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Pool-Based Sequential Active
Learning for Regression

Dongrui Wu™, Senior Member, IEEE

Abstract— Active learning (AL) is a machine-learning
approach for reducing the data labeling effort. Given a pool of
unlabeled samples, it tries to select the most useful ones to label
so that a model built from them can achieve the best possible
performance. This paper focuses on pool-based sequential AL
for regression (ALR). We first propose three essential criteria
that an ALR approach should consider in selecting the most
useful unlabeled samples: informativeness, representativeness,
and diversity, and compare four existing ALR approaches against
them. We then propose a new ALR approach using passive
sampling, which considers both the representativeness and the
diversity in both the initialization and subsequent iterations.
Remarkably, this approach can also be integrated with other
existing ALR approaches in the literature to further improve
the performance. Extensive experiments on 11 University of
California, Irvine, Carnegie Mellon University StatLib, and
University of Florida Media Core data sets from various domains
verified the effectiveness of our proposed ALR approaches.

Index Terms— Active learning (AL), inductive learning, passive
sampling, ridge regression, transductive learning.

I. INTRODUCTION

CTIVE learning (AL) [34], a subfield of machine learn-

ing, considers the following problem: if the learning
algorithm can choose the training data, then, which training
samples should it choose to maximize the learning perfor-
mance, under a fixed budget, e.g., the maximum number
of labeled training samples? As an example, consider emo-
tion estimation in affective computing [29]. Emotions can
be represented as continuous numbers in the 2-D space of
arousal and valence [31] or in the 3-D space of arousal,
valence, and dominance [27]. However, emotions are very
subjective, subtle, and uncertain. Therefore, usually, multiple
human assessors are needed to obtain the groundtruth emotion
values for each affective sample (video, audio, image, phys-
iological signal, and so on). For example, 14—-16 assessors
were used to evaluate each video clip in the Database for
Emotion Analysis Using Physiological Signals data set [22],
6-17 assessors for each utterance in the VAM (Vera am Mittag
in German, Vera at Noon in English) spontaneous speech
corpus [16], and at least 110 assessors for each sound in the
International Affective Digitized Sounds 2nd Edition (IADS-2)
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data set [5]. This is very time consuming and labor intensive.
How should we optimally select the affective samples to label
so that an accurate regression model can be built with the
minimum cost (i.e., the minimum number of labeled samples)?
That is the typical type of problems that AL targets at.

Many AL approaches have been proposed in the literature
[11, [6], [7], [91-[11], [15], [24], [30], [32]-[35]. According
to the query scenario, they can be categorized into two
groups [38]: population based and pool based. In population-
based AL, the test input distribution is known, and training
input samples at any desired locations can be queried. Its goal
is to find the optimal training input density to generate the
training input samples. In pool-based AL, a pool of unlabeled
samples is given, and the goal is to optimally choose some
to label, so that a model trained from them can best label the
remaining samples.

Regardless of whether it is population based or pool based,
typically, AL is iterative [7]. It first builds a base model
from a small number of labeled training samples and then
chooses a few most helpful unlabeled samples and queries
for their labels. The newly labeled samples are then added
to the training data set and used to update the model. This
process iterates until a termination criterion is met, e.g.,
the maximum number of iterations, the maximum number
of labeled samples, or the desired cross-validation accuracy,
is reached. Depending on the number of unlabeled samples to
query in each iteration, AL approaches can also be categorized
into two types [7]: sequential AL, where one sample is queried
each time, and batch-mode AL, where multiple samples are
queried in each iteration.

This paper focuses on pool-based sequential AL for regres-
sion (ALR). Although numerous AL approaches have been
proposed in the literature [34], most of them are for clas-
sification problems. Among those limited number of ALR
approaches [6]—[8], [10], [15], [25], [37]-[41], only a few can
be used for pool-based sequential ALR [6], [8], [40], [41].
In this paper, we will review them, point out their limitations,
and propose approaches to enhance their performance.

The main contributions of this paper are as follows.

1) We extend three criteria for AL—informativeness, rep-
resentativeness, and diversity—from classification to
regression, and propose a generic framework that can
be used to enhance a baseline (BL) ALR approach.

2) We instantiate several ALR approaches that consider
informativeness, representativeness, and diversity simul-
taneously and demonstrate their promising performances
in extensive application domains.
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Fig. 1. Tllustration of RD in pool-based sequential ALR.

The remainder of this paper is organized as follows:
Section II introduces three essential criteria that should be
considered in ALR and then compares several existing pool-
based sequential ALR approaches against them. Section III
proposes several new pool-based sequential ALR approaches.
Section IV describes the data sets to evaluate the effective-
ness of the proposed ALR approaches and the corresponding
experimental results. Finally, Section V draws the conclusion.

II. EXISTING POOL-BASED SEQUENTIAL
ALR APPROACHES

In this section, we propose three essential criteria for
selecting unlabeled samples in pool-based sequential ALR
and then introduce a few existing pool-based sequential ALR
approaches. We also compare these ALR approaches against
the three criteria and point out their limitations.

Without loss of generality, we assume that the pool consists
of N d-dimensional samples {xn}flv:l, X, € R4, and the first

My samples have already been labeled with labels {y,,}f:/[:ol.

A. Three Essential Criteria in ALR

We propose the following three criteria that should be
considered in pool-based sequential ALR for selecting the
most useful unlabeled sample to the label.

