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Abstract—Machine learning (ML) is revolutionizing
research and industry. Many ML applications rely on the
use of large amounts of personal data for training and
inference. Among the most intimate exploited data sources
is electroencephalogram (EEG) data, a kind of data that is
so rich with information that application developers can
easily gain knowledge beyond the professed scope from
unprotected EEG signals, including passwords, ATM PINs,
and other intimate data. The challenge we address is how to
engage in meaningful ML with EEG data while protecting
the privacy of users. Hence, we propose cryptographic
protocols based on secure multiparty computation (SMC) to
perform linear regression over EEG signals from many users
in afully privacy-preserving (PP) fashion,i.e., such that each
individual’s EEG signals are not revealed to anyone else.
To illustrate the potential of our secure framework, we show
how it allows estimating the drowsiness of drivers from their
EEG signals as would be possible in the unencrypted case,
and at a very reasonable computational cost. Our solution
is the first application of commodity-based SMC to EEG
data, as well as the largest documented experiment of secret
sharing-based SMC in general, namely, with 15 players
involved in all the computations.

Index Terms— Secure multiparty computation, cryptog-
raphy, machine learning, linear regression, driver drowsi-
ness estimation.
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|. INTRODUCTION

HE application potential of Brain-Computer Inter-

faces (BCIs) is vast, going far beyond medicine and
research into areas such as education, gaming, entertain-
ment, wellness, and personalized marketing. The emergence
of consumer-grade, low-cost BCIs and corresponding soft-
ware development kits! is bringing the use of BCI within
reach of application developers. They can capture neural
signals, extract features from them, and subsequently use these
extracted features to train and use machine learning (ML)
models for all kinds of prediction and inference tasks. These
include inferring emotions, sexual preferences and religious
beliefs of individuals, detecting preferences of customers,
measuring concentration, or estimating levels of drowsiness
in drivers of cars [1]-[6].

While many BClI-applications can be, and are, developed
with a benign intent of enriching and improving the quality of
human life, giving access to a user’s brain signals, or features
extracted from them, can seriously harm the user’s privacy.
Brain spyware has for instance been used to infer users’
4-digit PINs, bank information, month of birth, location of
residence, and whether they recognized a presented set of
faces [7]. The impact of brain malware that can infer very
intimate information about users, such as emotions, prejudices,
religious and political beliefs, etc. and subsequently use that
information to manipulate users, could be severe [8].

The awareness of the need for protecting the privacy of
individuals and their data in ML applications has increased
substantially over the last few years, as witnessed for instance
in the National Privacy Research Strategy put forward by the
National Science and Technology Council (Jun 2016),% the
recommendations of the Commission on Evidence-Based Pol-
icy Making (Sep 2017),%> and ACM’s statement on preserving
personal privacy (Mar 2018) [9]. Sensitive data includes user
generated content on social media, patient healthcare records,
genetic information, and—without a doubt—neural information
such as recorded by EEG signals. There is plenty of evidence
that anonymizing data does not offer sufficient protection [10].
In this paper we therefore focus on the use of cryptography,
in particular Secure Multiparty Computation (SMC) [11],
to ensure, in a mathematically provable way, that the EEG
data of individuals used in ML applications is not revealed to
anyone but themselves, while still being able to do meaningful
computations over that data.

lE.g. https://www.emotiv.com/, http://neurosky.com/, https://myndplay.com/
2https://Www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
3https://Www.cep.gov/content/dam/cep/report/cep—ﬁnal—report.pdf
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To this end, we propose cryptographic protocols for fully
privacy-preserving linear regression (PPLR) with data from
EEG signals, and their implementation in Lynx [12], a frame-
work for SMC based on additive secret sharing. Our methods
are applicable in any application that requires training an LR
model from EEG data. In this paper, we demonstrate our
protocols for estimating the drowsiness of drivers, which is
the cause of 1000s of fatal crashes each year.* We consider
two different scenarios. In the first scenario, a set of source
drivers work together to train an LR model in a distributed
fashion (many-party SMC). Throughout this process, none of
the drivers can see the data from the other drivers in an
unencrypted way at any point. At the end of the protocol,
all source drivers hold encrypted shares of the trained model,
and a target driver can obtain a prediction for his data by
engaging in a cryptographic protocol with all of the source
drivers (many-party SMC). In the second scenario, the target
driver has calibration data that can be leveraged to train
a personalized and more accurate model. The target driver
engages in a separate cryptographic protocol with each of
the source drivers (2-party SMC) to train LR models, namely
as many models as there are source drivers. Each model is
trained on data from one source driver, as well as on some
of the calibration data from the target driver. As before,
any individual’s EEG data is not disclosed to anyone else.
Furthermore, at the end of the training protocol, no single user
knows any of the trained models. Instead, knowledge about
the models is split into encrypted shares that are “owned” in a
distributed fashion by the drivers. Finally, the target driver can
obtain a prediction for his data, as an average of the predictions
by all trained models, through engaging in a cryptographic
protocol with all the source drivers.

Our secure framework allows to estimate the drowsiness
of drivers as would be possible in the unencrypted case,
and scales well with the number of drivers. It is the first
application of commodity-based SMC to EEG data, as well
as the largest documented experiment of secret sharing
based SMC in general, with 15 players involved in all the
computations.

