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Abstract In this paper, we study four projection-based normalization models and
a decision-making method for probabilistic linguistic multi-criteria decision-making
problems, in which the assessment information about an alternative with respect to
a criterion is incomplete and the criteria weight values are not precisely known but
the ranges are available. To apply the projection to the probabilistic linguistic envi-
ronment, we propose the equivalent expression forms of the probabilistic linguistic
term sets, and then the equivalent transformation functions between the probabilistic
linguistic term set and its associated vector are presented to realize the conversion
between the operations on the probabilistic linguistic term sets and the operations on
their associated vectors. Next, the projection formulas of the probabilistic linguistic
term sets are introduced to build different normalization models for different types of
uncertain probabilistic linguistic multi-criteria decision-making problems. After that,
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a new deviation degree formula is proposed to account for the rationality and validity
of the normalization models from the theoretical perspective. Finally, the probabilistic
linguistic two-step method is used to determine the criteria weights values and rank
the alternatives, and the validity of these projection-based normalization models and
our proposed decision-making method are illustrated by a case about the performance
assessment of data hiding techniques.

Keywords Probabilistic linguistic term set · Projection · Normalization model ·
Decision-making method · Data hiding

1 Introduction

Since the probabilistic linguistic term set (PLTS) was put forward by Pang et al. (2016)
to preserve all the original linguistic information provided by the decision-makers
(DMs), many achievements have been made on PLTSs. These results can be divided
into three categories: (1) The basic operations for PLTSs, such as the operational
laws (Pang et al. 2016; Gou and Xu 2016; Yue et al. 2020), distance measures (Lin
et al. 2019; Lin and Xu 2018), possibility degree formulas (Feng et al. 2019), and
probabilistic linguistic preference relations (Gao et al. 2019; Song and Hu 2019). (2)
The extension of the PLTS, for example, the probabilistic uncertain linguistic term sets
(Lin et al. 2018) and the interval-valued probabilistic linguistic term sets (Bai et al.
2018). (3) The methods for solving the probabilistic linguistic multi-criteria decision
making (PL-MCDM) problems (Liao et al. 2017, 2019; Liu and Teng 2019; Wu et al.
2018). PLTSs have achieved very good results in applications such asmodernmedicine
(Pan et al. 2018), edge computing (Lin et al. 2018), water security evaluation (Zhang
et al. 2018b), etc.

In PL-MCDM problems, the DMs are asked to offer their assessment information
in the form of PLTS. However, in the practical PL-MCDM problems, two uncertain
situations may arise due to unfamiliar with the decision-making problems or other
reasons. The first one is that the PLTS we obtained is incomplete, that is, the sum of
the probabilities of all possible linguistic terms in a PLTS is less than 1. For instance,
when the DMs assess the robustness of the LSB (Least Significant Bits) technique
which is a highly professional decision-making problem, 50% of the DMs think that
the robustness of the LSB technique is “rather poor”, 20% of the DMs hold that it
is “fairly good”, and the others do not supply any assessment information due to the
professionalism and the complexity of this problem. Thus, the assessment information
weobtained is {rather poor(0.5), f airly good(0.2)},which is aPLTS.And thePLTS
we obtained is incomplete as the sumof the probabilities of all possible linguistic terms
in the above PLTS is less than 1. The second one is that the criteria weights values
are not precisely known but the ranges are available. Furthermore, a decision-making
team can be composed of one DM or multiple DMs, thus the PL-MCDM problems
based on double information under imperfect conditions can be divided into two types:
the uncertain single DM PL-MCDM problems and the uncertain multiple DMs PL-
MCDMproblems. Commonly, these two uncertain PL-MCDMproblems appear in our
daily lives. Therefore, in this paper, we mainly investigate the methods to supplement
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the incomplete assessment information and determine the exact values of the criteria
weights.

For the incomplete PLTS in the uncertain PL-MCDM problems, it needs to be
normalized at the beginning of the decision-making processes. Up to now, two major
normalization approaches have been proposed. The normalization method proposed
by Pang et al. (2016) is the most commonly used in the uncertain PL-MCDM prob-
lems. This normalization method assigns the ignorance to all linguistic terms that are
provided by DMs via using the simple arithmetic mean method but neglects the influ-
ence of the ignorance on the remaining linguistic terms in the linguistic term set (LTS)
except those that appear in PLTS. For example, let PL(p) = {l3(0.25), l5(0.1)} be
a PLTS on LTS ˜L = {l0, l1, . . . , l6}, then we obtain the normalization of the PLTS

PL(p) is PL∗(p) =
{

l3
( 0.25
0.25+0.1

)

, l5
( 0.1
0.25+0.1

)

}

= {l3(0.7), l5(0.3)
}

via using this

normalization method. But from the above calculation process, we find that the possi-
bilities of the linguistic terms l0, l1, l2, l4 and l6 in LTS ˜L that do not appear in PLTS
PL(p) are not considered in the normalization process. Therefore, the disadvantage
of this normalization method (Pang et al. 2016) is that it does not take into account the
possibilities of the remaining linguistic terms in LTS except those that appear in PLTS.
Furthermore, through the combination rule of the evidence theory, Ma et al. (2018)
constructed a nonlinear model to cope with the incomplete assessment information as
another normalization method. But this normalization method is only suitable for the
uncertain multiple DMs PL-MCDM problems. In short, these two existing normal-
ization methods both have certain limitations, and the normalized results derived by
these two normalization methods may deviate from the true opinions of the DMs.

For the criteria weights values that are not precisely known but the ranges are
available, many classical methods have been proposed. Xu (2004) proposed a series of
methods to determine the criteria weights values for the multi-criteria decisionmaking
(MCDM) problems, such as the maximum deviation method based on the deviation
degree and the possibility degree (Xu 2001), the classical two-step method (Xu 2002),
etc. Zhang et al. (2018b) developed a programming model to calculate the attributes
weights for the water security issue under the probabilistic linguistic circumstance.
Wu and Liao (2018) introduced an integrated weight-determining method for the
uncertain PL-MCDM problems where the criterion weight information is completely
unknown. Furthermore, for the uncertain PL-MCDM problems where the criterion
weight information is completely unknown or partially known, Pang et al. (2016)
proposed a single-objective optimization model based on the maximizing deviation
method to determine the criteria weights. However, there is little research on the
weight-determining method for the uncertain PL-MCDM problems where the criteria
weights values that are not precisely known but the ranges are available.

To improve the accuracy of the normalization method, different types of the uncer-
tain PL-MCDMproblems should employ different ways to normalize their incomplete
PLTSs. For example, for the uncertain single DM PL-MCDM problems, the normal-
izationmethod of the incomplete PLTS should not only consider the possibilities of the
remaining linguistic terms in LTS except those that appear in PLTS but also consider
the individual similarity degree between the PLTS and its normalization as much as
possible. But for the uncertain multiple DMs PL-MCDM problems, the group simi-
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larity degree is an important feature, so the normalization method of the incomplete
PLTSs in these problems should consider the probabilities of the remaining linguistic
terms in LTS and the group similarity degree simultaneously, then each normalized
PLTS derived by this method will be closer to the true assessment information and can
reduce the outliers to some extent. Therefore, in consideration of the possibilities of
the remaining linguistic terms in LTS except those that appear in PLTS, the individual
similarity degree and the group similarity degree can make the normalized PLTSmore
consistent with the true assessment information, thereby improving the accuracy of
the normalization method. However, most of the current articles (Lin and Xu 2018;
Liao et al. 2017; Zhang et al. 2018b) all adopt the normalization method introduced
in Pang et al. (2016), and these pieces of literature are not separately normalizing
the incomplete PLTSs according to the different types of the uncertain PL-MCDM
problems. Therefore, it is necessary to study the different normalization methods for
incomplete PLTSs in the different types of the uncertain PL-MCDM problems.

The projection proposed by Xu (2004) is calculated based on the product of the
module sizes of any two vectors having the same dimension and the angle cosine
between these two vectors. Since the projection takes into account the modules and
the directions of two vectors, the similarity degree between two vectors can be fully
reflected, and the calculation of the projection is easy to perform on the computer.
Therefore, Zhang et al. (2018a) proposed to apply the projection to solve the uncertain
PL-MCDM problems. However, the above projection-based method is used to deter-
mine the criteria weights, and the projection has not been applied to normalize the
incomplete PLTS in the uncertain PL-MCDM problems. Thus, this paper proposes the
projection-based models to normalize the incomplete PLTS. Furthermore, the main
idea of the classical two-step method (Xu 2002) is to local optimization firstly, and
then recombination weighting. So it is a very effective method for determining the
criteria weights values in the MCDM problems where the criteria weights values that
are not precisely known but the ranges are available, but in the probabilistic linguistic
environment, there is still a gap in the application of this method.

Based on the above analyses, the contributions of this paper are highlighted as
follows:

(1) To properly apply the projection to different types of the uncertain PL-MCDM
problems, we present the equivalent expression forms of the PLTSs on LTSs ˜L and ̂L ,
and then the equivalent transformation functions between the PLTS and its associated
vector are proposed to perform the conversion between the operations on the PLTSs
and the operations on their associated vectors.

(2) After introducing the projection formulas of the PLTSs on LTSs˜L and̂L , differ-
ent normalization models are proposed for different types of the uncertain PL-MCDM
problems. And a new deviation degree formula is given to illustrate the projection-
based normalization models from the view of theory, which can effectively normalize
the incomplete PLTSs in these uncertain PL-MCDM problems.

(3) We propose the probabilistic linguistic two-step method to solve the uncertain
PL-MCDMproblemswhere the criteria weights values are not precisely known but the
ranges are available, and then the alternatives are sorted via using this decision-making
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method. This can enrich the weight-determining method for the uncertain PL-MCDM
problems, in which the criteria weights are given in the form of intervals.