1) Informativeness, which means that the selected sample
must contain rich information, so labeling it would sig-
nificantly benefit the objective function. Informativeness
could be measured by uncertainty (entropy, distance
to the decision boundary, confidence of the prediction,
and so on), expected model change, expected error
reduction, and so on [34]. For example, in query-by-
committee (QBC), a popular AL approach for both
classification and regression [30], the informativeness
of an unlabeled sample could be computed as the
disagreement among the committee members: the more
disagreement is, the more uncertain the sample is, and
hence, the more informative it is.

2) Representativeness, which can be evaluated by the num-
ber of samples that are similar or close to a target sample
(or its density [34]): the larger the number is, the more
representative the target sample is. Clearly, the target
sample should not be an outlier. For example, in Fig. 1,
assume that we want to build a regression model to
predict the output from x| and x;. The gray circle “B”
is very likely to be an outlier because it is very far away
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from all other samples in the input space, so labeling it
could mislead the regression model and result in overall
worse prediction performance. In other words, a sample
like “B” should not be selected for labeling by ALR.
3) Diversity, which means that the selected samples should
scatter across the full input space, instead of concen-
trating in a small local region. For example, in Fig. 1,
the unlabeled samples from three clusters in the input
space, so we should select samples from all three clusters
to label, instead of focusing on only one or two of them.
Assume that the two green circles have been selected and
labeled. Then, selecting next a sample from the third
cluster (the one contains “A”) seems very reasonable.
We should point out that similar criteria have been used in
AL for classification (ALC). For example, Shen ef al. [36]
proposed two multicriteria-based batch-mode ALC strategies,
both of which considered informativeness, representativeness,
and diversity simultaneously. Their Strategy 1 first chooses
a few most informative samples, clusters them, and then
selects the cluster centroids for labeling. Their Strategy 2 first
computes a score for each sample as a linear combination
of its informativeness and representativeness, selects samples
with high scores, and further down selects among them the
most diverse ones for labeling. Both strategies are specific
to the support vector machine classifier. He et al. [19] con-
sidered uncertainty, representativeness, information content,
and diversity in batch-mode ALC. Let k be the batch size.
They compute the information content of an unlabeled sample
as uncertainty x representativeness, select the most informative
samples, cluster them into k clusters by kernel k-means
clustering, and finally, select the k cluster centers for labeling.
However, to our knowledge, similar ideas have not been
explored in ALR, except our recent work on enhanced batch-
mode ALR (EBMALR) [40]. It is not trivial to extend these
concepts from classification to regression, because there could
be many different strategies to integrate these three criteria,
and different strategies could result in significantly differ-
ent performances. EBMALR [40] is one of such strategies.
However, although our previous research [40] showed that it
achieved promising performance in batch-mode ALR in brain—
computer interface, this paper (Section IV-E) shows that it
does not perform well in sequential ALR. Therefore, how to
integrate informativeness, representativeness, and diversity to
design high-performance pool-based sequential ALR is still
an open problem.
Next, we will introduce several existing pool-based sequen-
tial ALR approaches and compare their rationale against our
three criteria.

B. Query-by-Committee

QBC is a very popular pool-based AL approach for both
classification [1], [15], [26], [34], [35] and regression [6], [10],
[11], [24], [30], [34]. Its basic idea is to build a committee
of learners from existing labeled training data set (usually
through bootstrapping and/or different learning algorithms)
and then select from the pool the unlabeled samples on which
the committee disagrees the most to label.
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In this paper, we use the pool-based QBC for regres-
sion approach proposed by RayChaudhuri and Hamey [30].
It first bootstraps the My labeled samples into P copies,
each containing My samples but with duplicates and builds a
regression model from each copy, i.e., the committee consists
of P regression models. Let the pth model’s prediction for the
nth unlabeled sample be y!. Then, for each of the N — M
unlabeled sample, it computes the variance of the P individual
predictions, that is,

P
1 ]
O'n:FZI(yr{]_yn)z; n=Mo+1,...N (D
p:

where v, = (1/P) Z;’:l y%, and then selects the sample with
the maximum variance to label.

Comparing against the three criteria for ALR, QBC only
considers the informativeness, but not the representativeness
and the diversity.

C. Expected Model Change Maximization

Expected model change maximization (EMCM) is also a
very popular AL approach for classification [9], [32]-[34],
regression [7], [8], and ranking [12]. Cai et al. [8] proposed
an EMCM approach for both linear and nonlinear regression.
In this section, we introduce their linear approach, as only
linear regression is considered in this paper.

EMCM first uses all My labeled samples to build a linear
regression model. Let its prediction for the nth sample x,
be y,. Then, like in QBC, EMCM also uses bootstrap to
construct P linear regression models. Let the pth model’s
prediction for the nth sample x, be y.. Then, for each of
the N — Mj unlabeled samples, it computes

P
1 .
g00) = Zl Io% = $)%ull, n=Mo+1,...,N. (2
pn

EMCM selects the sample with the maximum g(x,) to label.

Comparing against the three criteria for ALR, EMCM only
considers the informativeness, but not the representativeness
and the diversity.

D. Greedy Sampling

Yu and Kim [41] proposed several very interesting passive
sampling techniques for regression. Instead of finding the most
informative sample based on the learned regression model,
as in QBC and EMCM, they select the sample based on its
geometric characteristics in the feature space. An advantage
of passive sampling is that it does not require updating the
regression model and evaluating the unlabeled samples in each
iteration, so it is independent of the regression model.