In this paper, we focus on privacy-preserving machine learn-
ing (PPML) techniques based on SMC. There are alternative
paradigms for obtaining such a goal. They differ-among other
things—in how much information is leaked during training and
deployment of the ML models. In this paper, we work in
the most restrictive of these scenarios—where no leakage is
allowed. We do not cover other approaches for PPML that leak
some information, such as: differential privacy [13]; trusted
enclaves [14]; federated learning [15], [16]. To the best of our
knowledge, none of these approaches have previously been
applied to training ML models based on EEG data either.

Il. RELATED WORK
BCI technology is gradually becoming more ubiquitous.
On the academic side, great progress was made in the devel-
opment of technology for “mind reading” from fMRI acti-
vation patterns. Among others, this includes recent works by
Wang et al. [17] who successfully trained a ridge regression
model to identify complex thoughts, such as, “The witness

4https://www.cdc. gov/features/dsdrowsydriving/index.html

shouted during the trial”, and by Du et al. [18] who presented
a method for identifying what a user is looking at, just by
monitoring their brain activity. At the same time, a variety
of neural engineering companies have already introduced
inexpensive, consumer-grade BCI devices for measuring brain
activity in the form of EEG signals, as well as so-called
BCI App Stores to facilitate adoption of the BCI headsets
[8], and efforts are underway to make the more informative
magnetoencephalography (MEG) brain scanners wearable in
practice [19].

The access that BCI applications have to neural signals
rightly raises privacy concerns. A well known threat are
subliminal attacks in which users are exposed to visual stimuli
for a duration that is too short for cognitive perception yet long
enough to learn private information about the users based on
their neural reactions to the visual stimuli (e.g. brand logos)
[1]. The data obtained in this way is valuable for example
for phishing campaigns or ads. Neural signals have also been
used to elicit information about a persons sexual orientation
[3] or religious beliefs [2]. It is understood in the data science
community that anonymization, i.e. removing personally iden-
tifiable information from data before release, is not sufficient to
protect the privacy of individuals, since it still leaves the data
vulnerable to linkage attacks [10]. True protection can come
from cryptographic techniques that allow computations over
encrypted data, such as Fully Homomorphic Encryption (FHE)
or Secure Multiparty Computation (SMC) [11].

Multiple approaches for secure LR have been proposed in
the literature. Some are not based on SMC [20]-[25], and some
use SMC like we do [26]-[30]. Several existing approaches
assume that the data is vertically partitioned [24], [25], [29],
hence it can not be used for the application that we study in
this paper, in which each user has the information about his
own EEG signals (i.e., horizontally partitioned data).

Homomorphic  encryption (HE) based approaches.
Hall er al. [21] achieve security in a two-party LR scenario,
using HE on datasets over a finite field. The truncation protocol
used in [21] to scale down the finite field has a small problem
which is documented in [28]. The HE based method of
Aono et al. [22] outsources the computations to a server. The
entire LR model is present at the server, and the client
evaluates its data securely. Our approach differs from the above
in various ways. Our method enables training and inference in
a fully distributed fashion, i.e. such that the coefficients of the
trained LR model never have to be brought together in one
place. Furthermore, our method allows an arbitrary number of
parties, and computations are fast (less than 6 min for training
an LR model with over 16,000 training examples distributed
over 14 parties, and seconds for inference). Nikolaenko
proposed a hybrid model for secure LR using HE and garbled
circuits [23]. While their approach does handle multiple
parties, they upload encrypted data to a third party responsible
for evaluating the model with the help of a semi-honest Crypto
Service Provider. We eliminate the need of a third party to
actively participate in the protocol while achieving better
runtimes.

SMC based approaches. Du et al. [27] proposed an early
approach for SMC based simple LR, i.e. when there is only a
single scalar predictor variable. The method we propose in this
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paper works for multivariable LR, which is far more common
in practice. Karr et al. [26] provided a sketch for secure LR on
horizontally partitioned data. They did not address important
challenges that would need to be solved when implementing
it in practice, such as how to perform matrix inversion in a
secure manner and how to handle datasets with real numbers.
Finally, Du et al.’s secure two-party approach [30] is different
from ours in goal: they explore the trade-off between security
requirements and efficiency based on the assumption that a
dishonest party might be able to learn some information about
the other party’s private data. We are the first to implement
cryptographic protocols for performing secret sharing based
LR in which any number of parties can participate. To this end,
we extend the PPLR technique by De Cock et al. [28] to m
parties. While the general protocols for LR in [28] are similar
to ours, the version presented in [28] was not implemented for
several parties. The implementation in [28] was a simulation
where all the parties were running within the same machine
and did not include the delay due to the network connecting
all the parties. To the best of our knowledge, our work is the
largest documented experiment of privacy-preserving machine
learning in terms of the number of parties. Moreover, our
work includes private scoring, which was not present in [28].
This paper extends our prior work to a real application with
a realistic deployment, code that is re-usable and publicly
available. For other recent work on the use of SMC for PPML
(other than LR) we refer to [31]-[34] and references therein.