The rest of this paper is organized as follows: In Sect. 2, we look back to some
basic concepts that need to be used. In Sect. 3, we introduce some new definitions
about the PLTSs, such as the equivalent expression forms of the PLTSs, the equivalent
transformation functions between the PLTS and its associated vector, the projection
formulas of the PLTSs, and a new deviation degree formula. With the projection for-
mulas of the PLTSs, four projection-based normalization models and the probabilistic
linguistic two-stepmethod are proposed to solve the uncertain PL-MCDMproblems in
Sect. 4. A case study about the performance assessment of the data hiding techniques
is carried out to illustrate the rationality and validity of our proposed approaches in
Sect. 5. In Sect. 6, some comparative analyses are made on the normalization models
and the decision-making method. The paper finishes in Sect. 7 with some conclusions
and the directions for future studies.

2 Preliminaries

In this section, we first introduce the classical two-step method and then review some
basic concepts related to the LTSs and the PLTSs that need to be used.

2.1 The classical two-step method

The classical two-step method first proposed by Xu (2002) is a simple and objective
method for determining criteria weights values and ordering the alternatives. Suppose
that the MCDM problem contains a set of alternatives Ψ = {ψ1, ψ2, . . . , ψn

}

, a set

of criteria � = {θ1, θ2, . . . , θm
}

with the weight vector Ω = (ω1, ω2, . . . , ωm
)�,

where ωi ∈ [αi , βi ] ⊆ [0, 1],∑m
i=1 ωi = 1, αi and βi are the lower and upper bounds

of ωi , respectively. Then the assessment value ai j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n)

of the alternative ψ j with respect to a criterion θi can be obtained, and the compre-
hensive criterion value of the alternative ψ j is z j = ∑m

i=1 ωi ai j ( j = 1, 2, . . . , n).
The large the comprehensive criterion value z j is, the optimal the alternative ψ j will
be. Finally, the decision matrix which consists of all assessment values provided by
DMs can be constructed as A = (ai j )m×n . The classical two-step method consists of
two main steps: calculating the optimal criterion weight vector of each alternative and
determining the normalized combined weight vector. In summary, the algorithm of
the classical two-step method is presented as follows:

Algorithm 1: (The classical two-step method)
Step 1.Normalize the decision matrix A = (ai j )m×n, and the normalized decision

matrix denoted as R = (ri j )m×n.

Step 2.Determine the optimal criterion weight vectorΩ j = (ω j
1 , ω

j
2 , . . . , ω

j
m
)�

( j
= 1, 2, . . . , n) of each alternative via solving the linear model (LP1):

(LP1) max z j =
m
∑

i=1

ω
j
i ri j
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s.t.

⎧

⎨

⎩

ω
j
i ∈ [αi , βi ] ⊂ [0, 1],
m
∑

i=1
ω

j
i = 1.

Then the weight matrix W = (�1,�2, . . . ,�n) can be obtained.
Step 3. Calculate the eigenvector η corresponding to the maximum eigenvalue of

the matrix (W�R)(W�R)�, then the normalized combined weight vector is �∗ =
Wη = (ω∗

1, ω
∗
2, . . . , ω

∗
m)�, where

∑m
i=1 ω∗

i = 1.
Step 4. Calculate the comprehensive criterion value z∗j of the alternative ψ j via

formula z∗j =∑m
i=1 ω∗

i ri j ( j = 1, 2, . . . , n).
Step 5. Use the comprehensive criterion value to rank the alternatives.
Step 6. End.

2.2 The linguistic term sets

In the actual decision-making processes, DMs are likely to give their assessment
information via using linguistic terms, such as “good”, “very good” or “bad”, since the
complexity and uncertainty of the objective things and the fuzziness of human thinking.
As the basis of linguistic decision-making, the linguistic term set (LTS) has achieved
many studies. Up to now, there are two additive LTSs are used widely. The first one
is ˜L = {l0, l1, . . . , lδ

}

, where the subscripts are all non-negative integers. The second
most popular LTS is ̂L = {lt | t = −δ, . . . ,−1, 0, 1, . . . , δ

}

, which is a subscript-
symmetric additive LTS. Meanwhile, some other LTSs have been developed as well.
For instance, unbalanced additive LTS (Dai et al. 2008), unbalanced multiplicative
LTS (Xu 2010), and so on. Different LTSs have different application environments,
and in general, each LTS contains the linguistic term “indifference”. For example,
for evenly distributed linguistic terms which are used for assessment, the LTS ˜L =
{

l0, l1, . . . , lδ
}

is very suitable for tackling the situation where all the linguistic terms
are on the same side of the linguistic term “indifference”, but if all the linguistic
terms are on the opposite side of the linguistic term “indifference”, the LTS ̂L =
{

lt | t = −δ, . . . ,−1, 0, 1, . . . , δ
}

will be more appropriate. In the following, the
research content of this paper is mainly based on these two LTSs ˜L and ̂L .

2.3 The probabilistic linguistic term sets

Concerning the shortcoming of the hesitant fuzzy linguistic term set (HFLTS)
(Rodríguez et al. 2012) which cannot express the true probability of each possible lin-
guistic term, Pang et al. (2016) proposed the probabilistic linguistic term set (PLTS),
which consists of all possible linguistic terms and their corresponding probabilities.
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Definition 1 (Pang et al. 2016) The probabilistic linguistic term set (PLTS) PL(p)
on LTS ˜L = {l0, l1, . . . , lδ

}

can be defined as:

PL(p) =
{

l(k)
(

p(k)
)

∣

∣

∣ l(k) ∈ ˜L, p(k) ≥ 0, k = 1, 2, . . . , #PL(p),
#PL(p)
∑

k=1

p(k) ≤ 1

}

,

and the PLTS PL(p) based on the LTS ̂L = {lt | t = −δ, . . . ,−1, 0, 1, . . . , δ
}

can
be expressed as:

PL(p) =
{

l(k)
(

p(k)
)

∣

∣

∣ l(k) ∈ ̂L, p(k) ≥ 0, k = 1, 2, . . . , #PL(p),
#PL(p)
∑

k=1

p(k) ≤ 1

}

.

where the probabilistic linguistic term element (PLTE) l(k)(p(k)) consists of the lin-
guistic term l(k) and its associated probability p(k), and #PL(p) is the cardinality of
the PLTS PL(p).

Besides, for themultipleDMsPL-MCDMproblems,WuandLiao (2018) developed
an aggregation formula to integrate the assessments provided by multiple DMs to a
group assessment.

Definition 2 (Wu and Liao 2018) Given a set of DMs D = {d(q) | q = 1, 2, . . . , Q
}

whose weight vector is
(

γ (1), γ (2), . . . , γ (Q)
)�(∑Q

q=1 γ (q) = 1
)

and the LTS is L

(L may be ˜L , ̂L or some other LTS). Suppose that the assessment of the alternative
ψ j with respect to a criterion θi given by DM d(q) is

PL(q)
i j (p) =

{

l(q)

(k)

(

p(q)

(k)

)

∣

∣

∣ l
(q)

(k) ∈ L , p(q)

(k)

≥ 0, k = 1, 2, . . . , #PL(q)
i j (p),

#PL(q)
i j (p)
∑

k=1

p(q)

(k) ≤ 1

}

,

and the number of all different linguistic terms in PL(1)
i j (p), PL(2)

i j (p), . . . , PL(Q)
i j (p)

is K . Then the group assessment expressed in PLTS is

PLi j (p) =
{

l(k)
(

p(k)
)

∣

∣

∣ l(k) ∈ L , k = 1, 2, . . . , K , p(k) =
Q
∑

q=1

ξ
(q)

(k) γ (q)

}

,

where ξ
(q)

(k) is the probability of the linguistic term l(q)

(k) in PL(q)
i j (p) and

ξ
(q)

(k) =
{

p(q)

(k) if l(q)

(k) ∈ PL(q)
i j (p),

0 otherwise.
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3 Some new definitions of the PLTSs

In this section, we firstly introduce the equivalent expression forms of the PLTSs on
the LTSs ˜L and ̂L . Then, based on these equivalent expression forms, the equivalent
transformation functions between the PLTS and its associated vector are proposed to
realize the conversion between the operations on the PLTSs and the operations on their
associated vectors. Finally, the projection formulas of the PLTSs on the LTSs ˜L and
̂L are developed and to accurately measure the deviation degree between the PLTSs,
a new deviation degree formula for the PLTSs is developed.

3.1 The equivalent expression forms of the PLTSs

For the PLTS given above, if each PLTE in the PLTS is considered to be one dimension,
then different PLTSs may have different dimensions. However, the premise of the
projection operation is two vectors having the same dimension, so before converting
PLTSs having different dimensions into vectors having the same dimension, the PLTSs
having different dimensions must be equivalently converted into PLTSs having the
same dimension. To do this, we present the equivalent expression forms of the PLTSs
on the LTSs ˜L and ̂L as follows.

Definition 3 Let PL(p) be a PLTS on LTS ˜L = {l0, l1, . . . , lδ
}

, then its equivalent
expression form is defined as:

˜PL(p) =
{

l(k−1)
(

p̃(k)
)

∣

∣

∣ p̃(k) ≥ 0, k = 1, 2, . . . , δ + 1,
δ+1
∑

k=1

p̃(k) ≤ 1

}

,

where p̃(k) = p(k) if l(k−1)(p(k)) ∈ PL(p), otherwise, p̃(k) = 0.

And for the PLTS based on the LTS ̂L , we develop its equivalent expression form
as follows.

