c = 1, 2) the mean
vector of each class. Then, we also compute mt,c, the mean
vector of each class in the target domain, by making use of
the ml true labels and mu pseudo-labels. The distance between
the two domains is then computed as:

d(z, t) =

2∑
c=1

||mz,c −mt,c|| (19)

We next cluster Z , {d(z, t)}z=1,...,Z, by k-means clustering,
and finally choose the cluster that has the smallest centroid,
i.e., the source domains that are closest to the target domain.
In this way, on average we only need to performing wAR
for Z/k source domains, which is corresponding to a 50%
computational cost saving if k = 2 (the cost for computing
{d(z, t)}z=1,...,Z and perform k-means clustering is negligible,
compared with the cost of performing wAR). A larger k will
result in larger savings; however, when k is too large, there may
not be enough source domains selected for wAR, and hence
the classification performance may decrease. So, there is a
trade-off between computational cost saving and classification
performance. We used k = 2 in this paper.

I. The Complete wARSDS Algorithm

The pseudo code for the complete wARSDS algorithm is
described in Algorithm 1. We first use SDS to select the closest
source domains, and then perform wAR for each selected
source domain separately. The final classification is a weighted
average of these individual classifiers, with the weight being
the training accuracy of the corresponding wAR.

III. EXPERIMENTS AND DISCUSSIONS

Experimental results are presented in this section to demon-
strate the performance of wARSDS.

A. Experiment Setup

We used data from a standard Visually Evoked Potential
(VEP) oddball task [16], [23]. In this task, image stimuli were
presented to subjects at a rate of 0.5 Hz (one image every
two seconds). The images presented were either an enemy
combatant (target) or a U.S. Soldier (non-target). The subjects
were instructed to identify each image as being target or non-
target with a unique button press as quickly, but as accurately,
as possible. There were a total of 270 images presented to
each subject, of which the number of targets ranged from 30

Algorithm 1: The wARSDS algorithm.

Input: Z source domains, where the zth (z = 1, ..., Z)
domain has nz labeled samples {xz

i , y
z
i }i=1,...,nz

;
ml labeled target domain samples,
{xt

j , y
t
j}j=1,...,ml

;
mu unlabeled target domain samples,
{xt

j}j=ml+1,...,ml+mu
;

Parameters σ, λ, and k in k-means clustering.
Output: {ȳtj}j=ml+1,...,ml+mu

, estimated labels of the
mu unlabeled target domain samples.

// SDS starts
if ml == 0 then

Select all Z source domains;
Go to wAR.

else
Construct {ytj}j=ml+1,...,ml+mu

, pseudo labels for
the mu unlabeled target domain samples, using the
estimates from the previous iteration of wAR;
for z = 1, 2, ..., Z do

Compute d(z, t), the distance between the target
domain and the zth source domain, by (19).

end
Cluster {d(z, t)}z=1,...,Z by k-means clustering;
Retain only the Z ′ source domains that belong to the
cluster with the smallest centroid.

end
// SDS ends; wAR starts
Choose a kernel function K(xi,xj) ;
for z = 1, 2, ..., Z ′ do

Construct feature matrix {xj}j=1,...,nz+ml+mu
,

where the first nz rows are the samples from the zth

source domain, the next ml rows are labeled samples
from the target domain, and the last mu rows are
unlabeled samples from the target domain;
Construct the corresponding label vector
{yj}j=1,...,nz+ml

;
Construct {yj}j=nz+ml+1,...,n+ml+mu

, pseudo labels
for the mu unlabeled target domain samples, using
the estimates from the previous iteration of
wARSDS, or build another classifier (e.g., SVM) to
estimate the pseudo labels if this is the first iteration;
Compute kernel matrix K from
{xj}j=1,...,nz+ml+mu

;
Construct y in (7), E in (8), M0 in (12), and M in
(15);
Compute α by (18);
Use α to classify the nz +ml labeled samples from
both domains and record the accuracy, az;
Compute {f(xt

j)}j=ml+1,...,ml+mu
by (5);

Record {ytz,j}j=ml+1,...,ml+mu
, where

ytz,j = sign(f(xt
j));

end
// wAR ends; Aggregation starts

Compute ȳtj = sign(
∑Z′

z=1 azy
t
z,j),

j = ml + 1, ...,ml +mu;
Return {ȳtj}j=ml+1,...,ml+mu

.
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to 55. The experiments were approved by U.S. Army Research
Laboratory (ARL) Institutional Review Board [19], [20].