The implementation of new SMC protocols is facili-
tated by libraries that provide a general framework with a
built-in implementation of cryptographic protocols for basic
operations—such as multiplication and comparison—that one
can use to implement more complex protocols in a modular
fashion. In this paper we use the SMC library Lynx [12], which
is based on additive secret sharing. Other existing frameworks
for SMC are Sharemind [35], FairPlay [36], and Chameleon
[37]. Both Sharemind and Chameleon are secret sharing based
frameworks (like Lynx) developed in C++ whereas Fairplay
uses both secret sharing and garbled circuits. Sharemind
uses a fixed modulus of 232 and, as it stands, is limited to
computations on integers for three parties. Chameleon, a two-
party framework with protocols similar to that of Sharemind,
supports computations on floating point numbers in addition
to integers. Like Lynx, Chameleon uses a trusted third party to
generate correlated randomness. Fairplay, relies on a custom
function definition language to define the boolean circuits. The
need to learn a custom language makes it less user friendly.
Chameleon and Sharemind are limited to 2 and 3 parties
respectively. Fairplay can handle more than 3 parties but doing
so comes at a substantial computational cost. The Lynx library
that we use in this paper (see Section V) allows participation of
an arbitrary number of parties. Lynx is designed to scale well
with an increasing number of parties, among other things due
to the use of a bulletin board functionality that enables efficient
communication among many parties who are simultaneously
involved in computations. To the best of our knowledge,
ours is the first documented application of secret sharing
based SMC for ML with computations done by more than
3 players.

We illustrate the power of our solution by applying it to
the problem of privately estimating driver’s drowsiness based
on EEG data. The U.S. Department of Transportation reports
that drowsy driving, i.e. driving while experiencing sleepiness
or fatigue, claimed 846 lives in 2014.5 According to the
Centers for Disease Control and Prevention, up to 6,000 fatal
crashes each year may be caused by drowsy drivers.® The
company Panasonic has announced the release of an in-car
system for driver drowsiness detection, through a combination
of a camera and sensors which constantly measure blinking
features, facial expressions, heat loss from the body, and
illuminance [38]. Depending on the detected level of tiredness,
either the temperature in the car is changed (for moderate
drowsiness), or an alarm is sounded (for severe drowsiness).
Wau et al. [6] have successfully trained linear regression models
for inferring the level of drowsiness of drivers from their
EEG signals, both in a setting where a model trained with
data from m source drivers is used to infer the drowsiness
of a target driver, as well as in transfer learning settings
where calibration data from the target driver is leveraged to
personalize the predictive models, leading to more accurate
drowsiness estimates. In this paper we show how regression
models like those from Wu et al. [6] can be trained and used
in a fully privacy-preserving (PP) way, without any loss of
accuracy, and at a very reasonable computational cost. A high
level sketch of our work appeared previously [39].

[1l. PRELIMINARIES

In this section we introduce the notation for LR that we
will adhere to in the paper, and we recall preliminaries about
performing secure computations with additive secret sharings.

Throughout this paper we use capital letters such as X to
denote matrices, bold face letters such as y to denote vectors,
and regular letters such as y to denote scalar values. Let X be
an n X k matrix and y a vector of length n as follows:

X1 V1
x=|™* and y = 2 (D)
Xn Yn

Performing LR with X and y means finding a coefficient vector
B = p1 Sr) that minimizes

LS (i + Botsa o+ B+ o)~ @)
i=1

In a supervised ML application, X and y contain information
about training examples, where x; is the input feature vector
for the ith example and y; is the associated output. The
goal is to leverage these training examples to predict the
unknown outcome for a previously unseen input as accu-
rately as possible by learning a linear function defined by
the coefficient vector 8. The coefficients that minimize the
mean squared error over the training examples (2) can be
computed as

B=x"x)"'x"y A3)

3 https://www.nhtsa.gov/risky-driving/drowsy-driving
6https://www.cdc. gov/features/dsdrowsydriving/index.html
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In the scenarios that we are interested in, the data needed
to train the LR model is not owned by a single party but is
instead distributed across multiple parties who are not willing
to disclose it. In other words, each of the parties has some of
the entries of the matrix X and the vector y, and the parties
are unwilling or unable to send their entries to each other or
to a trusted third party to perform LR over the combined data.

To efficiently train LR models over distributed data in a
PP way, we work in the commodity-based model [40]. In this
approach, there is a setup assumption about the existence of a
Trusted Initializer (TI) that pre-distributes correlated random
numbers during an initialization phase (which can happen far
before the ML models are trained, even before knowing the
training data) to the parties participating in the protocol. The
TI is not involved in any other part of the execution and does
not learn any input from the parties. The main advantage of
the commodity-based approach is that it enables very efficient
solutions with unconditional security. It has been used in the
context of PPML [28], [34], [41], [42], as well as in other
applications [43]-[49].

Throughout this paper, we perform secure computations
using additive secret sharings over a finite field Fy. A value
(number) x € I, is secret shared between parties pi, ..., pm
by picking x,, ..., Xxp, € F; uniformly at random subject to
the constraint that x = >_;" | x,,, mod g, and then revealing
x; to p;. This secret sharing will be denoted by [x]] . Notice
that from the point of view of any proper subset of parties,
no information about x is revealed by the combination of their
shares. A secret shared value can be revealed to one of the
parties by sending him the shares of all the other parties.

Given secret sharings [x]] . [y1 . and a constant c, it is
trivial for the parties to compute secret sharings corresponding
toz =x+y,z =x—Yy,2 = cx,0r z =X+ c by
performing addition, subtraction, etc, locally on the shares;
the parties do not even need to communicate with each other
to this end. These operations are respectively denoted by
[zl, < [T, + 01, [2], < [x], — [y1,. 021, < clixT,,
and [[z]] . < [x1 , e In the commodity-based model there is
also a well-known protocol zpy to multiply the values of two
secret sharings [50], which has been generalized to a secure
distributed matrix multiplication protocol wppnm. At the start
of the protocol mppym, the parties have element-wise secret
sharings [U]], and [V]], of the matrices U and V. At the end
of the protocol, the parties have a secret sharing [UV], of
the product matrix UV. For a detailed description and a proof
of security of this protocol, we refer to [28], [51].