Definition 4 Let PL(p) be a PLTS on LTS ̂L = {lt | t = −δ, . . . ,−1, 0, 1, . . . , δ
}

,
then its equivalent expression form can be defined as:

̂PL(p) =
{

l(k−δ−1)
(

p̂(k)
)

∣

∣

∣ p̂(k) ≥ 0, k = 1, 2, . . . , 2δ + 1,
2δ+1
∑

k=1

p̂(k) ≤ 1

}

,

where p̂(k) = p(k) if l(k−δ−1)(p(k)) ∈ PL(p), otherwise, p̂(k) = 0.

Remark 1 Compared by the expressions of the PLTSs in Definition 1, we can see that
the above two equivalent expression formsof thePLTSshave the following advantages:

(1) For any two PLTSs on the same LTS, their equivalent expression formswill have
the same linguistic terms and the probabilities of all linguistic terms in the original
PLTSs are consistent before and after the change of expression forms. Therefore, the
equivalent representation of PLTSs did not change the initial evaluation information
given by DMs.
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(2) The equivalent expression forms of PLTSs can eliminate the influence of dif-
ferent dimensions, thereby avoiding the difficulties caused by different dimensions in
the future.

3.2 The equivalent transformation functions of the PLTSs

Based on the equivalent expression forms of the PLTSs onLTSs˜L and̂L , the equivalent
transformation functions developed below canmap the PLTSs into a high-dimensional
space and obtain their associated vectors with the same dimension, so that the conver-
sion can be implemented between the PLTS and its associated vector v.

Definition 5 Suppose ˜PL(p) =
{

l(k−1)
(

p̃(k)
) ∣

∣ p̃(k) ≥ 0, k = 1, 2, . . . , δ +
1,
∑δ+1

k=1 p̃(k) ≤ 1
}

is the equivalent expression form of the PLTS PL(p) on LTS

˜L = {l0, l1, . . . , lδ
}

, and its associated vector is v = (v1, v2, . . . , vδ+1
)

. Then
l(k−1)

(

p̃(k)
)

and vk can be transformed into each other by the functions σ and σ−1

given as:

σ :˜PL(p) → v

l(k−1)
(

p̃(k)
) 
→ σ

(

l(k−1)
(

p̃(k)
)

)

= k

δ + 1
p̃(k) = vk,

σ−1 : v →˜PL(p)

vk 
→ σ−1(vk) = l(k−1)

(δ + 1

k
vk

)

.

Thus, for a PLTS PL(p) on LTS ˜L , its associated vector v =
(

1
δ+1 p̃(1),

2
δ+1 p̃(2), . . . ,

δ
δ+1 p̃(δ), p̃(δ+1)

)

can be obtained via Definitions 3 and 5.

Similarly, the equivalent transformation functions between the PLTS on LTŜL and
its associated vector v are given below.

Definition 6 Suppose ̂PL(p) =
{

l(k−δ−1)
(

p̂(k)
) ∣

∣ p̂(k) ≥ 0, k = 1, 2, . . . , 2δ +
1,
∑2δ+1

k=1 p̂(k) ≤ 1
}

is the equivalent expression form of the PLTS PL(p) on LTS

̂L = {lt
∣

∣ t = −δ, . . . ,−1, 0, 1, . . . , δ
}

, and v = (v1, v2, . . . , v2δ+1
)

is the associated
vector of the PLTS PL(p). Then l(k−δ−1)

(

p(k)
)

and vk can be transformed into each
other by the functions ρ and ρ−1 given as:

ρ :̂PL(p) → v

l(k−δ−1)
(

p̂(k)
) 
→ ρ

(

l(k−δ−1)
(

p̂(k)
)

)

= 2k − 2δ − 3

4δ + 2
p̂(k) = vk,

ρ−1 : v →̂PL(p)

vk 
→ ρ−1(vk) = l(k−δ−1)

( 4δ + 2

2k − 2δ − 3
vk

)

.
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Therefore, the associated vector v =
(−1−2δ

4δ+2 p̂(1),
1−2δ
4δ+2 p̂(2), . . . ,

2δ−3
4δ+2 p̂(2δ),

2δ−1
4δ+2 p̂(2δ+1)

)

of the PLTS PL(p) on LTS ̂L can be obtained according to Defini-

tions 4 and 6.
After that, the operations on the PLTSs based on LTS ˜L or ̂L and the operations on

their associated vectors can be converted by these equivalent transformation functions.

3.3 The projection formulas of the PLTSs

Since the projection formula is given based on any two vectors with the modules and
the angle between them, and the PLTS is given in the form of a set, the PLTSs must
be converted to their associated vectors according to the Definitions 3–6 before giving
their projection formulas. To express simply these projection formulas, we use the
projection formulas of their associated vectors to represent the projection formulas
of these two PLTSs in this paper. Thus the projection formulas of the PLTSs on LTS
˜L = {l0, l1, . . . , lδ

}

can be defined as follows.

Definition 7 Suppose ˜PL1(p) and ˜PL2(p) are the equivalent expression forms

of the PLTSs PL1(p) and PL2(p) on LTS ˜L , v1 =
(

1
δ+1 p̃1(1),

2
δ+1 p̃1(2), . . . ,

δ
δ+1 p̃1(δ), p̃1(δ+1)

)

and v2 =
(

1
δ+1 p̃2(1),

2
δ+1 p̃2(2), . . . ,

δ
δ+1 p̃2(δ), p̃2(δ+1)

)

are their

associated vectors, respectively. Then the cosine formula related to the PLTSs PL1(p)
and PL2(p) is defined as follows:

cos θ = cos
〈

v1, v2
〉 = v1v2

|v1||v2| =
∑δ+1

k=1

(

k
δ+1

)2
p̃1(k) p̃2(k)

√

∑δ+1
k=1

(

k
δ+1 p̃1(k)

)2 ×
√

∑δ+1
k=1

(

k
δ+1 p̃2(k)

)2
,

where |v1| and |v2| are the modules of vectors v1 and v2 respectively, and v1v2 is the
inner product of two vectors v1 and v2.

Therefore, the projection formula of the PLTS PL1(p) on the PLTS PL2(p) (see
Fig.1) is:

Prjv2(v1) = |v1| cos θ = v1v2

|v2|

=
( δ+1
∑

k=1

( k

δ + 1

)2
p̃1(k) p̃2(k)

)

/

√

√

√

√

δ+1
∑

k=1

( k

δ + 1
p̃2(k)
)2

,

and the projection formula of the PLTS PL2(p) on the PLTS PL1(p) (see Fig.2) is:

Prjv1(v2) = |v2| cos θ = v1v2

|v1| =
( δ+1
∑

k=1

( k

δ + 1

)2
p̃1(k) p̃2(k)

)/

√

√

√

√

δ+1
∑

k=1

( k

δ + 1
p̃1(k)
)2

.
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Fig. 1 The projection of the
PLTS PL1(p) on PL2(p)

Fig. 2 The projection of the
PLTS PL2(p) on PL1(p)

Obviously, the greater the values of Prjv2(v1) andPrjv1(v2), the smaller the deviation
degree between the PLTSs PL1(p) and PL2(p) on LTS ˜L .

Similarly, the projection formulas of the PLTSs on LTS ̂L = {

lt | t =
−δ, . . . ,−1, 0, 1, . . . , δ

}

are given as follows.

Definition 8 SupposêPL1(p) and̂PL2(p) are the equivalent expression forms of the

PLTSs PL1(p) and PL2(p)onLTŜL ,v1 =
(−1−2δ

4δ+2 p̂1(1),
1−2δ
4δ+2 p̂1(2), . . . ,

2δ−3
4δ+2 p̂1(2δ),

2δ−1
4δ+2 p̂1(2δ+1)

)

and v2 =
(−1−2δ

4δ+2 p̂2(1),
1−2δ
4δ+2 p̂2(2), . . . ,

2δ−3
4δ+2 p̂2(2δ),

2δ−1
4δ+2 p̂2(2δ+1)

)

are

their associated vectors, respectively. Then the cosine formula related to the PLTSs
PL1(p) and PL2(p) is defined as:

cos θ = cos
〈

v1, v2
〉 =

∑2δ+1
k=1

(

2k−2δ−3
4δ+2

)2
p̂1(k) p̂2(k)

√

∑2δ+1
k=1

(

2k−2δ−3
4δ+2 p̂1(k)

)2 ×
√

∑2δ+1
k=1

(

2k−2δ−3
4δ+2 p̂2(k)

)2
.

Therefore, the projection formula of the PLTS PL1(p) on the PLTS PL2(p) is:

Prjv2(v1) = |v1| cos θ

= v1v2

|v2| =
( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2

)2
p̂1(k) p̂2(k)

)/

√

√

√

√

2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2
p̂2(k)
)2

,

and the projection formula of the PLTS PL2(p) on the PLTS PL1(p) is:

Prjv1(v2) = |v2| cos θ

= v1v2

|v1| =
( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2

)2
p̂1(k) p̂2(k)

)/

√

√

√

√

2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2
p̂1(k)
)2

.

Obviously, the greater the values of Prjv2(v1) andPrjv1(v2), the smaller the deviation
degree between the PLTSs PL1(p) and PL2(p) on LTS ̂L .
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To accurately measure the deviation degree between two PLTSs, in what follows,
we develop a new deviation degree formula for the PLTSs.

3.4 The new deviation degree formula for the PLTSs

For two PLTSs PL1(p) and PL2(p) with exactly the same linguistic terms, and the
probabilities of each corresponding two linguistic terms in PL1(p) and PL2(p) are
not all equal to 0, below a new deviation degree formula is given to reflect the deviation
degree between the these two PLTSs.