In this paper, we use the greedy sampling (GS) for regres-
sion approach [41], which is easy to implement, and showed
promising performance in [41]. Its basic idea is to select a
new sample in a greedy way such that it is located far away
from the previously selected and labeled samples. More specif-

ically, for each of the N — M unlabeled sample {x,,};V: Mo+1°
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it computes its distance to each of the M labeled samples,
that is,

m=1,....Moy;n=My+1,...,N
(3)

then, it computes d,, as the minimum distance from x,, to the
M labeled samples, that is,

d, =mindy,, n=My+1,...,N 4)
m

dpm = ||Xn _Xm”a

and selects the sample with the maximum d,, to label.

Comparing against the three criteria for ALR, GS only
considers the diversity, but not the informativeness and the
representativeness.

E. Enhanced Batch-Mode ALR

We have already seen that each of the above-mentioned
three ALR approaches only considers one of the three essential
criteria for ALR, so there is room for improvement. In addi-
tion, all of them assume that we already have M initially
labeled samples for training. Usually, these My samples are
randomly selected, because the regression models cannot be
constructed at the very beginning when no or very few labeled
samples are available (and hence, QBC and EMCM cannot
be applied). However, there can still be better initialization
approaches to select more representative and diverse seedling
samples, without using any label information. One such
approach, EBMALR [40], was proposed recently to consider
simultaneously informativeness, representativeness, and diver-
sity to enhance QBC and EMCM. Theoretically, batch-mode
ALR can also be used for sequential ALR, by setting the
batch size to 1. Algorithm 1 shows the EBMALR algorithm
when the batch size is 1. It first uses k-means clustering to
initialize d samples that are representative and diverse and then
uses a BL ALR approach, such as QBC or EMCM, to select
subsequent samples sequentially.

Compared with QBC, EMCM, and GS, EBMALR identifies
outliers and excludes them from being selected and considers
representativeness and diversity (RD) in initializing the first
d samples. The original EBMALR (when the batch size is
larger than 1) considers both diversity and informativeness in
each subsequent iteration, but when the batch size becomes 1,
EBMALR is no longer able to consider the diversity among
the selected samples. As a result, its performance degrades
significantly, as will be demonstrated in Section IV-E.

F. Design of Experiments

Design of experiments (DOE) has been widely studied
in statistics and used in various industries, for exploring
new processes and gaining increased knowledge of existing
processes, followed by optimizing these processes for achiev-
ing world-class performance [2]. Its primary goal is usually
to extract the maximum amount of information from a few
observations as possible, which is very similar to ALR. There
are two typical categories of DOEs [2] as follows.

1) Screening designs, which are smaller experiments to

identify the critical few factors from the many potential
trivial factors.
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Algorithm 1 EBMALR Algorithm, When the Batch Size
Is 1
N

Input: N unlabeled samples, {x,},_,, where x, € RY;
M, the maximum number of labeled samples to
query;
y, the threshold for outlier identification
Output: The regression model f(x).
// Identify the outliers
§= {Xn},}1\/21§
hasOutliers=True;

while hasOQutliers do
Perform k-means clustering on S to obtain d clusters,

Ci,i=1,...,d;
Set pi = |Cil;
has Outliers=False;
fori=1,...,k do
if p; < max(l,yN) then

S=S8\Cg
hasOutliers=True;
end
end
end

// Initialize d labeled samples
fori=1,...,d do
| Select the sample closest to the centroid of C; to label;
end
// End initialization
form=d+1,...,M do
Perform a BL ALR (e.g., QBC or EMCM) on S to
select a sample for labeling;
end
Construct the regression model f(x) from the M labeled
samples.

2) Optimal designs, which are larger experiments that
investigate interactions of terms and nonlinear responses
and are conducted at more than two levels for each
factor.

Optimal designs are particularly relevant to ALR. They pro-
vide theoretical criteria for choosing a set of points to label, for
a specific set of assumptions and objectives. Compared with
optimal designs, ALR approaches are generally more heuristic.
In this paper, we only consider ALR approaches.

IIT. OUR PROPOSED ALR APPROACHES

In this section, we propose first a basic pool-based sequen-
tial ALR approach by considering simultaneously RD and then
strategies to integrate it with QBC, EMCM, and GS to further
improve the performance.

A. Basic RD ALR Approach

Assume that initially none of the N samples in the pool
is labeled. Our proposed basic RD ALR approach consists of
two parts: 1) better initialization of the first a few samples
by considering RD, and 2) generating a new sample in each
subsequent iteration by also considering RD.
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Since the input space has d dimensions, it is desirable to
have at least d initially labeled samples to construct a reason-
able linear regression model.! To find the optimal locations
of these d samples, we perform k-means (k = d) clustering
on the N unlabeled samples and then select from each cluster
the sample closest to the cluster centroid for labeling. This
initialization ensures representativeness, because each sample
is a good representation of the cluster it belongs to. It also
ensures diversity, because these d clusters cover the full input
space of x.

The idea of using clustering for sample selection in
ALR was motivated by similar ideas in ALC. For example,
Nguyen and Smeulders [28] used k-medoids clustering to
select representative and diverse samples. Kang er al. [21]
used k-means clustering to partition the unlabeled samples
into different clusters and then selected from each cluster
the sample closest to its centroid as the most representative
one. Hu er al. [20] used deterministic clustering methods
(farthest-first traversal, agglomerative hierarchical clustering,
and affinity propagation clustering) to initialize the samples,
to avoid variations introduced by nondeterministic clustering
approaches such as k-medoids and k-means. Krempl et al. [23]
proposed a clustering-based optimized probabilistic AL
approach for online streaming ALC. However, to our
knowledge, there have not yet existed any pool-based
sequential ALR approaches that use clustering to initialize
the samples and also perform subsequent selections.

