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Perceptual Reasoning for Perceptual Computing:
A Similarity-Based Approach

Dongrui Wu, Student Member, IEEE, and Jerry M. Mendel, Life Fellow, IEEE

Abstract—Perceptual reasoning (PR) is an approximate reason-
ing method that can be used as a computing-with-words (CWW)
engine in perceptual computing. There can be different approaches
to implement PR, e.g., firing-interval-based PR (FI-PR), which has
been proposed in J. M. Mendel and D. Wu, IEEE Trans. Fuzzy Syst.,
vol. 16, no. 6, pp. 1550–1564, Dec. 2008 and similarity-based PR (S-
PR), which is proposed in this paper. Both approaches satisfy the
requirement on a CWW engine that the result of combining fired
rules should lead to a footprint of uncertainty (FOU) that resem-
bles the three kinds of FOUs in a CWW codebook. A comparative
study shows that S-PR leads to output FOUs that resemble word
FOUs, which are obtained from subject data, much more closely
than FI-PR; hence, S-PR is a better choice for a CWW engine than
FI-PR.

Index Terms—Approximate reasoning, computing with words
(CWWs), firing intervals (FIs), interval type-2 fuzzy sets, percep-
tual computing, perceptual reasoning (PR), rule-based systems,
similarity.

I. INTRODUCTION

THIS PAPER focuses on perceptual reasoning (PR) [21],
[22], [38], which is an approximate reasoning [1]–[3],

[26], [28], [46]– [48] method to infer outputs from rules. By a
rule, which means an IF–THEN statement, such as
Ri : IF x1 is F̃ i

1 , and x2 is F̃ i
2 , THEN y is G̃i , i= 1, . . . , N

(1)
where x1 and x2 are called antecedents, y is called consequent,
and F̃ i

1 , F̃ i
2 , and G̃i are linguistic terms modeled by interval

type-2 fuzzy sets1 (IT2 FSs) [14], [47]. A concrete example of
such a two-antecedent rule is [20] as follows:

IF touching (x1) is a low amount (F̃1)

and eye contact (x2) is a moderate amount (F̃2)

THEN flirtation (y) is a moderate amount (G̃).
A generic rule with multiple antecedents is represented as

Ri : IF x1 is F̃ i
1 , and · · · , and xp is F̃ i

p , THEN y is G̃i . (2)
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1Why such FSs are used instead of type-1 FSs [45] is explained later in this

section.

The use of IF–THEN rules in PR is quite different from their use
in most engineering applications of rule-based systems—fuzzy-
logic systems (FLSs, see Appendix I)—because in an FLS the
output is almost always a number, whereas the output of PR is
another FS which needs to be mapped into a recommendation
so that it can be understood.

PR [21], [22], [38], [40] consists of the following two steps.
1) A firing quantity is computed for each rule.
2) The consequents of the fired rules are combined using a

linguistic weighted average (LWA; see Section II) in which
the “weights” are the firing quantities, and the “subcrite-
ria” are the FS consequents.

Let X̃
′

denote an N × 1 vector of FSs that are the inputs to
a collection of N rules, as would be the case when such inputs
are words. F i(X̃′) denotes the firing quantity for rule Ri , and
it is computed only for the n ≤ N number of fired rules, i.e.,
the rules whose firing quantities do not equal 0. Then, Ỹ is
computed as

Ỹ =
∑n

i=1 F i(X̃′)G̃i∑n
i=1 F i(X̃′)

. (3)

In this paper, PR is studied within the framework of computing
with words (CWWs) [49], [50], “a methodology in which the
objects of computation are words and propositions drawn from
a natural language.” Words in the CWW paradigm may be
modeled by type-1 (T1) FSs [45], or their extension, which is
IT2 FSs [14], [47]. Therefore, an inevitable question is: Which
FS model should be used in CWW?