Definition 9 Suppose PLTSs PL1(p) = {l(k)(p1(k)) | p1(k) ≥ 0, k = 1, 2, . . . , K ′,
∑K ′

k=1 p1(k) ≤ 1} and PL2(p) = {l(k)(p2(k)) | p2(k) ≥ 0, k = 1, 2, . . . , K ′,
∑K ′

k=1 p2(k) ≤ 1} have the same linguistic terms on the same LTS, and the proba-
bilities of each corresponding two linguistic terms in PL1(p) and PL2(p) are not
all equal to 0. Then the deviation degree between the PLTSs PL1(p) and PL2(p) is
defined as:

d
(

PL1(p), PL2(p)
) =
( K ′
∑

k=1

1

K ′
(

ϕ(k)
(

p1(k) − p2(k)
)

)2
)1/2

,

where K ′ is the number of all the different linguistic terms in the PLTSs PL1(p)
and PL2(p), ϕ(k) is the subscript of the linguistic term l(k), p1(k) and p2(k) are the
associated probabilities of the linguistic term l(k) in PL1(p) and PL2(p), respectively.

However, for any two PLTSs PL1(p) and PL2(p) on the same LTS, it is normal
that these two PLTSs have different linguistic terms. For instance, let PL1(p) =
{

l3(0.3), l4(0.2), l5(0.5)
}

and PL2(p) = {l2(0.4), l3(0.6)
}

be two PLTSs. Obviously,
the linguistic terms l4 and l5 in PL1(p) do not appear in PL2(p), and the linguistic
term l2 in PL2(p) is not reflected in PL1(p) as well. Therefore, the linguistic terms
in PLTSs PL1(p) and PL2(p) are not the same. In this case, we have to perform the
following two steps before calculating the deviation degree between these two PLTSs.

(a) Construct a new LTS consisting of all the different linguistic terms that appear
in the PLTS PL1(p) or the PLTS PL2(p).

(b) Add the PLTEs so that the numbers of the PLTEs in these two PLTSs are the
same. For a linguistic term in PL1(p) or PL2(p) that do not appear in the new LTS,
we should add it to PL1(p) or PL2(p) until all linguistic terms in the new LTS can be
found in the PLTSs PL1(p) and PL2(p), and the probability of the added linguistic
term is zero.

Next, calculate the deviation degree between two added PLTSs with the same lin-
guistic terms based on the new LTS via Definition 9. Below we use an example to
demonstrate the calculation processes of this new deviation degree formula.

Example 1 Suppose PL1(p) = {l3(0.25), l5(0.1)
}

, PL2(p) = {l3(0.3), l4(0.1),
l5(0.5), l6(0.1)

}

and PL3(p) = {l3(0.71), l5(0.29)
}

are three PLTSs, then we cal-
culate the deviation degrees d

(

PL1(p), PL2(p)
)

and d
(

PL1(p), PL3(p)
)

.
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(1) It is obviously that the linguistic terms in PLTSs PL1(p) and PL2(p) are not
exactly the same, so for the PLTSs PL1(p) and PL2(p), we need to determine a
new LTS L = {l3, l4, l5, l6} in the first place. Then, the added PLTS PL1(p) on the
new LTS L = {l3, l4, l5, l6

}

is PL ′
1(p) = {l3(0.25), l4(0), l5(0.1), l6(0)

}

and the
added PLTS PL2(p) on the new LTS L = {l3, l4, l5, l6

}

is PL ′
2(p) = PL2(p) =

{

l3(0.3), l4(0.1), l5(0.5), l6(0.1)
}

. Finally, the deviationdegreed
(

PL1(p), PL2(p)
) =

d
(

PL ′
1(p), PL

′
2(p)
) =
(

1
4

(

(3 × (0.25 − 0.3))2 + (4 × (0 − 0.1))2 + (5 × (0.1 −
0.5))2 + (6 × (0 − 0.1))2

)

)1/2 = 1.066.

(2) For the PLTSs PL1(p) and PL3(p) with the identical linguistic terms,
then according to Definition 9, the deviation degree between the PLTSs PL1(p)

and PL3(p) is d
(

PL1(p), PL3(p)
) =

(

1
2

(

(3 × (0.25 − 0.71))2 + (5 × (0.1 −
0.29))2

)

)1/2 = 1.185.

Remark 2 This newdeviation degree formula canmore accurately reflect the deviation
degree between two PLTSs than the deviation degree proposed in Pang et al. (2016).
For example, let PL1(p) = {l1(0.3), l2(0.3)} and PL2(p) = {l2(0.3), l3(0.1)} be
two PLTSs, then the deviation degree between the PLTSs PL1(p) and PL2(p) via
the deviation degree formula proposed in this paper is d

(

PL1(p), PL2(p)
) = 0.245,

while according to the deviation degree introduced in Pang et al. (2016), we obtain
d ′(PL1(p), PL2(p)

) = 0. Obviously, the accuracy of this new deviation degree
formula is relatively high.

From Definition 9, we can find that if the deviation degree between two PLTSs is
smaller, the value of their corresponding similarity degree will be larger. Therefore,
we could use this deviation degree formula to calculate the similarity degrees between
the PLTSs and their normalization forms to show the feasibility and efficiency of the
projection-based normalizationmodels proposed in this paper from the view of theory.

4 The solutions of the PL-MCDM problems based on double
information under imperfect conditions

Since the uncertain single DM PL-MCDM problem is a special case of the uncertain
multiple DMs PL-MCDM problem, in this paper, we mainly study the projection-
based normalization models and the probabilistic linguistic two-step method to tackle
the uncertain multiple DMs PL-MCDM problems, in which multiple DMs are invited
to participate in the evaluation of these problems. And for the convenience of presen-
tation, we only consider the PLTS on LTS ˜L and all PLTEs in the PLTS PL(p) are
arranged according to the subscripts of the linguistic terms in ascending order. First,
wemake the following provisions for the symbols that appear in the uncertain multiple
DMs PL-MCDM problem.
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4.1 Description and symbols clarification of the uncertain multiple DMs
PL-MCDM problem

Suppose that a uncertainmultipleDMsPL-MCDMproblemcontains a set ofDMs D =
{d(q) |q = 1, 2, . . . , Q}whoseweight vector is (γ (1), γ (2), . . . , γ (Q))�(

∑Q
q=1 γ (q) =

1), a set of alternatives � = {ψ1, ψ2, . . . , ψn} and a set of criteria � =
{θ1, θ2, . . . , θm} with the weight vector � = (

ω1, ω2, . . . , ωm
)�, where ωi ∈

[αi , βi ] ⊆ [0, 1],∑m
i=1 ωi = 1,αi andβi are the lower and upper bounds ofωi , respec-

tively. And the assessment of the alternative ψ j with respect to a criterion θi provided

by DM d(q) is denoted as a PLTS PL(q)
i j (p) = {l(q)

(k) (p
(q)

(k) ) | l(q)

(k) ∈ L , p(q)

(k) ≥ 0, k =
1, 2, . . . , #PL(q)

i j (p),
∑#PL(q)

i j (p)

k=1 p(q)

(k) ≤ 1}(i = 1, 2, . . . ,m; j = 1, 2, . . . , n; q =
1, 2, . . . , Q) via using the LTS ˜L = {lt | t = 0, 1, . . . , δ}. Finally, the probabilistic
linguistic decision matrixes which consist of all PLTSs given by each DM can be
constructed as PL(q) = (PL(q)

i j (p))m×n (q = 1, 2, . . . , Q).

4.2 The projection-based normalization models of the PLTSs

Corresponding to the equivalent expression forms of the PLTSs, in the following,
we proposed the normalization forms of the PLTS PL(q)

i j (p)(i = 1, 2, . . . ,m; j =
1, 2, . . . , n; q = 1, 2, . . . , Q).

Definition 10 The normalization of the PLTS PL(q)
i j (p) on LTS ˜L = {l0, l1, . . . , lδ}

is defined by:

˜PL
∗(q)
i j (p) =

{

l(k−1)
(

p∗(q)

i j (k)

)

∣

∣

∣ p
∗(q)

i j (k) ≥ p̃(q)

i j (k), k = 1, 2, . . . , δ + 1,
δ+1
∑

k=1

p∗(q)

i j (k) = 1

}

,

and the normalization of PL(q)
i j (p) on LTS ̂L = {lt | t = −δ, . . . ,−1, 0, 1, . . . , δ

}

can defined as:

̂PL
∗(q)
i j (p) =

{

l(k−δ−1)
(

p∗(q)

i j (k)

)

∣

∣

∣ p
∗(q)

i j (k) ≥ p̂(q)

i j (k), k = 1, 2, . . . , 2δ + 1,

2δ+1
∑

k=1

p∗(q)

i j (k) = 1

}

,

where l(k−1)
(

p̃(q)

i j (k)

) ∈ ˜PL(q)
i j (p), l(k−δ−1)

(

p̂(q)

i j (k)

) ∈ ̂PL(q)
i j (p), ˜PL

(q)
i j (p) is the

equivalent expression form of the PLTS PL(q)
i j (p) on LTS ˜L and̂PL(p) is the equiv-

alent expression form of the PLTS PL(q)
i j (p) on LTS ̂L .

Remark 3 For the PLTS˜PL
∗
(p) which is the normalization of the PLTS PL(p) on

LTS˜L , it can be seen that the probability of each linguistic term in the PLTS˜PL
∗
(p) is

123



Probabilistic linguistic multi-criteria…

Fig. 3 The projections of any
two vectors of three vectors v,
v∗
1 and v∗

2 for the same angle θ

greater than or equal to the probability of the same linguistic term in the PLTS PL(p).
Therefore, the modular of the associated vector v∗ of the PLTS PL∗(p) must be not
less than the modular of the associated vector v of the PLTS PL(p), in other words,
|v| ≤ |v∗|. Besides, for the LTS ̂L , the above results are still valid.