After the first d samples are initialized by considering RD,
next, we start the iterative ALR process, where a new sample
is selected for labeling in each iteration. Consider the first
iteration, where we already have d labeled samples and need to
determine which sample from the N —d unlabeled ones should
be further selected for labeling. In the basic RD algorithm,
we first perform k-means clustering on all N samples, where
k = d+ 1. Since there are only d labeled samples, at least one
cluster does not contain any labeled sample. In practice, some
clusters may contain multiple labeled samples, so usually,
there are more than one cluster that do not contain any labeled
sample. We then identify the largest cluster that does not
contain any labeled sample as the current most representative
cluster and select the sample closest to its centroid for labeling.
Note that this selection strategy also ensures diversity, because
the identified cluster locates differently from all other clusters
that already contain labeled samples. We then repeat this
process to generate more labeled samples, until the maximum
number of labeled samples is reached.

The pseudocode of the basic RD ALR approach is given
in Algorithm 2, where Optfion 1 is used. Similar to GS,
the basic RD approach also uses passive sampling, which does
not require updating the regression model and evaluating the
unlabeled sample in each iteration. Therefore, it is independent
of the regression model.

It is also possible to initialize fewer than d samples to construct a linear
regression model, by using regularized regression such as ridge regression and
least absolute shrinkage and selection operator. However, here, we assume d
is small and initialize d samples directly for simplicity.
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Algorithm 2 Proposed RD ALR Algorithm, and Its
Variants

Input: N unlabeled samples, {x,,}f;’:l, where x, € RY;

M, the maximum number of labeled samples to
query
Output: The regression model f(x).
// Initialize d labeled samples
Perform k-means clustering on {x,,}f;’:l, where k = d;
Select from each cluster the sample closest to its
centroid, and query for its label,;
// End initialization
form=d+1,...,M do

Perform k-means clustering on {xn}f;’: |» Where k = m;

Identify the largest cluster that does not already
contain a labeled sample;
Option 1: Select the sample closest to the cluster
centroid for labeling;
Option 2: Use QBC (Section II-B) to select a sample
from the cluster for labeling;
Option 3: Use EMCM (Section II-C) to select a
sample from the cluster for labeling;
Option 4: Use GS (Section II-D) to select a sample
from the cluster for labeling;
end
Construct the regression model f(x) from the M labeled
samples.

B. Integrate RD With QBC, EMCM, and GS

Interestingly, the basic RD ALR approach can be easily
integrated with an existing pool-based sequential ALR
approach for better performance. The pseudocode is also
shown in Algorithm 2, where Option 2 or 3 or 4 is
used. The initialization is the same as the basic RD ALR
approach. In each iteration, it also selects a sample from the
largest cluster that does not already contain a labeled sample
for labeling. However, instead of selecting the one closest to
its centroid, as in the basic RD ALR approach, now it uses
QBC or EMCM or GS to select the most informative or most
diverse sample to the label. We expect that when
QBC or EMCM is used, the integrated RD ALR approach
can achieve better performance than the basic RD ALR
approach, because now informativeness, representativeness,
and diversity are considered simultaneously.

C. Differences From EBMALR

Our proposed ALR approaches have some similarity with
EBMALR [40], e.g., clustering is used to ensure RD. However,
there are several significant differences as follows.

1) This paper considers pool-based sequential ALR,
whereas [40] considered pool-based batch-model ALR.
Theoretically, sequential ALR can be viewed as a special
case of batch-model ALR, when the batch size equals 1.
However, as pointed out in Section II-E, when the batch
size becomes 1, EBMALR is no longer able to consider
the diversity among the selected samples. As a result,
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its performance becomes significantly worse than the
proposed approaches in this paper, as will be shown in
Section IV-E.

2) This paper explicitly defines informativeness, represen-
tativeness, and diversity as three criteria that should
be considered in ALR, whereas EBMALR did not
(although it implicitly used these concepts).

3) EBMALR considered also how to exclude outliers from
being selected, but it required a user-defined parameter.
Through extensive experiments, we found that this part
is not critical in most applications, so this paper does not
include it. As a result, our new algorithms do not require
any user-defined hyperparameters, which are easier to
use.

4) In each subsequent iteration, EBMALR (when the batch
size is larger than 1) considered first the informativeness
and then the diversity, but this paper considers first the
diversity and then the informativeness or representative-
ness. Experiments showed that the latter results in better
performances.

5) This paper introduces a GS approach (Section II-D)
for ALR and also proposes a new RD approach
(Section III-A), both of which were not included in [40].

6) This paper compares the performances of nine ALR
approaches on 11 data sets from various domains,
whereas [40] only compared five ALR approaches in a
brain—computer interface application.

1V. EXPERIMENTS AND RESULTS

Extensive experiments are performed in this section to
demonstrate the performance of the basic and integrated RD
ALR approaches.