There are at least two types of uncertainties associated with
a word [17], [30]: intrapersonal uncertainty and interpersonal
uncertainty. Intrapersonal uncertainty describes [17] “the un-
certainty a person has about the word.” It is also explicitly
pointed out by Wallsten and Budescu [30] as “except in very
special cases, all representations are vague to some degree in
the minds of the originators and in the minds of the receivers,”
and they suggest to model it by a T1 FS. Interpersonal un-
certainty describes [17] “the uncertainty that a group of peo-
ple have about the word.” It is pointed out by Mendel [14]
as “words mean different things to different people” and by
Wallsten and Budescu [30] as “different individuals use diverse
expressions to describe identical situations and understand the
same phrases differently when hearing or reading them.” Be-
cause an IT2 FS has a footprint of uncertainty (FOU) that can
be viewed as a group of T1 FSs (see Fig. 1), it can model both
types of uncertainty [17]; hence, we suggest IT2 FSs be used in
CWW [13], [14], [17]. Additionally, Mendel [16] has explained
why it is scientifically incorrect to model a word using a T1 FS,
i.e.: 1) A T1 FS for a word is well-defined by its membership
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Fig. 1. Five examples of word FOUs obtained from the IA [10]. The areas
between the thick curves are FOUs, and the curves within the FOUs are T1 FSs
mapped from individuals’ endpoint data.

Fig. 2. Architecture of the Per-C.

function (MF) that is totally certain once all of its parameters
are specified; 2) words mean different things to different people,
and therefore, are uncertain; and 3) therefore, it is a contradic-
tion to say that something certain can model something that is
uncertain.

CWW using T1 FSs has been studied by many researchers,
e.g., in [4], [5], [7], [12], [24], [27], [29], [31]–[33], [42], [44],
and [49]–[51]; however, because of the previous arguments, in
this paper, IT2 FSs are used to model words. In this case, there
can be two kinds of firing quantities—firing interval (FI) and
firing level. Which firing quantity is better for PR is the main
topic of this paper.

The rest of this paper is organized as follows. Section II con-
nects PR to a perceptual computer (Per-C), an implementation of
CWW. Section III introduces FI-based PR (FI-PR). Section IV
introduces similarity-based PR (S-PR), i.e., PR using firing lev-
els. Section V provides properties about S-PR. Section VI uses
a comparative study to show that S-PR is a better approach for
CWW. Finally, Section VII draws conclusions. For complete-
ness, IT2 FLSs are briefly reviewed in Appendix I. The proofs
of the theorems in this paper are given in Appendix II.

II. PERCEPTUAL REASONING AND THE PER-C

A specific architecture, as shown in Fig. 2, is proposed in
[15] for making subjective judgments by CWW. It is called
a perceptual computer (Per-C for short), and its use is called
perceptual computing. Perceptions (i.e., granulated terms and
words) activate the Per-C and a linguistic recommendation is
output by the Per-C; therefore, it is possible for a human to
interact with the Per-C just using a vocabulary of words.

In Fig. 2, the encoder transforms linguistic perceptions into
IT2 FSs that activate a CWW engine. It contains an application’s
codebook that is a collection of words (the application’s vocab-
ulary) and their associated IT2 FS models. An interval approach
(IA) is proposed in [8] and [10] to construct this codebook. First,

for each word in the codebook, subjects are asked the following
question:

On a scale of 0–10, what are the endpoints of an interval that you
associate with the word ?

After some preprocessing, during which some intervals (e.g.,
outliers) are eliminated, each of the remaining intervals is classi-
fied as either an interior, left-shoulder, or right-shoulder IT2 FS.
Then, each of the word’s data intervals is individually mapped
into its respective T1 interior, left-shoulder, or right-shoulder
membership function, after which the union of all of these T1
MFs is taken, and the union is upper and lower bounded. The
result is an FOU for an IT2 FS model of the word, which is
completely described by these upper and lower MFs.

Five examples of word FOUs obtained from the IA are shown
in Fig. 1, where the data were obtained from 28 people with the
Jet Propulsion Laboratory (JPL), California Institute of Tech-
nology. Observe that, generally, the T1 FSs are different from
each other, and their union covers a region, which is the FOU
of an IT2 FS. Observe also that only three kinds of FOUs can
emerge from the IA, namely, left-shoulder, right-shoulder, and
interior FOUs.

In Fig. 2, the CWW engine maps IT2 FSs into IT2 FSs. PR
considered in this paper is a kind of CWW engine. Another
CWW engine called LWA is proposed in [36] and [37], which
can be used to aggregate a variety of different subcriteria. An
expressive2 way to represent the LWA is

ỸLWA =
∑n

i=1 X̃iW̃i∑n
i=1 W̃i

(4)

where X̃i , which are the subcriteria, can mean data, features,
decisions, recommendations, judgments, scores, etc., and W̃i ,
which are the weights, can be numbers, intervals, T1 FSs, or
words modeled by IT2 FSs. It has been shown [36], [37] that the
upper membership function (UMF) of ỸLWA is a fuzzy weighted
average [9] of the UMFs of X̃i and W̃i , and the lower member-
ship function (LMF) of ỸLWA is a fuzzy weighted average of
the LMFs of X̃i and W̃i .