Therefore, for an alternativeψ j with respect to a criterion θi , the projection formulas

of the PLTS˜PL
∗(q)
i j (p) and the PLTS PL(p)

i j (p)which is provided byDM d(p)
(

p, q =
1, 2, . . . , Q) are defined as follows:

Prj
v

( p)
i j

(

v
∗(q)
i j

) = ∣∣v∗(q)
i j

∣

∣ cos θ = v
∗(q)
i j v

( p)
i j

∣

∣v
( p)
i j

∣

∣

=
( δ+1
∑

k=1

( k

δ + 1

)2
p∗(q)

i j (k) p̃
(p)
i j (k)

)/

√

√

√

√

δ+1
∑

k=1

( k

δ + 1
p̃(p)
i j (k)

)2
,Prj

v
∗(q)
i j

(

v
( p)
i j

) = ∣∣v( p)
i j

∣

∣ cos θ

= v
∗(q)
i j v

( p)
i j

∣

∣v
∗(q)
i j

∣

∣

=
( δ+1
∑

k=1

( k

δ + 1

)2
p∗(q)

i j (k) p̃
(p)
i j (k)

)/

√

√

√

√

δ+1
∑

k=1

( k

δ + 1
p∗(p)
i j (k)

)2
,

wherev
( p)
i j =

(

1
δ+1 p̃

(p)
i j (1),

2
δ+1 p̃

(p)
i j (2), . . . ,

δ
δ+1 p̃

(p)
i j (δ), p̃

(p)
i j (δ+1)

)

andv
∗(q)
i j =

(

1
δ+1 p

∗(q)

i j (1),

2
δ+1 p

∗(q)

i j (2), · · · , δ
δ+1 p

∗(q)

i j (δ), p
∗(q)

i j (δ+1)

)

are the associated vectors of the PLTSs˜PL
(p)
i j (p)

and˜PL
∗(q)
i j (p).

Obviously, the greater the values of Prj
v

( p)
i j

(

v
∗(q)
i j

)

and Prj
v

∗(q)
i j

(

v
( p)
i j

)

, the smaller the

deviation degree between the PLTSs PL(p)
i j (p) and˜PL

∗(q)
i j (p), that is, the better the

normalized PLTS˜PL
∗(q)
i j (p) is.

However, from Figs. 1 and 2, we find that the projection of the PLTS˜PL
∗(q)
i j (p)

on the PLTS PL(p)
i j (p) is generally unequal to the projection of the PLTS PL(p)

i j (p)

on the PLTS˜PL
∗(q)
i j (p). Therefore, when we construct the normalization model to

reduce the deviation degree between the PLTS PL(q)
i j (p) and its normalization form

˜PL
∗(q)
i j (p), both of these projection formulas need to be taken into account.
Furthermore, for three vectors |v| < |v∗

1 | < |v∗
2 | and the same angle θ (see Fig.3),

the value of Prjv(v
∗) increases as themodular of vector v∗ increases, but the projection

of the PLTS PL(p) on the PLTS˜PL
∗
(p) does not change. At this point, Prjv∗(v) no

longer plays an effective role, and we could replace the Prjv∗(v) with 1
|v∗|Prjv∗(v),
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where 0 ≤ 1
|v∗|Prjv∗(v) ≤ 1. And the greater the value of 1

|v∗|Prjv∗(v), the smaller

the deviation degree between the PLTS PL(p) and the PLTS˜PL
∗
(p), and thus the

better the normalized PLTS ˜PL
∗
(p). Similarly, for the projection formula of the

PLTS PL(p)
i j (p) on the PLTS˜PL

∗(q)
i j (p), we also use 1

∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

instead of

Prj
v

∗(q)
i j

(

v
( p)
i j

)

, and the formula of 1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

is given as follows:

1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

) =
∣

∣v
( p)
i j

∣

∣

∣

∣v
∗(q)
i j

∣

∣

cos θ = v
∗(q)
i j v

( p)
i j

∣

∣v
∗(q)
i j

∣

∣

2

=
( δ+1
∑

k=1

( k

δ + 1

)2
p∗(q)

i j (k) p̃
(p)
i j (k)

)/( δ+1
∑

k=1

( k

δ + 1
p∗(q)

i j (k)

)2
)

.

To reduce the deviation degree between the PLTS PL(q)
i j (p) and its normal-

ization form ˜PL
∗(q)
i j (p) and obtain the optimal normalized PLTS, the values of

Prj
v

( p)
i j

(

v
∗(q)
i j

)

and 1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

should be smaller as much as possible. Based on

this idea, two projection-based normalization models (NLP1) and (NLP2) are estab-
lished as follows to normalize the incomplete PLTS via maximizing Prj

v
( p)
i j

(

v
∗(q)
i j

)

and

1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

.

(NLP1) max
Q
∑

p=1

Prj
v

( p)
i j

(

v
∗(q)
i j

)

=
Q
∑

p,q=1

( δ+1
∑

k=1

( k

δ + 1

)2
p∗(q)

i j (k) p̃
(p)
i j (k)

)/

√

√

√

√

δ+1
∑

k=1

( k

δ + 1
p̃(p)
i j (k)

)2

s.t.

⎧

⎪

⎨

⎪

⎩

δ+1
∑

k=1
p∗(q)

i j (k) = 1,

p̃(q)

i j (k) ≤ p∗(q)

i j (k) ≤ 1, k = 1, 2, . . . , δ + 1.

(NLP2) max
Q
∑

p=1

1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

=
Q
∑

p,q=1

( δ+1
∑

k=1

( k

δ + 1

)2
p∗(q)

i j (k) p̃
(p)
i j (k)

)/( δ+1
∑

k=1

( k

δ + 1
p∗(q)

i j (k)

)2
)
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s.t.

⎧

⎪

⎨

⎪

⎩

δ+1
∑

k=1
p∗(q)

i j (k) = 1,

p̃(q)

i j (k) ≤ p∗(q)

i j (k) ≤ 1, k = 1, 2, . . . , δ + 1.
(1)

Then the probability sets P1(q)
i j =

{

p∗(q)

1(1) , p
∗(q)

1(2) , . . . , p
∗(q)

1(δ+1)

}

and P2(q)
i j =

{

p∗(q)

2(1) , p
∗(q)

2(2) , . . . , p
∗(q)

2(δ+1)

}

of the normalized PLTSs are obtained via solving the

projection-based normalization models (NLP1) and (NLP2), respectively.
However, sometimes P1(q)

i j �= P2(q)
i j , i.e., we may obtain two unequal normalized

PLTSs about one PLTS. To increase the availability and comparability of the nor-
malized PLTSs obtained from the projection-based normalization models (NLP1) and
(NLP2) respectively,we build a single objective non-linear optimizationmodel, named
projection-based normalization model (NLP3), via merging (NLP1) with (NLP2) to
consider the Prj

v
( p)
i j

(

v
∗(q)
i j

)

and 1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

simultaneously.

(NLP3) max
Q
∑

p=1

(

Prj
v

( p)
i j

(

v
∗(q)
i j

)+ 1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

)

s.t.

⎧

⎪

⎨

⎪

⎩

δ+1
∑

k=1
p∗(q)

i j (k) = 1,

p̃(q)

i j (k) ≤ p∗(q)

i j (k) ≤ 1, k = 1, 2, . . . , δ + 1.

Solving the normalization model (NLP3), we obtain the probability set of the PLTS
˜PL

∗(q)
i j (p) is P(q)

i j =
{

p∗(q)

(1) , p∗(q)

(2) , . . . , p∗(q)

(δ+1)

}

, where˜PL
∗(q)
i j (p) is the normaliza-

tion of the PLTS PL(q)
i j (p). Finally, the normalized˜PL

∗(q)
i j (p) can be determined

according to the projection-based normalization model (NLP3).
Compared with the normalization method proposed in Pang et al. (2016), the fol-

lowing example is given to indicate that the projection-based normalization model
(NLP3) is more rational and the normalized result is more accurate.

Example 2 Suppose that three DMs are invited to assess the robustness of the
LSB technique via using the LTS ˜L = {l0 = very bad, l1 = bad, l2 =
rather poor, l3 = f airly good, l4 = good, l5 = very good, l6 = excellent

}

,
and their assessment results are PL(1)(p) = {

l2(0.5), l3(0.2)
}

, PL(2)(p) =
{

l1(0.3), l2(0.4)
}

, PL(3)(p) = {l2(0.4), l3(0.1)
}

. In the following, take the solution
of the normalized PLTS PL(1)(p) as an example.

(1) According to Definitions 3, the equivalent expression forms of the PLTSs
PL(1)(p), PL(2)(p) and PL(3)(p) are
˜PL

(1)
(p) = {

l0(0), l1(0), l2(0.5), l3(0.2), l4(0), l5(0), l6(0)
}

, ˜PL
(2)

(p) =
{

l0(0), l1(0.3), l2(0.4), l3(0), l4(0), l5(0), l6(0)
}

,

˜PL
(3)

(p) = {l0(0), l1(0), l2(0.4), l3(0.1), l4(0), l5(0), l6(0)
}

.
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(2) Let PLTS ˜PL
∗(1)

(p) be the normalization of the PLTS PL(1)(p), then via

Definitions 5 and 10, the associated vectors of the PLTSs˜PL
∗(1)

(p),˜PL
(2)

(p) and
˜PL

(3)
(p) are v∗(1) =

(

1
7 p

∗(1)
(1) , 2

7 p
∗(1)
(2) , 3

7 × 0.5 × p∗(1)
(3) , 4

7 × 0.4 ×
p∗(1)
(4) , 5

7 p
∗(1)
(5) , 6

7 p
∗(1)
(6) , p∗(1)

(7)

)

, v(2) =
(

0, 2
7 × 0.3, 3

7 × 0.4, 0, 0, 0, 0
)

and v(3) =
(

0, 0, 3
7 × 0.4, 4

7 × 0.1, 0, 0, 0
)

.