A. Data Sets

We used 10 data sets from the University of California,
Irvine (UCI) Machine Learning Repository? and the Carnegie
Mellon University StatLib Data Sets Archive® that have been
used in previous ALR experiments [7], [8], [41]. We also
used an IADS-2 data set on affective computing from the
University of Florida Media Core.* It consists of 167 acoustic
emotional stimuli for experimental investigations of emotion
and attention. 76 acoustic features were extracted [17], and
principal component analysis (PCA) was used to reduce them
to 10 features. The goal was to estimate the continuous arousal
value from these 10 features. The summary of these data sets
is given in Table I. They cover a large variety of application
domains.

Some data sets contain both numerical and categorical
features. For example, the autoMPG data set contains seven
raw features, among which six are numerical and one is
categorical (Origin: U.S., Japan, and Germany). We used one-
hot encoding to convert the categorical values into numerical
values, e.g., Origin-U.S. was encoded as [1,0, 0], Origin-
Japan [0, 1, 0], and Origin-Germany [0, 0, 1]. In this way,

2http://archive.ics.uci.edu/ml/index.php
3 http://lib.stat.cmu.edu/datasets/
4http://csea‘phhp.uﬂ.edu/media.html#midmedia
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TABLE I
SUMMARY OF THE 11 REGRESSION DATA SETS
No. of No. of No. of No. of  No. of

Dataset Source samples raw numerical categorical  total

features features  features features
Concrete-CS! UCI 103 7 7 0 7
IADS-Arousal] UFL 167 10 10 0 10
Yacht? UCI 308 6 6 0 6
autoMPG* ucI 392 7 6 1 9
NO25 StatLib 500 7 7 0 7
Housing® ucI 506 13 13 0 13
Ccps’ StatLib 534 11 8 3 19
Concrete® UCI 1030 8 8 0 8
Airfoil® UCI 1503 5 5 0 5
Wine-red!? UCI 1599 11 11 0 11
Wine-white!® | UCI 4898 11 11 0 11

! https://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test

2 http://csea.phhp.ufl.edu/media. html#midmedia

3 https://archive.ics.uci.edu/ml/datasets/Yacht+Hydrodynamics

4 https://archive.ics.uci.edu/ml/datasets/auto+mpg

3 http://lib.stat.cmu.edu/datasets/

6 https://archive.ics.uci.edu/ml/machine-learning-databases/housing/

7 http://lib.stat.cmu.edu/datasets/CPS_85_Wages

8 https://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
9 https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise

10 https://archive.ics.uci.edu/ml/datasets/Wine+Quality

the converted feature space has 6 + 3 = 9 dimensions.
Categorical features in other data sets were converted similarly
before regression. We then normalized each dimension of the
feature space to mean zero and standard deviation one.

B. Algorithms

We compared the performances of nine different sample

selection strategies as follows.

1) BL, which randomly selects all M samples.

2) RD, which is our basic RD ALR algorithm introduced
in Section ITI-A.

3) QBC, which has been introduced in Section II-B. The
first d labeled samples are randomly initialized.

4) RD-QBC, which is RD integrated with QBC, introduced
in Section III-B.

5) EMCM, which has been introduced in Section II-C. The
first d labeled samples are randomly initialized.

6) Enhanced Expected Model Change
Maximization (EEMCM), which is the EBMALR
approach introduced in Algorithm 1, when EMCM is
used as the base ALR approach.

7) RD-EMCM, which is RD integrated with EMCM, intro-
duced in Section III-B.

8) GS, which has been introduced in Section II-D. The first
d labeled samples are randomly initialized.

9) RD-GS, which is RD integrated with GS, introduced in
Section III-B.

All nine approaches built a ridge regression model from the
labeled samples, with ridge parameter ¢ = 0.01. We used
ridge regression instead of ordinary linear regression because
the number of labeled samples is very small, so ridge regres-
sion, with regularization on the coefficients, generally results
in better performance than the ordinary linear regression.

C. Evaluation Process

There could be two model evaluation strategies: 1) inductive
learning, in which we learn a model from labeled samples,
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and try to evaluate it on samples we have not seen or known
about, and 2) transductive learning, in which we try to evaluate
the model on a known (test) set of unlabeled examples.
Specific to pool-based ALR, the former means labeling a small
amount of samples from a fixed pool, building a regression
model, and then predicting the outputs of the remaining
unlabeled samples in the same pool, whereas the latter means
labeling a small amount of samples from a fixed pool, building
a regression model, and then predicting the outputs of unla-
beled samples from another pool. This paper mainly focuses
on transductive learning but will also briefly report results on
inductive learning in Section I'V-I (more results can be found in
the Supplementary Materials). Generally, they are very similar.

The detailed evaluation process was similar to that used in
our previous research on pool-based batch-mode ALR [40].
For each data set, let P be the pool of all samples. We first
randomly selected 80% of the total samples as our training
pool5 (denoted as Pgp), initialized the first d labeled samples
(since ridge regression also includes a bias term, for each
data set, d was the number of total features in Table I plus
one) either randomly or by EEMCM/RD, identified one sample
to label in each subsequent iteration by different algorithms
and built a ridge regression model. The maximum number of
samples to be labeled, M, was 10% of the size of Pgy. For
data sets too small or too large, we constrained M € [20, 60].

In the inductive learning setting, the model performance was
evaluated on the 20% remaining samples that are in P but not
in Pgp, whereas in the transductive learning setting, the model
performance was evaluated on the samples in Pgy. We ran
the above-mentioned evaluation process 100 times for each
data set and each algorithm, to obtain statistically meaningful
results.

D. Performance Measures

After each iteration of each algorithm, we computed the root
mean squared error (RMSE) and correlation coefficient (CC)
as the performance measures.