For computing the coefficient vector using (3), besides
matrix multiplication, we also need to compute the inverse of a
covariance matrix. To do this in a PP fashion, we use a secure
matrix inversion protocol that is based on a generalization of
the Newton-Raphson division method to matrices [28]. At the
start of the protocol, which we denote as ITyatiny, the parties
have shares of a covariance matrix A, and at the end of the
protocol, they have shares of the inverted matrix A~'. For
details about the protocol Ilpatiny, We refer to [28].

The protocols described above, and their security proofs,
assume all computations are done with numbers from the finite
field F,. In real-life applications, such as the BCI application

of estimating driver drowsiness that we consider later in this
paper, the inputs are real numbers. We therefore need a way to
approximate computations with real numbers by computations
with numbers from [F,. To this end, we adapt the method
of Catrina and Saxena [52] for fixed-point representation of
the numbers in the same way as was described in [28].
Similarly, when secure multiplications are performed, we use
the slightly modified version ITqyync of the truncation protocol
of Catrina and Saxena [52] that was presented in [28]. For
the computation of the results in Section VI, numbers are
represented with a f = 64 bit decimal precision and a e = 64
bit integer precision. For ¢, i.e. the dimension of the field,
we use the first prime value larger than 2°T2/*1 to allow
the truncation protocol to work correctly and not result in an
overflow during intermediate computations.

IV. CRYPTOGRAPHIC PROTOCOLS

We present a solution for PP training and inference with
LR models in two different scenarios that are very relevant in
practice, and both involve m source parties and a target party:

o Target-independent LR. In the target-independent LR sce-
nario, one LR model is trained with data from m source
parties, and used to make predictions about a target party.
No data from the target party is used during the training
phase. This scenario corresponds to “Baseline 1” in [6].

o Target-calibrated LR. In the target-calibrated LR scenario,
m LR models are trained, each with data from one of the m
source parties combined with some calibration data from the
target party. Inferences for the target party are subsequently
made by an ensemble of the trained LR models. This
scenario corresponds to “DAMF” in [6].

Both approaches are valuable in practice, and even more
sophisticated techniques to leverage calibration data exist [6].
Our goal in this paper is not to investigate which of these
techniques can lead to the most accurate predictions. Instead,
our aim is to show that the computations needed to train and
use such regression models can be performed in a fully PP
way, i.e. so that none of the parties involved has to disclose
its data to anyone else in an unencrypted way. From the
PP perspective, the two scenarios outlined above pose quite
different challenges and require different protocols, which we
describe in more detail below.

A. Training for Target-Independent LR

In the PP target-independent LR scenario, illustrated in
Fig. 1, each of the m source parties pi, p2, ..., pm has its
own rows of the matrix X and corresponding entries of the
vector y from (1). Each party p; can construct its own np, X k
matrix X, and a vector y,, of length n,, with n), the number
of training examples held by party p; and k the number
of features. We take advantage of the fact that the data is
horizontally partitioned in this way, and propose a protocol
for PP training of a LR model with the data from all parties
that is more efficient in this situation than the more general
protocol from De Cock et al. [28]. Our technique consists of
the steps described below.
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ncrypted messages

source source source

P P2 e o Pm
Xp, Yp, Xp,.Yp, X, Yp,
v L 4

ﬂPl ﬂpz ﬁp,”

\. J

Fig. 1. Training phase of privacy-preserving target-independent LR.

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in the 4th and 5Sth step.

2) Local computation of [ X7 X]] ,+ Each source party p; maps
its fixed-point inputs to elements of a finite field F; using
the method described in Section III, and creates an np, x k
matrix X, and a vector y,, of length n,,, with n,, the
number of training examples owned by party p; and k
the number of features. Next, each source party locally
computes the k x k matrix (X p[)T(X pi)- 1t holds that
XTX = X)) Xp) + oo+ (Xp,) T (Xp,) mod g. In
other words, each party p; now holds a secret share of the
matrix X7 X from Equation (3).

3) Local computation of [Xy]] ,: each source party p; locally
computes the k x 1 matrix (X p,.)T(y p;)- Itholds that X Ty =
(Xpl)T(ypl) +...+ (Xpm)T(ypm) mod ¢. In other words,
each party p; now holds a secret share of the matrix X7y
from Equation (3).

4) Joint computation of [(X7X)~!] ,+ the parties perform
joint computations over their shares [X7 X]] , from step 2
to compute shares [(X7X)™'] , of the inverse matrix
(XTX)~!, using the protocol for covariance matrix inver-
sion Ipatiny mentioned in Section III, which in turn relies
on the protocols for secure matrix multiplication zppy and
truncation Iqyync.

5) Joint computation of [B]],: the parties perform joint com-
putations over their shares [(X7 X)~1] , from step 4 and
[xTyl , from step 3 to compute shares [B]], of the coeffi-
cient vector B = (XT X)~!'XTy. To this end, they perform
distributed matrix multiplication between (X7 X)~! and
XTy by performing secure matrix multiplication zpyy and
secure truncation protocol ITqyyne operations. In the end
each party p; has a share B, of the estimated regression
coefficient vector B = 8, +B,, +...B,, mod g. Note
that each B, is a vector itself, containing a share of each
of the coefficients foy, f1, ..., bk.