(3) By solving the normalization model (NLP3), the probability set of the PLTS
˜PL

∗(1)
(p) is P = {0.1, 0.2, 0.5, 0.2, 0, 0, 0}, thus the normalized PLTS PL(1)(p) is

˜PL
∗(1)

(p) = {l0(0.1), l1(0.2), l2(0.5), l3(0.2)
}

.

Similarly, the normalization of the PLTSs PL(2)(p) and PL(3)(p) are˜PL
∗(2)

(p) =
{

l0(0.2), l1(0.3), l2(0.4), l3(0.1)
}

and˜PL
∗(3)

(p) = {l0(0.3), l1(0.2), l2(0.4), l3(0.1)
}

,
respectively.

In addition, according to the normalization method (Pang et al. 2016), the nor-
malization of the PLTSs PL(1)(p), PL(2)(p) and PL(3)(p) are PL∗(1)(p) =
{

l2(0.71), l3(0.29)
}

, PL∗(2)(p) = {l1(0.43), l2(0.57)
}

, PL∗(3)(p) = {l2(0.8), l3(0.2)
}

.

And via Definition 9, we obtain the deviation degree d
(

PL(1)(p),˜PL
∗(1)

(p)
) =

0.100 < d
(

PL(1)(p), PL∗(1)(p)
) = 0.168, d

(

PL(2)(p),˜PL
∗(2)

(p)
) = 0.087 <

d
(

PL(2)(p), PL∗(2)(p)
) =0.137, d

(

PL(3)(p),˜PL
∗(3)

(p)
) = 0.100 < d

(

PL(3)(p),
PL∗(3)(p)

) = 0.296.
Therefore, the projection-based normalization model (NLP3) is more reasonable

and accurate than the normalization method proposed in Pang et al. (2016).

From the above, in thenormalizationprocesses, it is obvious thatwhether to consider
the possibilities of the remaining linguistic terms in LTS except those that appear in
PLTS will result in different normalized results, which will have a certain impact on
the accuracy of the decision-making. As we can see from above, the projection-based
normalization model presented in this paper has the following advantages:

(1) The probability of each linguistic term in the normalized PLTS will not reduce
so that the original probabilistic linguistic assessment information given by the DMs
can be well preserved. In other words, when using the projection-based normalization
model for normalization, the DM’s willingness is maximally unchanged.

(2) The projection-based normalization model can consider the probabilities of
the remaining linguistic terms in LTS except those that appear in PLTS, which can
effectively make up for the lack of information. Therefore, all the linguistic terms in
the LTS can be treated relatively fairly in the normalization processes.

(3) In the normalization processes, since the projection-based normalization model
can simultaneously consider the module sizes and the directions of the associated
vectors, the normalized results obtained by this model are more consistent with the
real assessments provided by the DMs.

From Example 2, we find that the deviation degree between the PLTSs PL(q)(p)

and˜PL
∗(q)

(p) is less than the deviation degree between the PLTSs PL(q)(p) and
PL∗(q)(p)(q = 1, 2, 3). That is to say, the individual similarity degree between the
PLTS and its normalization which is obtained by the projection-based normalization
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model (NLP3) is no less than the individual similarity degree between the PLTS and
its normalization which is derived by the normalization method proposed in Pang et al.
(2016).

(4) Besides, the normalized results derived by this model can maximize the group
similarity degree under the premise that all individual similarity degrees reach the
maximum.

Remark 4 To improve the flexibility of the normalization, corresponding nor-
malization models should be proposed for different types of the uncertain PL-
MCDM problems. Based on the LTS ˜L = {l0, l1, . . . , lδ

}

or ̂L = {lt | t =
−δ, . . . ,−1, 0, 1, . . . , δ

}

, three normalization models are proposed for different types
of the uncertain PL-MCDM problems as follows.

(I) The projection-based normalization model of the PLTSs on LTS ̂L in the uncer-
tain multiple DMs PL-MCDM problems

The formulas of the Prj
v

( p)
i j

(

v
∗(q)
i j

)

and 1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

are given as:

Prj
v

( p)
i j

(

v
∗(q)
i j

) =
( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2

)2
p∗(q)

i j (k) p̂
(p)
i j (k)

)/

√

√

√

√

2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2
p̂(p)
i j (k)

)2
,

1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

) =
( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2

)2
p∗(q)

i j (k) p̂
(p)
i j (k)

)/

( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2
p∗(q)

i j (k)

)2
)

.

Then the projection-based normalization model (NLP4) is built as follows:

(NLP4) max
Q
∑

p=1

(

Prj
v

( p)
i j

(

v
∗(q)
i j

)+ 1
∣

∣v
∗(q)
i j

∣

∣

Prj
v

∗(q)
i j

(

v
( p)
i j

)

)

s.t.

⎧

⎪

⎨

⎪

⎩

2δ+1
∑

k=1
p∗(q)

i j (k) = 1,

p̂(q)

i j (k) ≤ p∗(q)

i j (k) ≤ 1, k = 1, 2, . . . , 2δ + 1.

(II) The projection-based normalizationmodels of the PLTSs in the uncertain single
DM PL-MCDM problems
If the number of the DMs is 1, i.e., Q = 1 and p = q, then the uncertain multiple
DMs PL-MCDM problems reduce to the uncertain single DM PL-MCDM problems.
Therefore, the projection-based normalization models of the PLTS on LTSs ˜L and
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̂L in the uncertain single DM PL-MCDM problems can be derived from the models
(NLP3) and (NLP4) respectively as follows:

(i) The projection-based normalization model of the PLTS on LTS ˜L

(NLP5) max

( δ+1
∑

k=1

( k

δ + 1

)2
p∗
(k) p̃(k)

)

⎛

⎝1

/

√

√

√

√

δ+1
∑

k=1

( k

δ + 1
p̃(k)

)2 + 1

/( δ+1
∑

k=1

( k

δ + 1
p∗
(k)

)2
)

⎞

⎠

s.t.

⎧

⎨

⎩

δ+1
∑

k=1
p∗
(k) = 1,

p̃(k) ≤ p∗
(k) ≤ 1, k = 1, 2, . . . , δ + 1.

(ii) The projection-based normalization model of the PLTS on LTS ̂L

(NLP6) max

( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2

)2
p∗
(k) p̂(k)

)

⎛

⎝1

/

√

√

√

√

2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2
p̂(k)

)2 + 1

/( 2δ+1
∑

k=1

(2k − 2δ − 3

4δ + 2
p∗
(k)

)2
)

⎞

⎠

s.t.

⎧

⎨

⎩

2δ+1
∑

k=1
p∗
(k) = 1,

p̂(k) ≤ p∗
(k) ≤ 1, k = 1, 2, . . . , 2δ + 1.

4.3 The probabilistic linguistic two-step method

For the uncertainmultipleDMsPL-MCDMproblemwith the incomplete PLTSonLTS
˜L , we have presented the projection-based normalization model (NLP3) to overcome
the shortages of the existing normalization methods (Pang et al. 2016; Ma et al. 2018).
In what follows, we apply the probabilistic linguistic two-step method to solve the
uncertain multiple DMs PL-MCDM problems where the criteria weights values are
not precisely known but the ranges are available.

By solving the projection-based normalizationmodel (NLP3), the normalized prob-
abilistic linguistic decision matrixes of the matrixes PL(1), PL(2), . . . , PL(Q) can

be obtained, denoted as PL∗(q) =
(

PL∗(q)
i j (p)

)

m×n
(q = 1, 2, . . . , Q).
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Below we convert these normalized probabilistic linguistic decision matrixes into
a real value matrix.

For thenormalizedprobabilistic linguistic decisionmatrix PL∗(q) (q = 1, 2, . . . , Q),
the probabilistic linguistic group decision matrix PL∗ = (PL∗

i j (p)
)

m×n can be
obtained viaDefinition 2. Then the probabilistic linguistic vectormatrixV = (v∗

i j )m×n

which is composed of the associated vector v∗
i j of each PLTS PL∗

i j (p) in the
matrix PL∗, and the probabilistic linguistic real value matrix R = (ri j )m×n where
ri j = |v∗

i j |(i = 1, 2, . . . ,m; j = 1, 2, . . . , n) can be determined. Therefore, the
comprehensive criterion value of the alternative ψ j ( j = 1, 2, . . . , n) under the prob-
abilistic linguistic circumstance is z j = ∑m

i=1 ωi ri j , where
∑m

i=1 ωi = 1. And the
larger the comprehensive criterion value is, the better the alternative will be. With
the idea of the classical two-step method, the algorithm of the probabilistic linguistic
two-step method can be summarized as follows:

Algorithm 2: (The probabilistic linguistic two-step method)
Step 1.Normalize the probabilistic linguistic decisionmatrixes PL(1), PL(2), . . . ,

PL(Q) via solving the projection-based normalization model (NLP3);
Step 2. Integrate the probabilistic linguistic decision matrixes provided by each

DM to a probabilistic linguistic group decision matrix PL∗;
Step 3. Determine the probabilistic linguistic real value matrix R = (ri j )m×n ,

where ri j = |v∗
i j |, and v∗

i j is the associated vector of the PLTS PL∗
i j (p) in the matrix

PL∗ (i = 1, 2, . . . ,m; j = 1, 2, . . . , n);
Step 4.Determine the optimal criterionweight vector of each alternative via solving

the model (LP1), and then the weight matrixW = (�1,�2, . . . ,�n) = (ω j
i

)

m×n can
be obtained;

Step 5. Calculate the eigenvector η corresponding to the maximum eigenvalue of
the matrix (W�R)(W�R)�, and then determine the normalized combined weight
vector �∗ = Wη = (ω∗

1, ω
∗
2, . . . , ω

∗
m)� where

∑m
i=1 ω∗

i = 1.
Step 6. Sort the alternatives by the value of z∗j via formula z∗j =∑m

i=1 ω∗
i ri j ( j =

1, 2, . . . , n);
Step 7. End.