In transductive learning, because different algorithms
selected different samples to label, the remaining unlabeled
samples in the pool were different for each algorithm, so we
cannot compare their performances based on the remaining
unlabeled samples. Since the goal is to build a regression
model to label all samples in the pool-based ALR as accurately
as possible, we computed the RMSE and CC using all samples
in the pool, where the labels for the m selected samples were
their true labels, and the labels for the remaining N —m unla-
beled samples were the predictions from the ridge regression
model.

Let y, be the true label for x,, and J, be the prediction
from the ridge regression model. Without loss of generality,

SFor a fixed pool, EEMCM, RD, RD-QBC, RD-EMCM, and RD-GS give a
deterministic selection sequence, because there is no randomness involved
(assume k-means clustering always converges to its global optimum). There-
fore, we need to vary the pool in order to study the statistical properties
of them. We did not use the traditional bootstrap approach, i.e., sampling
with replacement to obtain the same number of samples as the original pool,
because bootstrap introduces duplicate samples in the new pool, whereas in
practice usually, a pool does not contain duplicates.
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assume that the first m samples are selected by an algorithm,
and hence, their true labels are known. Then

N

1/2
1 /
RMSE = [ﬁ > (- yn)Z} (5)

n=1

Z,I,v:l(Yn - )7)()’,/1 - )_’/)

CC = 5 (6)
VN 0= 922 (- 7)
where
, Vo, n=1,....,m
= 7
n [)7,,, n=m+1,...,N @
1 & 1 &
o . =/ /
y—NZ;yn, ; —NZ;yn. ®)
n= n=

Note that we should consider the RMSE as the primary
performance measure, because it is directly optimized in the
objective function of ridge regression (CC is not). Generally,
as the RMSE decreases, the CC should increase, but there is
no guarantee. In other words, we expect that an ALR approach
performing well on the RMSE should also perform well on
the CC, but this is not always true. Therefore, the CC can only
be viewed as a secondary performance measure.

In inductive learning, the RMSE and CC can be computed
directly on the 20% samples that are in P but not in Pgg.

E. Experimental Results

The RMSEs and CCs for the nine algorithms on the 11 data
sets in transductive learning, averaged over 100 runs, are
shown in Fig. 2. We observe the following.

1) Generally, as m increased, all nine algorithms achieved
better performance (smaller RMSE and larger CC),
which is intuitive, because more labeled training samples
generally result in a more reliable ridge regression
model.

2) RD, QBC, EMCM, EEMCM, and GS achieved better per-
formances than BL on almost all data sets, suggesting
that all these ALR approaches were effective.

3) Generally, RD-QBC achieved better performance than
both RD and QBC, RD-EMCM achieved better perfor-
mance than both RD and EMCM, and RD-GS achieved
better performance than both RD and GS. These results
suggest that our proposed RD ALR approach is comple-
mentary to QBC, EMCM, and GS, and hence, integrating
them can outperform each individual ALR approach.

To see the forest for the trees, we also define an aggregated
performance measure called the area under the curve (AUC)
for the average RMSE and the average CC on each of the
11 data sets in Fig. 2. The AUCs for the RMSEs are shown
in Fig. 3(a), where for each data set, we used the AUC of BL
to normalize the AUCs of the other eight algorithms, so the
AUC of BL was always 1. For the RMSE, a smaller AUC
indicates a better performance. Similarly, we also show the
AUCs of the CCs in Fig. 3(b), where a larger AUC indicates
a better performance. We observe that the following.

1) RD achieved smaller AUCs for the RMSE than BL on
10 of the 11 data sets, and larger AUCs for the CC than
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TABLE II

RANKS OF THE NINE APPROACHES ON THE 11 DATA SETS
IN TRANSDUCTIVE LEARNING

RD-— RD- RD-—
Dataset BL QBC EMCM EEMCM GS RD QBC EMCM GS
Concrete-CS
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autoMPG
RMSE |[NO2
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Airfoil
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Average
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CC |NO2
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Average
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BL on 9 of the 11 data sets, suggesting that RD is indeed
effective.

2) Among the four existing ALR approaches, GS achieved

the best average performance on both RMSE and CC.
The reason can be explained as follows. In pool-based
ALR, we compute the RMSE and CC on all remaining
unlabeled samples, and a large error on a single sample
may significantly deteriorate the overall performance,
i.e., the samples make unequal contributions to the
RMSE and CC. A diverse sample, which is far away
from currently selected samples, is more likely to give
such a large error (its neighborhood has not been suf-
ficiently modeled). GS considers only the diversity and
makes sure the selected samples are somewhat uniformly
distributed in the entire input space, i.e., all neighbor-
hoods in the input space are considered, and hence, large
errors are less likely to occur. This is different from
ALC, in which all misclassified samples make equal
contributions to the classification error, no matter how
far away they are from the decision boundary.

3) Generally, RD-QBC, RD-EMCM, and RD-GS achieved

the best performances among the nine algorithms.

The ranks of the nine approaches on the 11 data sets,
according to the AUCs, are shown in Table II. Observe that on
average, RD-EMCM, RD-GS, and RD-QBC ranked among the
top three on both RMSE and CC, RD and GS ranked the next,
EEMCM slightly outperformed EMCM, and BL was the last. This
again confirms the superiority of our proposed approaches.