In Fig. 2, the decoder maps the output of the CWW engine
into a recommendation, which is usually a word modeled by
an IT2 FS. Therefore, the following important requirement is
imposed for CWW engines:

Requirement: The output of the CWW engine should lead to an FOU
that resembles the three kinds of FOUs in a CWW codebook.

“Resemblance,” in this requirement, means that 1) the output
of the CWW engine should resemble the nature of the FOUs
in a CWW codebook, i.e., the CWW engine should be able to
output left-shoulder, right-shoulder, and interior FOUs, and 2)
that the output of the CWW engine should resemble the shape
of FOUs in the codebook, i.e., it should have high similarity
with at least one FOU in the codebook.

2Equation (4) is referred to as “expressive” because it is not computed directly
using multiplications, additions, and divisions on the IT2 FSs, as expressed by
it. Instead, the lower and upper MFs of ỸLWA are computed separately using
α-cuts, as explained in [36] and [37].
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Because PR is a CWW engine, it has to satisfy this re-
quirement. We have proved that FI-PR satisfies this require-
ment [22], [38] and will prove in Section V that S-PR also
satisfies this requirement. We shall demonstrate in Section VI
that S-PR satisfies this requirement better than FI-PR.

III. FIRING INTERVAL-BASED PR: COMPUTATION

For comparison purposes, the procedures for FI-PR are briefly
reviewed in this section. For more details, see [22] and [38].

A. Computing the FIs

The first step for FI-PR is to compute the FI. As explained
in [22] and [38], the result of the input and antecedent operations
for the ith fired rule is the FI F i(X̃′), where

F i(X̃′) = [fi(X̃′), f
i
(X̃′)] ≡ [fi, f

i
] (5)

in which

fi(X̃′) =
[
sup
x1

∫
x1 ∈X 1

X1(x1) � F i
1(x1)

]
�

· · · �
[
sup
xp

∫
xp ∈Xp

Xp(xp) � F i
p(xp)

]

f
i
(X̃′) =

[
sup
x1

∫
x1 ∈X 1

X1(x1) � F
i
1(x1)

]
� (6)

· · · �
[
sup
xp

∫
xp ∈Xp

Xp(xp) � F
i
p(xp)

]
(7)

and � denotes a t-norm. Though both minimum and product
t-norms can be used in computing the FIs, for CWW the min-
imum t-norm is preferred for its simplicity. The detailed com-
putations of (6) and (7) for typical word FOUs, like the ones
shown in Fig. 3, are presented in [22]. Unlike in an IT2 FLS,
where singleton fuzzification is almost always used, so that (6)
and (7) simplify a lot, in CWW, where inputs are words, (6) and
(7) do not simplify.

B. Computing ỸFI

In order to use the LWA algorithms, which are given in [36]
and [37], to compute (3), F i(X̃′) is interpreted as an IT2 FS

whose α-cut is the same interval [fi, f
i
] ∀α ∈ [0, 1].

An interior FOU for rule consequent G̃i is depicted in Fig. 3,
in which the height of Gi is denoted by hGi , the α-cut on Gi is

denoted by [air (α), bil(α)], α ∈ [0, hGi ], and the α-cut on G
i

is denoted by [ail(α), bir (α)], α ∈ [0, 1]. For the left-shoulder
G̃i , as depicted in Fig. 3, hGi = 1, and ail(α) = air (α) = 0
∀α ∈ [0, 1]. For the right-shoulder G̃i , as depicted in Fig. 3,
hGi = 1, and bil(α) = bir (α) = M ∀α ∈ [0, 1].

Let ỸFI denote the output of FI-PR. ỸFI is computed using
α-cuts (see Fig. 4), where the α-cut on Y FI is [yLl(α), yRr (α)]
and the α-cut on Y FI is [yLr (α), yRl(α)], and the endpoints of
these α-cuts are computed as solutions to the following four

Fig. 3. Typical codebook word FOUs and an α-cut. (a) Interior FOU.
(b) Left-shoulder FOU. (c) Right-shoulder FOU.

optimization problems [36], [37]:

yLl(α) = min
∀f i ∈[f i ,f

i
]

∑n
i=1 ail(α)fi∑n

i=1 fi
, α ∈ [0, 1] (8)

yRr (α) = max
∀f i ∈[f i ,f

i
]

∑n
i=1 bir (α)fi∑n

i=1 fi
, α ∈ [0, 1] (9)

yLr (α) = min
∀f i ∈[f i ,f

i
]

∑n
i=1 air (α)fi∑n

i=1 fi
, α ∈ [0, hY F I

] (10)

yRl(α) = max
∀f i ∈[f i ,f

i
]

∑n
i=1 bil(α)fi∑n

i=1 fi
, α ∈ [0, hY F I

] (11)

in which

hY F I
= min

i
hGi . (12)

Equations (8)–(11) are computed by Karnik–Mendel (KM)
or Enhanced Karnik–Mendel (EKM) algorithms [14], [35],
[41].For details of the algorithms to compute ỸFI , see [22].