5 Illustrative example: the assessment of the data hiding techniques

In this section, we use a case about the performance assessment of the data hiding
techniques in a given situation to illustrate the feasibility of the projection-based
normalization model and the probabilistic linguistic two-step method.

Suppose there are threeDMs d(1), d(2) and d(3) with the same importance are invited
to form a group to provide their assessment information on four data hiding techniques:
ψ1 (Least Significant Bits, LSB), ψ2 (Discrete Wavelet Transform, DWT), ψ3 (Data
Hiding by Template ranking with symmetrical Central pixels, DHTC), ψ4 (Pair-Wise
Logical Computation, PWLC) with respect to five criteria: θ1 (imperceptibility), θ2
(undetectability), θ3 (robustness), θ4 (security), θ5 (self-restoring), where the criteria

weight vector� =
{

(ω1, ω2, ω3, ω4, ω5)
� ∣
∣ 0.1 ≤ ω1 ≤ 0.3, 0.1 ≤ ω2 ≤ 0.2, 0.2 ≤

ω3 ≤ 0.4, 0.25 ≤ ω4 ≤ 0.5, 0.01 ≤ ω5 ≤ 0.2,
∑5

i=1 ωi = 1
}

. And the assessment
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information of the data hiding technique ψ j with respect to the criterion θi given

by DM d(q)(q = 1, 2, 3) is denoted as one PLTS PL(q)
i j (p)(i = 1, 2, 3, 4, 5; j =

1, 2, 3, 4; q = 1, 2, 3) via using the LTS ˜L = {l0 = very bad, l1 = bad, l2 =
rather poor, l3 = f airly good, l4 = good, l5 = very good, l6 = excellent

}

.
Then the probabilistic linguistic decision matrixes PL(q) (q = 1, 2, 3) provided by
these three DMs are shown in Tables 1, 2 and Table 3.

Step 1. Normalize these three probabilistic linguistic decision matrixes PL(1),
PL(2) and PL(3) via solving the projection-based normalization model (NLP3), the
normalized results are listed in Tables 4, 5 and 6.

Step 2. Integrate all the normalized probabilistic linguistic decision matrixes
PL∗(1)

1 , PL∗(2)
1 and PL∗(3)

1 to a normalized probabilistic linguistic group decision
matrix PL1 via Definition 2, the results of the integration are shown in Table 7.

Step 3. Determine the probabilistic linguistic real value matrix R1.

R1 = (ri j )5×4 =

⎛

⎜

⎜

⎜

⎜

⎝

0.211 0.484 0.227 0.391
0.484 0.190 0.196 0.266
0.299 0.255 0.299 0.399
0.348 0.372 0.193 0.193
0.181 0.222 0.381 0.172

⎞

⎟

⎟

⎟

⎟

⎠

,

where ri j = ∣∣v∗
i j

∣

∣, and v∗
i j is the associated vector of the PLTS PL∗

i j (p) in the matrix
PL∗

1 (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4).
Step 4. By solving the model (LP1), the optimal criterion weight vectors

of all alternatives are �1 = (0.10, 0.20, 0.20, 0.49, 0.01)�,�2 = (0.30, 0.10,
0.20, 0.39, 0.01)�,�3 = (0.10, 0.10, 0.35, 0.25, 0.20)� and�4 = (0.24, 0.10, 0.40,
0.25, 0.01)�. Then the weight matrix is

W1 = (�1,�2,�3,�4
) =

⎛

⎜

⎜

⎜

⎜

⎝

0.10 0.30 0.10 0.24
0.20 0.10 0.10 0.10
0.20 0.20 0.35 0.40
0.49 0.39 0.25 0.25
0.01 0.01 0.20 0.01

⎞

⎟

⎟

⎟

⎟

⎠

.

Step 5. Calculate the eigenvector η1 corresponding to the maximum eigenvalue
of the matrix (W�

1 R1)(W�
1 R1)

�. Using the software MATLAB R2014b, we obtain
η1 = (0.493, 0.510, 0.483, 0.514)� satisfied η�

1 η1 = 1, and the normalized combined
weight vector is �∗

1 = (0.187, 0.125, 0.288, 0.345, 0.056)�.
Step 6.Sort the data hiding techniques by the value of z∗j ( j = 1, 2, 3, 4). According

to formula z∗j =∑m
i=1 ω∗

i ri j where ω∗
i ∈ �∗

1 , we obtain z∗2 = 0.329 > z∗1 = 0.316 >

z∗4 = 0.298 > z∗3 = 0.241. Thus ψ2 (Discrete Wavelet Transform, DWT) is the best
data hiding technique for the given situation.
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Ta
bl
e
1
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P
L

(1
)
pr
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D
M

d
(1

)
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1

ψ
2

ψ
3

ψ
4

θ 1
{l 2

(0
.5
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l 3

(0
.2

)}
{l 4

(0
.8

),
l 6

(0
.2

)}
{l 2

(0
.4
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l 3
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.2
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l 5
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6 Comparative analyses

In this section, we make comparative analyses from two aspects. On the one hand,
for the normalization method, to highlight the advantages of the projection-based
normalization models proposed in this paper, we adopt the probabilistic linguistic
two-stage method based on the normalization method introduced by Pang et al. (2016)
to solve the above PL-MCDM problem. On the other hand, to verify the superiority of
our proposed the probabilistic linguistic two-step method, the following comparative
analyses are among the extended TOPSIS method (Pang et al. 2016), probabilistic
linguistic MULTIMOORA method (Wu et al. 2018), and the probabilistic linguistic
two-step method proposed by us.

6.1 Compared with the existing normalization method

In the following, we employ the probabilistic linguistic two-step method based on the
normalization method presented in Pang et al. (2016) to solve the above uncertain
multiple DMs PL-MCDM problems for some comparative analyses.

Step 1. Normalize the probabilistic linguistic decision matrixes PL(1), PL(2) and
PL(3) via using the normalization method (Pang et al. 2016), and the results are listed
in Tables 8, 9 and 10.

Step 2. According to Definition 2, the normalized probabilistic linguistic group
decision matrix PL∗

2 is obtained, and the results of the integration are shown in Table
11.

Step 3. Determine the probabilistic linguistic real value matrix R2.

R2 = (ri j )5×4 =

⎛

⎜

⎜

⎜

⎜

⎝

0.312 0.512 0.279 0.418
0.473 0.254 0.256 0.332
0.348 0.325 0.353 0.426
0.305 0.372 0.209 0.222
0.217 0.244 0.419 0.219

⎞

⎟

⎟

⎟

⎟

⎠

,

where ri j = ∣∣v∗
i j

∣

∣, and v∗
i j is the associated vector of the PLTS PL∗

i j (p) in the matrix
PL∗

2 (i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4).
Step 4. Solve the model (LP1) to determine the weight matrix W2, then the result

is

W2 = (�1,�2,�3,�4) =

⎛

⎜

⎜

⎜

⎜

⎝

0.14 0.30 0.10 0.24
0.20 0.10 0.10 0.10
0.40 0.20 0.35 0.40
0.25 0.39 0.25 0.25
0.01 0.01 0.20 0.01

⎞

⎟

⎟

⎟

⎟

⎠

.

Step 5. Calculate the eigenvector η2 corresponding to the maximum eigenvalue of
the matrix (W�

2 R2)(W�
2 R2)

�. By using the software MATLAB R2014b, we obtain
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η2 = (0.505, 0.499, 0.482, 0.514)� satisfied η�
2 η2 = 1, and the normalized combined

weight vector is �∗
2 = (0.196, 0.125, 0.338, 0.285, 0.056)�.

Step 6. Use the comprehensive criterion value z∗j ( j = 1, 2, 3, 4) to rank the alter-
natives. After calculation, we obtain z∗2 = 0.362 > z∗4 = 0.343 > z∗1 = 0.337 >

z∗3 = 0.289. Thus, ψ2 (Discrete Wavelet Transform, DWT) is one of the best.
From above two sorting results derived by the probabilistic linguistic two-step

method, we find that the optimal data hiding technique obtained by solving the
projection-based normalization model (NLP3) is consistent with the best data hid-
ing technique obtained by using the normalization method introduced in Pang et al.
(2016), but the two ranking lists of the specific alternatives are slightly different. The
main reason for this situation is that the projection-based normalization model pro-
posed in this paper could consider the probabilities of the remaining linguistic terms
in LTS except those that appear in PLTS, which can effectively make up for the lack
of information. Therefore, all the linguistic terms in the LTS can be treated relatively
fairly in the normalization processes. However, for the PLTS which the sum of the
probabilities of all possible linguistic terms is less than 1, the normalization method
given by Pang et al. (Pang et al. 2016) is limited to consider the probabilities of the
existing linguistic terms in PLTSs, and the probabilities of occurrence of the remaining
linguistic terms in the LTS are not taken into account.