F. Statistical Analysis

To determine if the differences between different pairs of
algorithms were statistically significant, we also performed
nonparametric multiple comparison tests on the AUCs using
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Fig. 2. Performances of the nine algorithms on the 11 data sets in transductive learning, averaged over 100 runs. (a) Concrete-CS. (b) IADS-Arousal.
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Dunn’s procedure [13], [14], with a p-value correction using
the false discovery rate method [4]. The p-values for the
AUCs of RMSEs and CCs are shown in Table III, where the
statistically significant ones are marked in bold. We observe
the following.

1) All ALR approaches had statistically significantly better
RMSEs and CCs than BL.

2) Among the four existing ALR approaches, GS had
statistically significantly better RMSEs and CCs than
EMCM and EEMCM and also statistically significantly
better RMSE than QBC.

3) RD had statistically significantly better RMSE and CC
than QBC, EMCM, and EEMCM and also statistically
significantly better CC than GS.

rfoil. (j) Wine-red. (k) Wine-white.

4) RD-QBC, RD-EMCM, and RD-GS all had statistically
significantly better RMSE and CC than the other six
approaches, suggesting again that RD is complementary
to QBC, EMCM, and GS, and hence, integrating RD
with any of the latter three can further improve the
performance.

5) There were no statistically significant differences among
RD-QBC, RD-EMCM, and RD-GS.

G. Visualization

It is also interesting to visualize the sample selection
results of different algorithms to confirm the superiority of
the RD-based ALR approaches. However, because the feature
spaces had at least seven dimensions, it is difficult to visualize
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Fig. 3.  AUCs of the nine algorithms on the 11 data sets in transductive
learning. (a) RMSE. (b) CC.

TABLE III

p-VALUES OF NONPARAMETRIC MULTIPLE COMPARISONS ON THE
AUCSs OoF RMSES AND CCS IN TRANSDUCTIVE LEARNING

RD- RD-
BL OBC EMCMEEMCM GS RD QBC EMCM
OBC .0000
EMCM .0000 .4220
EEMCM [.0000 .0738 .1036
GS .0000 .0000 .0000 .0000
RMSE|RD .0000 .0000 .0000 .0000 .2780
RD-QBC [.0000 .0000 .0000 .0000 .0000 .0000
RD-EMCM|.0000 .0000 .0000 .0000 .0000 .0000 .1449
RD-GS  [.0000 .0000 .0000 .0000 .0000 .0000 .3607 .2478
QBC .0000
EMCM L0000 .0924
EEMCM  [.0000 .0000 .0017
GS .0000 .0353 .0008 .0000
CC |rRD .0000 .0000 .0000 .0000 .0023
RD-QBC [.0000 .0000 .0000 .0000 .0000 .0057
RD-EMCM|.0000 .0000 .0000 .0000 .0000 .0001 .1167
RD-GS  [.0000 .0000 .0000 .0000 .0000 .0000 .0508 .3187

them directly. Therefore, we performed PCA on each data set
and represented all samples as their projections on the first
two principal components. Due to the page limit, we only
show the results for the Concrete-CS data set (more results can
be found in the Supplementary Materials). The red asterisks
in Fig. 4(a) indicate the initial seven selected samples. Observe
that random initialization, which was used in BL, QBC,
EMCY, and GS, may leave a large portion of the feature space
unsampled. However, RD, RD-QBC, RD-EMCM, and RD-GS,
which used our proposed initialization approach, initialized
the samples more uniformly in the entire feature space. The
red asterisks in Fig. 4(b) indicate the final 20 samples selected
by different algorithms. We observe the following.

1) BL still left a large region of the feature space unsam-

pled, even after 20 samples.
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Fig. 4. PCA visualization of the selected samples (red asterisks) by different
algorithms on the Concrete-CS data set. (a) Initial seven selected samples.
(b) Final 20 selected samples.

2) QBC, EMCMV, and GS selected one or more samples near
the boundary of the feature space, which may be out-
liers. On the contrary, EEMCM and RD selected samples
uniformly distributed in the whole feature space, and no
selected samples were obvious outliers.

3) The samples selected by RD-QBC distributed in the
feature space more uniformly than those selected by
QOBC. Similar patterns can also be observed between
RD-EMCM and EMCM, and between RD-GS and GS.

In summary, the PCA visualization results confirm that the
RD-based ALR approaches selected more reasonable samples,
which resulted in better regression performances.

H. Individual Improvements

Table II shows that RD-EMCM achieved the best average
RMSE among the nine algorithms. Recall that RD-EMCM has
three enhancements over the random sampling approach (BL)
as follows.

Enhancement 1: RD-EMCM considers both the repre-
sentativeness and the diversity in initializing the first
d samples, but BL does not consider either of them.
Enhancement 2: RD-EMCM considers both the represen-
tativeness and the diversity in selecting the new sample
in each iteration, but BL does not consider either of
them.

Enhancement 3: RD-EMCM considers also the informa-
tiveness in selecting the new sample in each iteration,
but BL does not consider it.
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Fig. 6. AUCs of the five algorithms over the 11 data sets, averaged over
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It is interesting to study if each of the three enhancements is
necessary, and if so, what their individual effect is.

For this purpose, we constructed three modified versions
of RD-EMCM, by considering each enhancement individually:
E1, which employs only the first enhancement on more
representative and diverse initialization; E2, which employs
only the second enhancement on more representative and
diverse sampling in each iteration; and E3, which employs
only the third enhancement on more informative sampling in
each iteration. We then compared their performances with BL
and RD-EMCM. Due to the page limit, we only show the results
on the concrete data set (averaged over 100 runs) in Fig. 5
(more results can be found in the Supplementary Materials).
The AUCs for RMSEs and CCs for all 11 data sets are shown
in Fig. 6.