We observe, from (8) and (9), that ỸFI is always normal, i.e.,
its α = 1 α-cut can always be computed. This is different from
many other approximate reasoning methods, whose aggregated
fired-rule output sets are not normal, which may cause problems
when the output is mapped into a word in the codebook, e.g.,
the Mamdani-inference-based method (see Appendix I).
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Fig. 4. PR FOUs and α-cuts on (a) interior, (b) left-shoulder, and (c) right-
shoulder FOUs. For FI-PR, Ỹ = ỸFI , and for S-PR, Ỹ = ỸS .

IV. SIMILARITY-BASED PR: COMPUTATION

The computation procedure for S-PR is introduced is this
section.

A. Computing the Firing Level

Similarity is frequently used in Approximate Reasoning to
compute the firing quantities [1], [26], [43], and it can also be
used in PR to compute the firing levels.

Let the p inputs that activate a collection of N rules be denoted
by X̃′. The result of the input and antecedent operations for the
ith fired rule is the firing level F i(X̃′), where

F i(X̃′) = s
J
(X̃1 , F̃

i
1 ) � · · · � s

J
(X̃p , F̃

i
p ) ≡ fi (13)

in which s
J
(X̃j , F̃

i
j ) is the Jaccard similarity measure3 for IT2

FSs [39], and � denotes a t-norm. The minimum t-norm is used
in this paper

s
J
(X̃j , F̃

i
j )

=

∫
X min(Xj (x), F

i
j (x))dx +

∫
X min(Xj (x), F i

j (x))dx∫
X max(Xj (x), F

i
j (x))dx +

∫
X max(Xj (x), F i

j (x))dx
.

(14)

3Why the Jaccard similarity measure is preferred by us over other similarity
measures is explained and demonstrated in [39]. Equation (14) is also derived
in [39].

B. Computing ỸS

Let ỸS denote the output of S-PR. As shown in Fig. 4,
the α-cut on Y S is [yLl(α), yRr (α)], and the α-cut on Y S

is [yLr (α), yRl(α)]. Similar to (8)–(11), the endpoints of these
α-cuts are computed as solutions to the following four optimiza-
tion problems:

yLl(α) = min
∀xi ∈[ai l (α),bi r (α)]

∑n
i=1 xif i∑n
i=1 fi

=
∑n

i=1 ail(α)fi∑n
i=1 fi

α ∈ [0, 1] (15)

yRr (α) = max
∀xi ∈[ai l (α),bi r (α)]

∑n
i=1 xif i∑n
i=1 fi

=
∑n

i=1 bir (α)fi∑n
i=1 fi

α ∈ [0, 1] (16)

yLr (α) = min
∀xi ∈[ai r (α),bi l (α)]

∑n
i=1 xif i∑n
i=1 fi

=
∑n

i=1 air (α)fi∑n
i=1 fi

α ∈ [0, hY S
] (17)

yRl(α) = max
∀xi ∈[ai r (α),bi l (α)]

∑n
i=1 xif i∑n
i=1 fi

=
∑n

i=1 bil(α)fi∑n
i=1 fi

α ∈ [0, hY S
] (18)

where

hY S
= min

i
hGi . (19)

Note that (15)–(18) are arithmetic weighted averages; therefore,
they are computed much faster than (8)–(11).

We observe from (15), (16), and Fig. 3 that Y S is completely
determined by G

i
and, from (17), (18), and Fig. 3, that Y S is

completely determined by Gi . We observe also, from (15) and
(16), that Ỹ is always normal, i.e., its α = 1 α-cut can always
be computed.

In summary, knowing the firing levels fi , i = 1, . . . , n, Y S

is computed in the following way.
1) Select m appropriate α-cuts for Y S (e.g., divide [0, 1]

into m − 1 intervals, and set αj = (j − 1)/(m − 1), j =
1, 2, . . . ,m).