18 subjects participated in the experiments, which lasted
on average 15 minutes. Data from four subjects were not used
due to data corruption or poor responses. EEG signals were
recorded using a 64-channel BioSemi ActiveTwo system with
4 additional EOG channels to record eye movement activity.
The EEG data was sampled at 512Hz.

B. Preprocessing and Feature Extraction

We used EEGLAB [6] for EEG signal preprocessing and
feature extraction. Of the 64 BioSemi EEG channels, we only
used 21 channels (Cz, Fz, P1, P3, P5, P7, P9, PO7, PO3, O1,
Oz, POz, Pz, P2, P4, P6, P8, P10, PO8, PO4, O2) mainly
in the parietal and occipital areas. We first band-passed the
EEG signals to [1, 50] Hz, then downsampled them to 64
Hz, performed average reference, and next epoched them to
the [0, 0.7] second interval timelocked to stimulus onset. We
removed mean baseline from each channel in each epoch and
removed epochs with incorrect button press responses. The
final numbers of epochs from the 14 subjects are shown in
Table I. Observe that there is significant class imbalance2 for
every subject; that’s why we need to use ws,i and wt,i in (2)
to balance the two classes in both domains.

Each [0, 0.7] second epoch contains 21 × 45 raw EEG
magnitude samples. To reduce the dimensionality, in each
wAR, we performed a simple principal component analysis for
the combined concatenated feature vectors from both source
and target domains, and took only the scores for the first
20 principal components3. We then normalized each feature
dimension separately to [0, 1].

C. Evaluation Process and Performance Measure

Although we know the labels of all EEG epochs for all 14
subjects in the experiment, we simulate a different scenario:
we have labeled EEG epochs for 13 subjects, but only a
small number of epochs for the 14th subject are labeled. Our
goal is to iteratively label epochs for the 14th subject so that
the remaining unlabeled epochs can be reliably classified. We
repeat this procedure 14 times so that each subject has a chance
to be the “14th” subject.

Assume there are ml (mu) labeled (unlabeled) epochs from
the new subject, and they have been arranged in such a way
that the first ml are labeled. Also assume that the true label
for the jth epoch from the new subject is ytj (1: target; −1:
non-target). Using the notations introduced in Algorithm 1, the
performance measure is defined as:

a =

∑ml

j=1 wjIj +
∑ml+mu

j=ml+1 wjIj

2
(20)

2In our previous research [23] the non-target samples were downsampled
to balance the two classes, and also the performance measure was different.
So, the results in this paper should not be compared directly with those in
[23]. The problem setting in this paper is more realistic, as class-imbalance
is common in many real-world BCI applications.

3We tested 20, 30 and 40 principal components, and they showed similar
performances.

where Ij is an indicator function on whether the classification
is correct or not, i.e.,

Ij =

{
1, j ≤ ml, or j > ml and ȳtj = ytj
0, j > ml and ȳtj �= ytj

(21)

and wj is the weight for the jth epoch to balance the target
and non-target epochs, i.e.,

wj =

{
1/mt, ytj = 1
1/mnt, ytj = −1

(22)

in which mt is the number of target epochs from the new
subject and mnt is the number of non-target epochs.