Moreover, the normalization model proposed by Ma et al. (2018) has some limi-
tations, for example, its only suit for solving the uncertain multiple DMs PL-MCDM
problems and its operations are more complex than any one of the projection-based
normalization models (NLP3) and (NLP4). Therefore, the projection-based normal-
ization models proposed in this paper are more reasonable and convincing than the
existing normalization approaches (Pang et al. 2016; Ma et al. 2018).

6.2 Compared with the extended TOPSIS method

In this section, our proposed the probabilistic linguistic two-step method is com-
pared with the extended TOPSIS method (Pang et al. 2016). When using the extended
TOPSIS method to solve the uncertain multiple DMs PL-MCDM problems, the nor-
malized probabilistic linguistic group decision matrix should be determined first, and
then determine the criterionweight vector, the PL-PIS, and the PL-NIS. Next, the devi-
ation degrees between each alternative and the PL-PIS/PL-NIS should be calculated.
Finally, rank the alternatives through the closeness coefficientC I . Nowwe employ the
extended TOPSIS method to handle the above case about the performance assessment
of the data hiding techniques.

Step 1. According to the algorithm of the extended TOPSIS method introduced
in Pang et al. (2016) and Definition 2, the normalized probabilistic linguistic group
decision matrix is shown in Table 12.

1
Step2.Calculate the criterionweight vector, and the result is� = (0.30, 0.20, 0.20,

0.29, 0.01)�.
Step 3. Determine the PL-PIS PL+(p) and the PL-NIS PL−(p) respectively:
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PL+(p) = ({l0, l0.39, l0.9, l1.35, l2.52}, {l0, l0, l0.68, l0.99, l2.5}, {l0, l0.15, l0.52,
l0.85, l1.89}, {l0, l0.12, l0.21, l1.08, l1.71}

)

,

PL−(p) = ({l0, l0, l0.23, l0.39, l0.82}, {l0, l0, l0, l0.44, l0.66}, {l0, l0, l0.1, l0.54, l1.14},
{l0, l0, l0, l0.39, l0.54}, {l0, l0, l0, l0.27, l0.46}

)

.

Step4.Calculate the deviation degrees between each alternative and thePL-PIS/PL-
NIS respectively, then derive the closeness coefficient C I of each alternative. And the
results are shown in Table 13.

Step 5.Rank the alternatives according toC I . According to Table 13, the final rank
of the alternatives is ψ2 > ψ1 > ψ4 > ψ3. Thus, the best alternative is ψ2 (Discrete
Wavelet Transform, DWT).

As can be seen from the above, the ranking list of the specific alternatives derived
by the extended TOPSIS method (Pang et al. 2016) is the same as that obtained by the
probabilistic linguistic two-step method presented in this paper. By comparing these
two methods, the validity of the proposed probabilistic linguistic two-step method is
proved, and the probabilistic linguistic two-stepmethod can be used as a new decision-
method method for solving the uncertain PL-MCDM problems, thus enriching the
methods to solve the uncertain PL-MCDM problems.

6.3 Compared with the probabilistic linguistic MULTIMOORA method

In the following, comparisons between our proposed the probabilistic linguistic two-
step method and the probabilistic linguistic MULTIMOORAmethod (Wu et al. 2018)
are conducted. The probabilistic linguistic MULTIMOORA method can solve the
uncertain multiple DMs PL-MCDM problems in which the information about the
criteria weights is unknown completely. With this method, first of all, we determine
the criteria weights and normalize the decision matrix via the expected value function
based on the normalized probabilistic linguistic group decision matrix. Then, for three
aggregation models, calculate the utility values of each alternative respectively, and
then obtain the subordinate rank of each model. Finally, build the normalized utility
value matrix, and the final ranks can be obtained by the Borda scores. Nowwe employ
the probabilistic linguistic MULTIMOORA method to handle the above problem.

Step 1. Determine the criterion weight vector. Let PL+
j (p) and PL−

j (p) be the
best and worst values of criterion θ j , respectively. Then according to the Hamming
distance formula, the values of d(PLi j (p), PL

+
j (p)) are given as Table 14.

And then the criterion weight vector is � = (0.198, 0.171, 0.192, 0.191, 0.248)�.
Step 2. For the normalized integration results given in Table 7, the vector-

normalized values of all alternatives with respect to each criterion can be calculated
via the expected value function, and the results are shown in Table 15.

Step 3. Based on Tables 14 and 15 and the weights of criteria, the utility values
of alternatives and the subordinate ranks derived from PLRS, PLRP, and PLFMF are
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Table 14 The
vector-normalized values

ψ1 ψ2 ψ3 ψ4

θ1 0.382 0 0.407 0.085

θ2 0 0.512 0.447 0.367

θ3 0.173 0.222 0.260 0

θ4 0 0.038 0.273 0.332

θ5 0.283 0.287 0 0.343

Table 15 The
vector-normalized values

ψ1 ψ2 ψ3 ψ4

θ1 0.250 0.724 0.386 0.677

θ2 0.696 0.193 0.330 0.357

θ3 0.383 0.340 0.452 0.591

θ4 0.510 0.522 0.315 0.194

θ5 0.215 0.224 0.662 0.169

Table 16 The results derived by the PL-MULTIMOORA method

PLRS Rank1 PLRP Rank2 PLFMF Rank3 Borda score Final rank
u1(ψ j ) u2(ψ j ) u3(ψ j )

ψ1 0.393 3 0.205 1 0.092 2 0.086 3

ψ2 0.397 2 0.208 2 0.087 3 0.095 2

ψ3 0.444 1 0.225 3 0.102 1 0.151 1

ψ4 0.388 4 0.248 4 0.084 4 −0.052 4

obtained. Then the utility value matrix and the rank matrix are established as follows:

D(u) =

⎛

⎜

⎜

⎝

0.393 0.205 0.092
0.397 0.208 0.087
0.444 0.225 0.102
0.388 0.248 0.084

⎞

⎟

⎟

⎠

, D(r) =

⎛

⎜

⎜

⎝

3 1 2
2 2 3
1 3 1
4 4 4

⎞

⎟

⎟

⎠

.

And the vector-normalized utility value matrix is:

D∗(u) =

⎛

⎜

⎜

⎝

0.484 0.461 0.503
0.489 0.468 0.475
0.547 0.506 0.557
0.478 0.558 0.459

⎞

⎟

⎟

⎠

.

Based on D∗(u), the Borda scores of alternatives are I BS1 = 0.202, I BS2 =
0.148, I BS3 = 0.290, I BS4 = −0.130. To simplify representation, the above results
are listed in Table 16.
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From Table 16, we can see that the data hiding techniques ψ3 (Data Hiding by
Template ranking with symmetrical Central pixels, DHTC) is the best one for this
problem.

By comparing these two methods, we find that the ordering of the alternatives
obtained by the probabilistic linguisticMULTIMOORAmethod is very different from
the ordering obtained by the probabilistic linguistic two-step method. Recalling the
above calculation process, we could see that the known partial criteria weight infor-
mation is not used when determining the criteria weights values, so that the criteria
weights values obtained by the probabilistic linguisticMULTIMOORAmethod do not
meet the basic requirements of the known partial criterion weight information, and the
final rank of the alternatives will greatly deviate from the real situation. To facilitate
comparison, the ranking lists and best solution derived by the above four methods are
listed in Table 17.

In summary, the projection-based normalization models proposed based on consid-
ering the remaining linguistic terms in LTS except those that appear in PLTS, which
can effectively make up for the lack of information, and thus can improve the accu-
racy of the normalized PLTS. Furthermore, the main idea of the probabilistic linguistic
two-step method is to local optimization firstly and then recombination weighting and
sort the alternatives. This method not only avoids the difficulty of obtaining preference
information, but also utilizes the prior information of the normalized evaluation, which
makes the criterion weight information more accurate, and the final evaluation result
is more objective and comprehensive. Therefore, the probabilistic linguistic two-step
method as a novel decision-makingmethod can enrich theweight-determiningmethod
for the uncertain PL-MCDM problems, in which the criteria weights are given in the
form of intervals.

7 Conclusions

It is reasonable to consider the probabilities of the remaining linguistic terms in LTS
except those that appear in PLTS during the normalization process, and the accuracy
of the normalization method affects the accuracy of the decision-making result. To
improve the accuracy of the normalization method, firstly, we have introduced some
novel concepts, such as the equivalent expression forms of the PLTSs, the equivalent
transformation functions between the PLTS and its associated vector, the projection
formulas of the PLTSs, and a new deviation degree formula. Then, four projection-
based normalization models are proposed for different types of uncertain PL-MCDM
problems. The projection-based normalization models proposed for the uncertain sin-
gle DM PL-MCDM problems can not only consider the probabilities of the remaining
linguistic terms in LTS except those that appear in PLTS but also have a great individ-
ual similarity degree between the PLTS and its normalization. Based on considering
the probabilities of the others linguistic terms in LTS except those that appear in PLTS,
projection-based normalization models are presented for the uncertain multiples DMs
PL-MCDMproblems will have a great group similarity degree. Besides, for the uncer-
tain PL-MCDM problems with the criteria weight values not precisely known but the
ranges are available, we have introduced the probabilistic linguistic two-step method
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to determine the criteria weights values for the first time. Finally, we have given a case
about the performance assessment of the data hiding techniques available to illus-
trate the rationality and validity of the projection-based normalization models and the
probabilistic linguistic two-step method.

In the future, we will further study the normalization model for the uncertain mul-
tiple DMs PL-MCDM problems, in which the assessment information is completely
unknown. In addition, based on the projection-based normalization models proposed
in this paper, the interaction method that can make full use of the known objective
information and maximize the subjective initiative of the DMs will be used to solve
PL-MCDM problems.
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