In step 4 and 5 above, all the m parties perform com-
putations and exchange encrypted messages with each other.
To facilitate the communication among all parties, and to limit
the number of communication channels (sockets) that need to
be opened during execution, we use a Broadcast Agent (BA),
more details about which are provided in Section V.

Tl BA

Random factors. ncrypted messages

source source source

pP1 D2 ¢ DPm
By, By, P
,,,,,,,, IS N ]
A 4 A 4 A\ 4
I Ip, s,
Xp,
Xp, Xbm

target
X

Fig. 2. Inference phase of privacy-preserving target-independent LR.

The five steps outlined above allow m source parties to work
together to train an LR model on all of their data. None of the
source parties sees data from any of the other source parties
in an unencrypted way, and none of the source parties can
reconstruct the LR model by itself. Instead, at the end of the
training protocol, shares of the coefficient vector are held in
a distributed fashion by all m parties. This entails that, when
making new predictions with the trained model, all m parties
have to be involved, as we describe in Section IV-B.

B. Inference for Target-Independent LR

During the inference phase (Fig. 2), the target party obtains
a prediction for its input data by sending shares of its input
to all the m parties. The parties engage in an SMC protocol
among themselves. At the end of the evaluation protocol, each
of the m parties sends its share of the result back to the target
party, which adds the shares up to obtain the prediction.

Concretely, inference in the target-independent LR scenario
consists of the following four steps:

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in the third step.

2) Distribution of [x]|,: The target party maps the numbers
in its input vector X to elements of the finite field IF; using
the method described in Section III, and sends a share X,
of the resulting vector x to each of the source parties, with
X =Xp +Xp, +...+Xp,, modgq.

3) Joint computation of [ - x']| ,+ the m source parties
perform joint computations over their shares [B], from
step 5 in Section IV-A and their shares [x]|, from step
2 above to obtain shares of [B - x']] ,- To this end, they
use the secure matrix multiplication zppy and secure
truncation ITqyyne protocols mentioned in Section III. Each
source party sends it computed share, which we refer to as
¥p; below, back to the target party.

4) Local computation of J: the target party adds the received
shares y,,, (i =1,...,m) to learn the prediction y = y,, +
Ypy + ...+ ¥p, modq.
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Fig. 3. Training phase of privacy-preserving target-calibrated LR.

C. Training for Target-Calibrated LR

PP target-calibrated LR requires m cases of secure two-party
computation during the training phase (Fig. 3), since each
of the m LR models is trained with data from only two
parties, namely a source party and the target party. That
means that instead of just one matrix X as in Section IV-A,
m such matrices are implicitly used, which we denote as
xM, x®@ . x™_ Each such matrix X consists of rows
with training examples from source party p; and rows with
calibration data from the target party. In practice, none of these
matrices exist in one place. Instead, each matrix X ) exists
in a distributed fashion across source party p; and the target
party, who each have a share of it. In addition, for each matrix
X there is a corresponding response value vector y) which
is shared in a similar way between source party p; and the
target party.

At the end of the training protocol, the coefficients of the ith
regression model (i = 1, ..., m) are shared between the target
party and source party p;. These coefficients are computed
through the steps described below.

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in step 4 and 5 below.

2) Local construction of [[X(i)]]q and [[y(i)]]q, i=1,...,m:
the target party maps its calibration data to elements of a
finite field I, using the method described in Section III,
and creates an n; x k matrix X; and a vector y; of length n;,
with n; the number of training examples in the calibration
data. Likewise, each source party p; maps its fixed-point
inputs to elements of I, and creates an n,, X k matrix
Xp; and a vector y,. of length n,,, with np, the number
of training examples owned by party p; and k the number
of features. At this point, the source parties and the target
party are holding shares of the matrices X and vectors
y® for i = 1,...,m in a distributed fashion such that
X0 = Xp;+X; mod g and y(i) =Yp; +Yy: mod g. Note
that these matrices are never constructed in their entirety
in practice.

3) Local computation of [[(X(i))TX(i)]]q and [[(X(i))Ty(i)]]q,
i =1,...,m: each source party locally computes the k x k
matrix (X,,,)T(Xp,.) and the k& x 1 matrix (X,,,)T(yp,.). The
target party locally computes the k x k matrix (X;)7 (X;)
and the k x 1 matrix X[y,.

Tl BA TI BA

Random|
factors

Random
factors ncrypted
ncrypted essages!

essages; e e e

(1 (m)

)
source p |Xp, | target? source p,, |xp, | target?
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Fig. 4. Inference phase of privacy-preserving target-calibrated LR.

4) Joint computation of [[((X(i))TX(i))’l]]q, i=1,...,m:
the target party separately engages in joint computations
with each source party p; over their shares [(X (i))TX O .
from step 3 to compute shares II((X("))TX("))’I]]q using
the protocol for covariance matrix inversion IIpatiny men-
tioned in Section III.

5) Joint computation of IIﬁ(i)]]q, i = 1,...,m: the tar-
get party separately engages in joint computations with
each source party p; over their shares [[((X("))TX(i))fl]]q

from step 4 and shares [(X©)"y®] , from step 3 to
compute shares [[ﬂ(i)]] , of the coefficient vector ﬂ(i) =
(XN xD)=1(x )"y To this end, they7perform dis-
tributed matrix multiplication between ((X®)" X ®)~! and
(X (i))Ty(i) by performing secure matrix multiplication
zpmm and secure truncation Ilgync operations.