2) For each αj , find the α-cut [ail(αj ), bir (αj )] on G
i
(i =

1, . . . , n), and compute yLl(αj ) in (15) and yRr (αj ) in
(16).

3) Connect all left coordinates (yLl(αj ), αj ) and all right
coordinates (yRr (αj ), αj ) to form the T1 FS Y S .

Similarly, Y S is computed in the following way.
1) Determine hX i

, i = 1, . . . , n, and hY S
in (19).

2) Select appropriate p α-cuts for Y S (e.g., divide [0, hY S
]

into p − 1 intervals, and set αj = hY S
(j − 1)/(p − 1),

j = 1, 2, . . . , p).
3) For each αj , find the α-cut [air (αj ), bil(αj )] on Gi (i =

1, . . . , n), and compute yLr (αj ) in (17) and yRl(αj ) in
(18).

4) Connect all left coordinates (yLr (αj ), αj ) and all right
coordinates (yRl(αj ), αj ) to form the T1 FS Y S .

Finally, we emphasize that the main difference between
S-PR and FI-PR is that for the former, the firing quantity is a
number computed from the similarities between inputs and rule
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Fig. 5. Graphical illustration of Theorem 2 when only two rules fire.

antecedents, whereas for the latter, the firing quantity is an in-
terval computed from sup-min operations. Performance com-
parisons of these two approaches are given in Section VI.

V. SIMILARITY-BASED PR: PROPERTIES

Properties of FI-PR are given in [22]. Properties of S-PR are
presented in this section. All of them help demonstrate that S-PR
satisfies the requirement for a CWW engine, namely, the output
of the CWW engine should lead to an IT2 FS that resembles the
three kinds of FOUs in a CWW codebook. All the proofs are
given in Appendix II.

A. General Properties About the Shape of ỸS

In this section, some general properties are provided that
describe the shape of ỸS . These general properties are used in
Section V-B.

Theorem 1: When all fired rules have the same consequent
G̃, ỸS defined in (3) is the same as G̃.

Although Theorem 1 is true regardless of how many rules are
fired, its most interesting application occurs when only one rule
is fired, in which case, the output from PR is the consequent FS,
which is G̃, and it resides in the codebook. On the other hand,
when one rule fires, the output from Mamdani inferencing is a
clipped version of G̃, which is B̃, as depicted in Fig. 12, and it
does not reside in the codebook.

Theorem 2: ỸS is constrained by the consequents of the fired
rules, i.e.,

min
i

ail(α) ≤ yLl(α) ≤ max
i

ail(α) (20)

min
i

air (α) ≤ yLr (α) ≤ max
i

air (α) (21)

min
i

bil(α) ≤ yRl(α) ≤ max
i

bil(α) (22)

min
i

bir (α) ≤ yRr (α) ≤ max
i

bir (α) (23)

where ail(α), air (α), bil(α), and bir (α) are defined for three
kinds of consequent FOUs in Fig. 3.

The equalities in (20)–(23) hold simultaneously if and only if
all n fired rules have the same consequent. A graphical illustra-
tion of Theorem 2 is shown in Fig. 5. Let us assume that only
two rules are fired and that G̃1 lies to the left of G̃2 ; then, ỸS

lies between G̃1 and G̃2 .
Theorem 2 is about the location of ỸS . Theorem 3 shown

shortly is about the span of ỸS ; however, first, the span of an
IT2 FS is defined.

Definition 1: The span of the IT2 FS G̃i is bir (0) − ail(0),
where ail(0) and bir (0) are the left and right endpoints of the
α = 0 α-cut on Ḡi , respectively (see Fig. 3).

It is well-known from interval arithmetic that operations (e.g.,
+, −, and ×) on intervals usually spread out the resulting inter-
val; however, this is not true for PR, as indicated by the following
theorem.

Theorem 3: The span of ỸS , which is given by yRr (0) −
yLl(0) (see Fig. 4), is constrained by the spans of the conse-
quents of the fired rules, i.e.,

min
i

(bir (0) − ail(0)) ≤ yRr (0) − yLl(0)

≤ max
i

(bir (0) − ail(0)) . (24)

Both equalities in (24) hold simultaneously if and only if all
n fired rules have the same span.

The following two definitions describe the shape of a T1 FS,
and they are used in proving properties about the shape of ỸS

that are stated in Theorems 4 and 5.
Definition 2: Let A be a T1 FS, and hA be its height. Then, A

is trapezoidal-looking if its α = hA α-cut is an interval instead
of a single point.