D. Algorithms

We compared the performances of wARSDS with six other
algorithms:

1) Baseline 1 (BL1), which assumes we know all labels of
the samples from the new subject, and uses SVM with
different combinations of parameters (c = 2{−1,0,...,5},
γ = 2{−4,−3,...,2}) to find the highest 5-fold cross-
validation classification accuracy. This usually represents
an upper bound of the classification performance we can
get, by using the data from the new subject only.

2) Baseline 2 (BL2), which is a simple iterative procedure:
in each iteration we randomly select five unlabeled
training samples from the new subject, label and add
them to the labeled training dataset, and then train an
SVM classifier by 5-fold cross-validation. We iterate
until the maximum number of iterations is reached.

3) The TL algorithm introduced in [23], which simply
combines the labeled samples from the new subject with
samples from each existing subject and train an SVM
classifier. The final classification is a weighted average
of all individual classifiers, with weight being the cross-
validation accuracy of the corresponding classifier.

4) TLSDS, which is the above TL algorithm with SDS.
5) ARRLS algorithm proposed in [12] but without manifold

regularization, which is also the wAR algorithm devel-
oped in the previous section, by setting wt = ws,i =
wt,i = 1.

6) wAR, which uses all existing subjects, instead of per-
forming SDS.

Weighted libSVM [5] with RBF kernel was used as the
classifier in BL1, BL2, TL and TLSDS. We chose wt = 2 in
wAR and wARSDS to give the labeled target domain samples
more emphasis, and σ = 0.1 and λ = 10, following the
practice in [12].

E. Experimental Results

Because random samples were selected for labeling in each
iteration, each algorithm was repeated 30 times so that statisti-
cally meaningful results could be obtained. The performances
of the seven algorithms, which are averaged across the 30 runs
for each subject, are shown in Fig. 1, where each subfigure
represents a different “14th” subject. The average performance
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TABLE I
NUMBER OF EPOCHS FOR EACH SUBJECT AFTER PREPROCESSING. THE NUMBERS OF TARGET EPOCHS ARE GIVEN IN THE PARENTHESES.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14
No. Epochs 241 (26) 260 (24) 257 (24) 261 (29) 259 (29) 264 (30) 261 (29) 252 (22) 261 (26) 259 (29) 267 (32) 259 (24) 261 (25) 269 (33)
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Fig. 1. Performance of the seven algorithms for each individual subject, averaged over 30 runs. Horizontal axis: ml , number of labeled subject-specific training
samples; vertical axis: classification accuracy computed by (20).

of the seven algorithms across the 14 subjects is shown in
Fig. 2. Observe that:

1) Generally the performances of all algorithms (except
BL1, which is not iterative) increase as more subject-
specific training samples are labeled and added, which
is intuitive.

2) BL2 cannot build a model when there are no labeled
samples at all from the new subject (observe that the
first point on the BL2 curve in Fig. 1 is always .5,
representing random guess), but all TL based algorithms
can, because they can borrow information from other
subjects. Moreover, without any labeled samples from
the new subject, wAR and wARSDS can build a model

with an average classification accuracy of 68%, which
is much better than random guess.

3) Generally TL outperforms BL2 when ml is small, but
its performance may be worse when ml is large. This
is because when ml is small, BL2 cannot be trained
extensively to obtain a reliable model, whereas it is
beneficial for TL to borrow training samples from other
subjects. However, as ml increases, the performance of
BL2 increases rapidly, because BL2 is trained solely on
these ml samples from the new subject. On the other
hand, TL is trained by combining these ml samples with
a lot more samples from other subjects, so the impact of
ml on TL is not as large as that on BL2. Because BL2’s
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performance improves faster than TL as ml increases,
eventually BL2 outperforms TL.

4) TLSDS always outperforms TL. This is because TL
uses a very simple way to combine the samples from
the new and existing subjects, and hence an existing
subject whose ERPs are significantly different from the
new subject’s would have a negative impact on the
final classification performance. SDS removes (some
of) such subjects, and hence benefits the performance.
Additionally, with the help of SDS, on average TLSDS
outperforms BL2 when ml is small, and has comparable
performance as BL2 when ml is large.