When all computations are finished, m LR models have
been trained. The coefficient vector of the ith model (i =
1,...,m) is secret shared between the ith source party on
one hand and the target party on the other hand, i.e., B =
BY + B modg, fori=1,...,m

D. Inference for Target-Calibrated LR

The inference phase (Fig. 4) for target-calibrated LR
requires the computation of the average of the outputs of the
m regression models, which again involves secure two-party
computations among the target party and each source party.
As in Section I'V-B, the target party has an input x for which
it needs a prediction. To this end, the target party engages in
a secure computation with each source party p; to construct a
secret sharing [[ji(i)]]q = IIﬁ(i) -xT]]q. The final prediction is the
average of all the $®) values, i = 1, ..., m. Instead of having
each source party p; send its share of @ to the target party,
which would reveal information that is not strictly necessary,
each of the parties p; first mask their prediction share by
adding a random number r; and open the masked result to the
target party. In addition, each party p; sends its random mask
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r; to one of the source parties (p; in Fig. 4), which adds them
up, and sends the result r to the target party. Finally the target
party locally adds up the masked shares of the ) values
(received directly from each of the source parties), subtracts
the sum of the masks r (received from the designated source
party that is responsible for constructing this sum), adds its
own shares of the )3(") values, and divides by the number
of source parties to obtain the final prediction. Concretely,
inference in the target-calibrated LR scenario consists of the
steps described below.

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in step 3.

2) Distribution of [x],: the target party maps the numbers
in its input vector to elements of the finite field F,; using
the method described in Section III. Next the target party

secret shares the input vector x with each of the source
(l) O]

parties, possibly in a different way, i.e. x) = Xp! + X,
mod g fori =1,...,m.
3) Joint computatlon of [[y(’)]] = 1,...,m: the target

party performs joint computatlons with each source party
pi over their shares [[ﬂ(i)]] . from step 5 in Section IV-C
and their shares [x]|, from step 2 above to compute shares
[[f)(i)]]q = [B® -x"],. To this end, the parties use the
secure matrix multiplication zpyym and secure truncation
IIqyunc protocols mentioned in Section III. At the end of
this step, shares of the predictions made by each of the
m LR models have been constructed and are held, in a
distributed fashion, by the target party and each of the
source parties: 3O = Vpi 5O 4 y(l) mod ¢g fori =1,

4) Local masklng of shares all the source parties mask thelr
share y p by adding a random value r;, and subsequently
send the masked prediction to the target party ¢.

5) Local computation of sum of masks: all the source parties
send their random masks r;, to one of the parties (chosen
based on the asymmetric bit as mentioned in Section V).
This designated party adds up all the random masks r;,
i =1,...,m, and sends the result to the target party.

6) Local computation of final prediction: the target party adds
up all the masked prediction shares received in step 4,
ie. 9;9,) + ri, i = 1,...,m, subtracts the sum of the
random masks received in step 5, adds its own shares y(’)

i =1,...,m computed in step 3, and takes the average.
V. IMPLEMENTATION IN LYNX
In this section we describe design decisions made

when implementing the protocols from Section IV in
Lynx [12], a framework that we developed for SMC. As
explained in Section III, our protocols are developed for
the commodity-based model, where the players running the
distributed computations receive pre-distributed data from a
trusted source (TI) during a setup phase. This data consist
of correlated random numbers that help to mask informa-
tion during the computations. The algorithms for secure LR
described in Section IV rely on the cryptographic protocols for
secure matrix multiplication, matrix inversion, and truncation
that were mentioned in Section III. We implemented these

Trusted
Initializer

A

1. Distribute correlated
random numbers (offline)

Party . ( j
'- 4. Return prediction (offline)

Client

2. Distribute Input (offline)

3. Computation (online)

A

\. J

Broadcast
Agent

Fig. 5. Different roles in the SMC framework Lynx.

protocols such that the performance scales with an increasing
number of players involved in the computations. The ability
to efficiently accomodate more than three parties to jointly
perform the computations, sets our Lynx framework apart from
existing SMC frameworks that are limited to two or three
parties [35], [37] or that become computationally heavy with
more than three parties [36].

There are four significant roles that run at various stages
for end-to-end model training and inference. They function as
illustrated in Fig. 5. A deployed system consists of two or more
Parties, one Broadcast Agent, one Trusted Initializer, and one
or more Clients. The Parties communicate via the Broadcast
Agent. The difference between a Party and a Client is that a
Party engages in SMC computations, while a Client does not.
The role of the latter is limited to distributing input data and
receiving corresponding outputs that were computed by the
Parties in a secure way. In the target-independent LR scenario
for driver drowsiness prediction (see Section VI) for instance,
the target driver is a Client, while in the target-calibrated LR
scenario, the target driver is a Party as well as a Client.

1) Party: The Party is the core module responsible for model
training and inference. The Parties take shares of the input,
compute the result of a function over this input, and return the
output shares. If Lynx is used for training, they produce shares
of the trained model as an output, such as the shares of the
coefficient vector of a LR model. When used for prediction,
they produce the shares of the predicted result. At no point
does any of the individual Parties know the data or the result
held by any other Party in an unencrypted way.

2) Trusted Initializer: The TI runs as an offline program to
generate the set of correlated random data required for the
computations. It passes shares of this data to all the parties
before the start of the computations and does not interfere
with the computation any further from that point onward.