Y S and ȲS , which are shown in Fig. 4(a), are trapezoidal-
looking.

Definition 3: Let A be a T1 FS, and hA be its height. Then,
A is triangle-looking, if its α = hA α-cut consists of a single
point.

Y S , which is shown in Fig. 5, is triangle-looking.
Theorem 4: Generally, Y S is trapezoidal-looking; however,

it is triangle-looking if and only if all Gi are triangles with the
same height.

Theorem 5: Generally, Y S is trapezoidal-looking; however,
it is triangle-looking when all G

i
are normal triangles.

B. Nature of FOU(ỸS )

The following three definitions describe the nature of
FOU(ỸS ).

Definition 4: An IT2 FS ỸS is a left-shoulder FOU [see
Fig. 4(b)] if and only if hY S

= 1, and yLl(α) = 0 and
yLr (α) = 0 ∀α ∈ [0, 1].

Definition 5: An IT2 FS ỸS is a right shoulder FOU [see
Fig. 4(c)] if and only if hY S

= 1, and yRl(α) = M and
yRr (α) = M ∀α ∈ [0, 1].

Definition 6: An IT2 FS ỸS is an interior FOU [see Fig. 4(a)] if
and only if it is neither a left-shoulder FOU nor a right-shoulder
FOU.

The following three lemmas, which are derived from the pre-
vious three definitions, are used in the proofs of Theorems 6–8
in Section V-C.

Lemma 1: An IT2 FS ỸS is a left-shoulder FOU if and only
if hY S

= 1 and yLr (1) = 0.

Lemma 2: An IT2 FS ỸS is a right-shoulder FOU if and only
if hY S

= 1 and yRl(1) = M .
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Lemma 3: An IT2 FS ỸS is an interior FOU if and only if
1) hY S

< 1; or
2) hY S

= 1, yLr (1) > 0 and yRl(1) < M .

C. Properties of FOU(ỸS )

In this section, it is shown that ỸS computed from (3), that
uses firing levels, resembles the three kinds of FOUs in a CWW
codebook.

Theorem 6: Let ỸS be expressed as in (3). Then, ỸS is a
left-shoulder FOU if and only if all G̃i are left-shoulder FOUs.

Theorem 7: Let ỸS be expressed as in (3). Then, ỸS is a right-
shoulder FOU if and only if all G̃i are right shoulder FOUs.

Theorem 8: Let ỸS be expressed as in (3). Then, ỸS is an
interior FOU if and only if one of the following conditions is
satisfied.

1) {G̃i |i = 1, 2, . . . , n} is a mixture of both left and right
shoulders.

2) At least one G̃i is an interior FOU.
Theorems 6–8 are important because they show that the output

of PR is a normal IT2 FS and is similar to the word FOUs in
a codebook.4 Therefore, a similarity measure can be used to
map ỸS to a word in the codebook. On the other hand, it is less
intuitive to map a clipped FOU (see ỸM in Fig. 12), as obtained
from a Mamdani inference mechanism, to a normal IT2 FS word
FOU in the codebook.

It is shown in [22] that FI-PR has similar properties, as indi-
cated by Theorems 1, 2, and 4–8 mentioned previously; however,
FI-PR does not have a counterpart of Theorem 3, i.e., the span
of ỸFI is not bounded. As a result, FI-PR tends to output fatter
FOUs than those in the codebook; therefore, the similarities be-
tween the FI-PR outputs and codebook FOUs are usually lower
than those between the S-PR outputs and the codebook FOUs,
as shown next.

VI. PERFORMANCE COMPARISONS FOR

PERCEPTUAL REASONING

Because the natures of the outputs of both FI-PR and S-PR
are like the three kinds of word FOUs, a natural question to
ask is as follows: Which approach should be used in CWW?
In this section, an experiment is used to compare the two PR
approaches.

A. Social Judgment Advisor

A social judgment advisor (SJA) has been developed for flirta-
tion judgments [11] in [14], [20], and [34] using IF–THEN rules
that were obtained from a group of subjects. Two indicators,
which are touching and eye contact, were used. Both indicators
and the level of flirtation used the same five-word vocabulary, as
depicted in Fig. 1, which is a subset of the 32-word vocabulary,
as shown in Fig. 6. The parameters of these word FOUs are
shown in Table I so that they can be used by other researchers.

To construct the rules, 47 subjects were asked the following
25 questions.