Observe that all three enhancements outperformed BL on
most data sets, especially for the RMSE, which was directly
optimized in the objective function of ridge regression. More
specifically, Fig. 5 shows that the first enhancement on more
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Fig. 7. AUCs of the nine algorithms on the 11 data sets in inductive learning,
averaged over 100 runs. (a) RMSE. (b) CC.

representative and diverse initialization helped when m was
very small; the second and third enhancements helped when
m became larger. By combining the three enhancements,
RD-EMCM achieved the best performance at both small and
large m. This suggests that the three enhancements are
complementary, and they are all essential to the improved
performance of RD-EMCM.

L. Inductive Learning Results

The results presented in this section so far focused only
on transductive learning. This section presents the inductive
learning results, i.e., testing results on the 20% samples in
P but not in Pgg. The AUCs of the nine algorithms on the
11 data sets are shown in Fig. 7 (more results can be found
in the Supplementary Materials). Observe that Fig. 7 is very
similar to Fig. 3. Our conclusions are drawn in transductive
learning still hold in inductive learning.

J. Computational Cost

Finally, we study the computational cost of the proposed
algorithms.

First, consider RD. Observe from Algorithm 2 that the most
time-consuming operation in RD is k-means clustering, whose
computational complexity is O(kndi) [18], where k is the
number of clusters, n is the number of data samples, d is the
number of features, and i is the number of iterations before
convergence. i is mainly determined by n, and in the worst
case, i = 2Q(/n) [3]. However, for a data set that does have a
clustering structure, i is usually small, and in practice, we can
set an upper bound for it.
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TABLE IV
COMPUTATION TIME (SECONDS) OF DIFFERENT ALR APPROACHES

No. of | No. of RD- RD- RD-
Samples | Features | QBC EMCM EEMCM GS RD QBC EMCM GS
10 0.01 001 0.02 000 0.12 0.12 0.13 0.11

100 30 0.0l 0.01 0.03 0.00 0.12 0.13 0.13 0.10

50 0.02 0.02 0.03 000 0.12 0.14 0.14 0.11

10 0.06 0.06 0.08 0.03 0.21 023 0.23 0.19

1,000 30 0.07 0.07 0.09 0.03 0.25 026 026 023
50 0.07 0.08 0.11 0.04 0.29 0.30 0.30 0.26

10 054 059 076 2.03 243 243 243 241

10,000 30 064 070 1.01 221 3.98 400 397 401
50 074 0.82 129 252 557 550 570 5.44

In summary, the computational complexity of k-means
clustering, and hence RD, is more significantly influenced by n,
and then d and k as follows.

1) The number of data samples, n, is fixed, given a specific

data set, and we can do nothing about it.

2) The number of features, d, could be large in practice.
In such cases, we could use preprocessing, such as PCA,
to reduce the dimensionality, as we have done for data
set IADS-Arousal in our experiments. We expect that
usually PCA needs at most tens of scores to capture
enough variance (e.g., 95%), and hence, d could be kept
small.

3) The number of clusters, k, equals the number of cur-
rently available labeled samples plus one, so it increases
as the query goes on, i.e., RD will become slower as it
iterates.

Next, consider the variants of RD. RD-QBC, RD-EMCM, and
RD-GS should have similar computational complexities as RD,
as the computational complexities of QBC, EMCM, and GS are
low compared with RD.

To compare the actual computation time, we performed
an experiment using the Online News Popularity Data Set®
in the UCI Machine Learning Repository, which includes
39797 samples (n = 39,797) and 58 numerical features
(d = 58). We picked n = {100, 1000, 10000} (using the first
n samples in the data set) and d = {10, 30, 50} (randomly
selected from the 58 features) to study the effects of n and d
on the computation time. The platform was a Dell XPS15
laptop with Intel Core i7-6700HQ CPU @ 2.60 Hz, 16 GB
memory, and 512 GB SSD, running Windows 10 x64 and
MATLAB 2017a. For each combination of n and d,
we increased k from 60 to 70, recorded the total running time
of different algorithms and repeated this process 10 times to
compute the average. The results are shown in Table IV. They
are consistent with our qualitative analyses mentioned above:
the computation time of RD increases rapidly with n but is
about linear to d when d € [10,50]; and the computation
time of RD-QBC, RD-EMCM, and RD-GS is close to RD.

In summary, although the computational costs of our pro-
posed algorithms are much higher than QBC, EMCM, and GS,
they are intended for offline applications, in which computa-
tion time may not be an obstacle.

6https://archive.ics.uci .edu/ml/datasets/online+news+popularity
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V. CONCLUSION

AL has been frequently used to reduce the data labeling
effort in machine learning. However, most existing AL
approaches are for classification. This paper studied ALR.
We proposed three essential criteria that should be considered
in selecting a new sample in pool-based sequential ALR,
which are informativeness, representativeness, and diversity.
An ALR approach called RD was proposed, which considers
RD in both initialization and subsequent iterations. The RD
approach can also be integrated with existing pool-based
sequential ALR approaches, such as QBC, EMCM, and GS,
to further improve the performance. Extensive experiments
on 11 public data sets from various domains confirmed the
effectiveness of our proposed approaches.
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