3) Broadcast Agent: One of the cornerstones of SMC is
the pair-wise exchange of masked data between the Par-
ties involved in the computations. While this works well
in a 2-party scenario, the performance can get worse with
an increase in the number of Parties, which is a plausible
explanation for why most existing SMC implementations only
have few parties. In Lynx we have introduced a “bulletin
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board” functionality referred to as the Broadcast Agent. It is
a dummy server which relays public messages to all Parties.
The principal benefit of using the Broadcast Agent is to reduce
the number of communication channels (sockets) that need
to be opened, thereby greatly enhancing the efficiency of
the communication. A traditional broadcast protocol would
establish O(m?) sockets among the m parties, while only
O (m) sockets are necessary when a Broadcast Agent is used.

4) Client: The Client is the user that holds the private data
and wants to get predictions from the model. The client secret
shares the input among m Parties, such that none of the
Parties knows the actual input, and receives back the shares
of the predicted value. This way neither Party gets to know
anything about the client’s input or prediction. In the case of
a target-calibrated LR, the target driver acts like a Party while
training the model, and acts like a Client during the inference.

The Broadcast Agent and Trusted Initializer may exist on
one or more servers. The Parties can run on a single or
distributed network. Lynx uses two main architecture patterns:
1) Client-server architecture for all communications of the
parties with the trusted initializer and the Broadcast Agent;
2) Microservices architecture to achieve modularity between
all the SMC protocols. This allows to reuse the protocols and
run them concurrently at different stages of computations. The
Parties jointly compute an ML model (LR in this paper) by
calling the different cryptographic protocols as microservices.
Lynx is designed such that independent computations can hap-
pen in parallel, thus increasing throughput. Finally, we have
created a number of utility protocols in Lynx which help
in batch processing many cryptographic protocols to reduce
communication overhead among parties.

VI. EXPERIMENTAL RESULTS
A. Dataset and Hardware Specifications

We evaluated the implementation of our cryptographic pro-
tocols using the same data and scenarios for detecting driver
drowsiness based on EEG signals as Wu et al. [6]. We used
data from subjects who participated in a 60-90 minutes
sustained-attention driving experiment in a real vehicle
mounted on a motion platform immersed in a 360-degree
virtual-reality scene. To induce drowsiness during driving, the
virtual-reality scenes simulated monotonous driving at a fixed
100 km/h speed on a straight and empty highway. During
the experiment, lane-departure events were randomly applied
every 5-10 seconds, and participants were instructed to steer
the vehicle to compensate for these perturbations as quickly as
possible. 16 voluntary participants of age 24.2 4= 3.7 (10 males
and 6 females) with normal or corrected-to-normal vision were
recruited in this study. Data from one subject was not correctly
recorded, so we used only 15 subjects.

We defined a function [53] to map the recorded response
time 7 to a drowsiness index y € [0, 1]:

y =max {0, (1—e )1+ e_(T_TO))} 4)

79 = 1 was used in this paper, as in [6], [53]. The
drowsiness indices were then smoothed using a 90-second
square moving-average window to reduce variations. This does
not reduce the sensitivity of the drowsiness index because

the cycle lengths of drowsiness fluctuations are longer than
4 minutes [54].

During the experiment, the participants’ scalp EEG signals
were recorded using a 32-channel (30-channel EEGs plus
2-channel earlobes) 500 Hz Neuroscan NuAmps Express
system (Compumedics Ltd., VIC, Australia). Afterwards,
the EEG data was preprocessed and features were extracted,
resulting in a sequence of 1200 epochs for each driver,
in which each epoch is characterized by 30 numerical values
extracted from the EEG signal. For each of the 15 drivers we
therefore have a dataset consisting of 1200 rows, in chrono-
logical order, each consisting of 30 numerical input values and
a response value (the level of drowsiness). For more details
on the preprocessing of the data, we refer to Wu et al. [6].

The experiments documented below were run on a AWS
c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. Each
of the Trusted Initializer, Broadcast Agent, and all Parties ran
on separate machines. Each runtime experiment was repeated
3 times and average results are reported.

B. Results for Target-Independent LR

We train an LR model with data from m source drivers
(Fig. 1) and apply it to make inferences about a new target
subject (Fig. 2). Since each source driver has 1200 rows of
data, the full matrix X from Equation (2) is a (m - 1200) x 30
matrix, while y is a (m -1200) x 1 vector. At no point X and y
are constructed in full. Each source party naturally has a share
of X and y at the outset of the algorithm: a 1200 x 30 matrix
Xp; and a 1200 x 1 vector y,, with the data from driver i.

The first columns of Table I contain runtime results for
training a target-independent LR model with data from m
source drivers, as the number of source drivers increases
from m = 2 up to m = 14. In the clear, i.e. without any
encryption, training is very fast and completes within a fraction
of a second. As expected, training in a PP fashion using
SMC is computationally heavier. The runtime grows with
the number of drivers, because there is more training data
available that needs to be processed, and more parties that
need to communicate and coordinate. Still, as is clear from
Table I, an increase in the number of parties has a moderate
impact on the runtime, demonstrating that the implementation
in Lynx of the PP protocol for training a LR regression model
is scalable.