4A small difference is that the LMFs of interior codebook word FOUs are
always triangular, whereas the LMFs of interior ỸS are usually trapezoidal.

Fig. 6. Thirty-two-word codebook used in the comparative study [10]. Some
FOUs are a little different from their counterparts in [10] because there was a
coding error in computing the 32 FOUs in [10].

Fig. 7. Nine parameters used to represent an IT2 FS.

R1,1 : IF touching is none to very little and eye contact is
none to very little, THEN flirtation is ?

R1,2 : IF touching is none to very little and eye contact is
some, THEN flirtation is ?

R1,3 : IF touching is none to very little and eye contact is a
moderate amount, THEN flirtation is ?

R1,4 : IF touching is none to very little and eye contact is
large, THEN flirtation is ?

R1,5 : IF touching is none to very little and eye contact is a
maximum amount, THEN flirtation is ?
...

R5,1 : IF touching is a maximum amount and eye contact is
none to very little, THEN flirtation is ?

R5,2 : IF touching is a maximum amount and eye contact is
some, THEN flirtation is ?

R5,3 : IF touching is a maximum amount and eye contact is
a moderate amount, THEN flirtation is ?

R5,4 : IF touching is a maximum amount and eye contact is
large, THEN flirtation is ?
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TABLE I
PARAMETERS OF THE 32-WORD FOUS, AS SHOWN IN FIG. 6 (IN FIG. 7, EACH UMF IS REPRESENTED

BY [a, b, c, d], AND EACH LMF IS REPRESENTED BY [e, f, g, i, h])

R5,5 : IF touching is a maximum amount and eye contact is
a maximum amount, THEN flirtation is ?

The subjects had to select one of the five words shown in
Fig. 1 for each rule’s consequent.

Because different people provided different levels of flirta-
tion for the same question, the survey results for each rule was
a histogram of words, as shown in Table II. Note that some
preprocessing steps [34] have been used to remove outliers, bad
responses, etc., which is why there are less than 47 responses,
as shown in Table II.

An LWA is used to combine the multiple consequents for
each rule into a single consequent IT2 FS, as shown in Fig. 8.
For example, the consequent IT2 FS for rule R1,2 is computed
as

Ỹ 1,2 =
33NVL + 11S + 3MOA

33 + 11 + 3
(25)

where the weights 33, 11, and 3 are the numbers of subjects that
chose the consequent word NVL, S, and MOA, respectively (see
Table II).

The parameters of Ỹ i,j are given in the second and third
columns of Table III so that they can be used by other re-
searchers. It is straightforward to compute the centroid [6] of
each Ỹ i,j by using KM [14], [18] or EKM algorithms [35], [41].
Recall that the centroid of an IT2 FS is an interval. The average
centroid (center of centroids) [34], [39] is the average of the two
endpoints of the interval. The average centroids of the conse-
quent FOUs are indicated by the stars, as shown in Fig. 8. We

TABLE II
PREPROCESSED HISTOGRAMS FOR THE TWO-ANTECEDENT SJA

observe that, generally, the average centroid increases as touch-
ing (the index i in Ri,j and Ỹ i,j ) and/or eye contact (the index j
in Ri,j and Ỹ i,j ) increase; therefore, the flirtation level increases
as touching and/or eye contact increase, which is intuitive.
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Fig. 8. Consequents of the 25 rules. Ỹ i ,j is the consequent of rule Ri,j . The � denotes the average centroid of the corresponding FOU.

TABLE III
PARAMETERS OF Ỹ i ,j

B. Comparative Study

Once the 25 rules and their consequents are determined, they
can be used to infer the flirtation level when the levels of touch-
ing and eye contact are given. Using the 32-word vocabulary,
each of touching and eye contact can have 32 possible inputs,
and hence, there are a total of 32 × 32 = 1024 different scenar-
ios. Each PR approach is used to map these 1024 touching/eye
contact pairs into 1024 FOUs representing their corresponding
flirtation levels, using the procedures introduced in Sections III
and IV. These FOUs are then mapped into linguistic terms in
Fig. 6 codebook using the Jaccard similarity measure, e.g., for

Fig. 9. ỸFI when touching is somewhat small and eye contact changes from
none to very little to maximum amount. The title of each subfigure represents
the level of eye contact.

the kth (k = 1, 2, . . . , 1024) FOU, its Jaccard similarities with
the 32-word FOUs, as shown in Fig. 6, are compared, and the
word with the maximum similarity (denoted as sk ) is chosen as
the output linguistic flirtation level.