5) ARRLS performs the worst, because all other algorithms
explicitly handle class-imbalance using weights, whereas
ARRLS does not.

6) wAR and wARSDS significantly outperform BL2, TL,
TLSDS and ARRLS. This is because a sophisticated
domain adaptation algorithm is used in wAR and
wARSDS, which explicitly considers class imbalance,
and is optimized not only for high classification accu-
racy, but also for small structural risk and close similarity
of the features. Interestingly, for certain subjects, e.g.,
Subjects 2, 9 and 14 in Fig. 1, the performances of
wAR and wARSDS even approach or exceed BL1,
with only 100 random samples (about 35% of the total
samples; recall that BL1 was trained using 80% of the
total samples). This shows that wAR and wARSDS can
indeed transfer useful information, which may not be
contained in the samples from the new subject, from
other subjects.

7) wARSDS and wAR have very similar performance (on
average wARSDS slightly outperforms wAR when ml

is small), but the computational cost of wARSDS is only
about 50% of wAR, which is a large saving, especially
when the number of existing subjects is very large.

We also performed comprehensive statistical tests to check
if the performance differences among the algorithms are sta-
tistically significant. To assess overall performance differences
among all six algorithms (BL1 was not included because it
is not iterative), a measure called the area-under-performance-
curve (AUPC) was calculated. The AUPC is the area under
the curve of the accuracies obtained at each of the 30 runs,
and is normalized to [0, 1]. Larger AUPC values indicate better
overall classification performance.

First, we used Friedman’s test, a two-way non-parametric
ANOVA where column effects are tested for significant differ-
ences after adjusting for possible row effects. We treated the
algorithm type (BL2, TL, TLSDS, ARRLS, wAR, wARSDS)
as the column effects, with subjects as the row effects.
Each combination of algorithm and subject had 30 values
corresponding to 30 runs performed. Friedman’s test showed
statistically significant differences among the six algorithms
(p = .0000).

Then, non-parametric multiple comparison tests using
Dunn’s procedure [7], [8] were used to determine if the differ-
ence between any pair of algorithms is statistically significant,

with a p-value correction using the FDR method by Benjamini
and Hochberg [3]. The results showed that the performances of
wAR and wARSDS are statistically significantly different from
BL2, TL, TLSDS and ARRLS (p = .0000 in all cases). There
is no statistically significant performance difference between
wAR and wARSDS (p = .2518).
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Fig. 2. Average performance of the seven algorithms across the 14 subjects.

In summary, we have demonstrated that given the same
number of labeled subject-specific training samples, wAR and
wARSDS can significantly improve offline calibration perfor-
mance. In other words, given a desired classification accuracy,
wAR and wARSDS can reduce the number of labeled subject-
specific training samples. For example, in Fig. 2, the average
classification accuracy of BL2 is 82.22%, given 100 labeled
subject-specific training samples. However, to achieve that
performance, on average wAR and wARSDS only need 40
samples, which corresponds to 60% saving of labeling effort.
Moreover, Fig. 2 also shows that, without using any labeled
subject-specific samples, wAR and wARSDS can achieve
similar performance to BL2 which uses 35 labeled subject-
specific samples.

IV. CONCLUSIONS

In this paper we have proposed a wAR approach for
offline BCI calibration, which uses data from other subjects to
reduce the amount of labeled data required to perform accurate
offline single-trial classification of ERPs. It also explicitly
considers the class-imbalance problem, which is very common
in real-world BCI applications. wAR can indeed improve the
classification performance, given the same number of labeled
subject-specific training samples; or, equivalently, it can reduce
the number of labeled subject-specific training samples, given
a desired classification accuracy. Moreover, we also proposed
wARSDS, which can achieve comparable performance with
wAR but is much less computationally intensive. We expect
wARSDS to find broad applications in offline BCI calibration.
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