Next we evaluate the predictive accuracy of the trained
target-independent LR models. To this end, we treat driver 15,
which was not used for training the models in Table I as the
target driver. We use the trained models to predict the response
value for each of the 1200 rows in the data of the target
driver. In the target-independent scenario, the coefficient vector
B of the trained LR model is kept in a distributed fashion
with each of the m source parties involved in the training.
Making PP predictions with the trained model is therefore an
m-party SMC problem, the runtime of which grows with m,
as shown in the “Inference” columns in Table I. The RMSE
(Root Mean Square Error) for those predictions is reported in
the last column of Table I. We obtained the same RMSE in
the clear as when computing over encrypted data, highlighting
that there is no accuracy loss when computing in a PP way.
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TABLE |
RESULTS FOR TRAINING AND INFERENCE IN THE TARGET-
INDEPENDENT LR SCENARIO WITH AN INCREASING
NUMBER OF PARTIES (DRIVERS)

Training Inference
Runtime (sec) Runtime (sec) RMSE

# of parties | In the clear SMC | In the clear | SMC
2 0.10 48.51 0.004 2.82 0.051
3 0.15 71.55 0.004 3.25 0.050
4 0.22 | 10691 0.004 3.81 0.043
5 0.28 | 132.24 0.004 4.43 0.087
6 0.35 | 153.90 0.004 4.98 0.129
7 042 | 171.87 0.004 5.73 0.106
8 0.46 | 201.26 0.004 6.46 0.090
9 0.49 | 225.58 0.004 7.03 0.082
10 0.51 | 245.74 0.004 791 0.074
11 0.52 | 280.96 0.004 8.42 0.071
12 0.53 | 299.11 0.004 9.12 0.071
13 045 | 328.67 0.004 | 10.03 0.055
14 0.43 | 350.39 0.004 | 10.08 0.048

TABLE Il

RESULTS FOR THE TARGET-CALIBRATED LR SCENARIO. THE iTH Row
IN THE TABLE CONTAINS THE RESULTS ABOUT THE LR MODEL
TRAINED WITH 1200 Rows OF DATA FROM THE i-TH DRIVER
(i=1,...,14) CoMBINED WITH 100 Rows OF
CALIBRATION DATA FROM DRIVER 15

Training Inference
Runtime (sec) Runtime (sec) RMSE

Source party id | In the clear | SMC | In the clear | SMC
1 0.06 | 51.23 0.004 2.61 0.114
2 0.06 | 51.95 0.003 2.68 0.045
3 0.06 | 51.95 0.003 2.67 0.145
4 0.06 | 51.88 0.004 2.71 0.055
5 0.06 | 51.62 0.003 2.71 0.086
6 0.06 | 51.41 0.003 2.64 0.097
7 0.06 | 51.57 0.004 2.65 0.062
8 0.06 | 51.49 0.003 2.64 0.045
9 0.07 | 52.06 0.004 2.62 0.066
10 0.06 | 51.92 0.003 2.64 0.078
11 0.06 | 51.83 0.003 2.66 0.057
12 0.06 | 52.31 0.003 2.68 0.194
13 0.06 | 51.45 0.003 2.61 0.186
14 0.06 | 51.50 0.003 2.65 0.053
All 0.07 | 52.00 0.008 2.89 0.048

C. Results for Target-Calibrated LR

In the target-calibrated LR scenario, m LR models are
trained (Fig. 3). For each LR model, the matrix X @ consists
of the 1200 rows from the ith source driver, followed by the
first 100 rows of the target driver, which we use as calibration
data. This means that each X is a 1300 x 30 matrix, for
i =1,...,m. Similarly, each y¥ is a 1300 x 1 vector.

Table II present the runtimes for training target-calibrated
regression models with calibration data from a target driver (in
this case, driver 15) combined with data from one of the source
drivers. Since training each regression model only involves
two parties (the target and one of the source drivers), this
is a 2-party computation. As shown in Table I, the average
runtime for training a regression model with two parties is
around 51.73 sec. As all 14 models can be trained in parallel,
the training time to learn the entire target-calibrated model is
approximately 52 sec. We evaluate the predictive accuracy of
the trained target-calibrated LR models when predicting the
response value for each of the remaining 1100 rows in the
data of the target driver, i.e. the rows that were not used as
calibration data. The RMSE for those predictions is reported
in the last column of Table II, along with the time needed to

make those predictions. The final prediction is computed as
the average of the predictions of all m = 14 LR models. In
the SMC based approach, an additional time of 0.24 sec is
required for all parties to mask their prediction shares, to send
the masked prediction shares to the target party, to send the
mask to one of the parties, and to allow the target party to
compute the final result (cfr. step 4 to 6 in Section IV-D). The
time on average to make a prediction for the 1100 rows of a
target driver is 0.008 sec when done in the clear, i.e. without
encryption, and 2.65+40.24 i.e 2.89 sec when done in a PP way
using SMC. The RMSE is the same whether the predictions
are made with full exposure of the EEG data or in private.

VIl. CONCLUSION

This work presented the first application of commodity-
based SMC for privacy-preserving processing of EEG data,
as well as the largest documented experiment of secret shar-
ing based SMC in general, with 15 players involved in
all the computations. We proposed algorithms for PPLR in
a target-independent as well as a target-calibrated scenario.
We have implemented these algorithms in Lynx, a new SMC
framework that we created to enable efficient SMC among
many parties. The runtime results of our experiments for pre-
dicting driver drowsiness show that our LR protocols and their
implementation scale very nicely with an increasing number
of drivers involved in the computations, and that the privately
trained LR models are as accurate as those trained in the clear,
i.e. without any encryption. Our work shows that additive
secret sharing based SMC is a viable mechanism for protecting
the privacy of users in future brain-computer interface applica-
tions. However, our running times were obtained using power-
ful machines and much work is needed to make these protocols
practical in constrained computing devices. Interesting future
research directions include: (i) to design protocols that work
for more restrictive adversarial models (such as fully malicious
or covert) and (ii) to improve communication, computational
and round complexities for our protocols.
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