We believe that a better PR approach should result in FOUs
that have larger sk , and larger sk should, in turn, increase
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TABLE IV
COMPARISON OF THE MAPPED WORDS FOR ỸFI AND ỸS WHEN TOUCHING IS Somewhat Small AND EYE CONTACT CHANGES

FROM None to Very Little TO Maximum Amount

people’s confidence about the reasonableness of a PR approach.
Therefore, in the comparative study, the 1024 sk

FI obtained
from FI-PR and 1024 sk

S obtained from S-PR are recorded and
compared.

C. Results for FI-PR

Since there are 1024 ỸFI , it is impossible to plot all of them
in this paper; therefore, only the 32 cases, when touching is
somewhat small and eye contact changes from none to very
little to maximum amount, are shown in Fig. 9 as an illustration.
The shaded regions are ỸFI , i.e., the outputs of FI-PR, and the
dashed curve represents the mapped word FOU in the codebook.
The names of these FOUs and the corresponding sk

FI are shown
in Table IV. From Fig. 9, we observe the following.

1) Because usually ỸFI covers a large region in [0, 10], it
is not very informative (selective), e.g., most of the 32
ỸFI given in Table IV are mapped into the word some to
moderate.

2) ỸFI is generally much fatter than a word FOU in the code-
book; therefore, the similarities between them are low,
e.g., most of the 32 sk

FI in Table IV are smaller than 0.5.

D. Results for S-PR

Again, only the 32 cases, when touching is somewhat small
and eye contact changes from none to very little to maximum
amount, are shown in Fig. 10. The shaded regions are ỸS , i.e.,

the outputs of S-PR, and the dashed curve represents the mapped
word FOU in the codebook. The names of these FOUs and the
corresponding sk

FI are shown in Table IV. From Fig. 10, we
observe the following.

1) Generally, ỸS is more compact than its corresponding ỸFI ;
hence, Ỹs is more informative (selective), e.g., the 32 ỸS

in Table IV are mapped into six different words, whereas
the 32 ỸFI are only mapped into three different words.

2) Generally, ỸS resembles word FOUs much more closely
in the codebook; therefore, the similarities between them
are high, e.g., most of the 32 sk

S in Table IV are larger than
0.6.

Additionally, from Table IV, we observe that as the level
of eye contact increases, the mapped flirtation level of S-PR
increases monotonically (from small to good amount; for the
ranks of the 32 words; see Table I), which is intuitive; on the
other hand, the mapped flirtation level of FI-PR does not increase
monotonically (some → some to moderate → some → some to
moderate → good amount), which is counter-intuitive.

E. Summary

The means and standard deviations of the 1024 sk
FI and sk

S are
shown in Table V. Observe that S-PR outperforms FI-PR, e.g.,
the mean of sk

S is 30% larger than that of sk
FI . A t-test [23], [25]

gives t = 38.69, degree of freedom (df) = 2046, and p < 0.001,
which means that the performance improvement is statistically
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Fig. 10. ỸS when touching is somewhat small and eye contact changes from
none to very little to maximum amount. The title of each subfigure represents
the level of eye contact.

TABLE V
MEAN AND STANDARD DEVIATION OF 1024 sk

FI AND sk
S

significant. In summary, S-PR is a better CWW engine than
FI-PR in the Per-C.

F. Computational Cost

The algorithms to compute ỸFI are presented in [22]. The
formulas to compute (6) and (7) are much more complicated than
computing the Jaccard similarity measure in S-PR; however,
once (6) and (7) are programmed, they can be computed faster
than (14). Additionally, if the input words are selected from a
predefined vocabulary, as is the case in the SJA example, then the
sup-mins and Jaccard similarities between input words and rule
antecedents can be precomputed and stored in a table so that the
firing quantities can be retrieved online to save computational
cost. In fact, in this case, all ỸFI and ỸS can be precomputed
offline and stored in a table. However, there are applications
where the input FOUs may not be retrieved from a codebook
(e.g., they may be obtained from an NWA aggregation), and
hence, the firing quantities cannot be precomputed.

The total computing time for the 1024 cases in the SJA ex-
ample was recorded to compare the computational cost of the
two PR approaches. The platform is an IBM ThinkPad T43 run-
ning Microsoft Windows XP Professional Version 2002 and

TABLE VI
TOTAL COMPUTING TIME FOR THE 1024 CASES IN THE SJA EXAMPLE

Fig. 11. IT2 FLS.

MATLAB 7.8.0.347 (R2009a) with an Intel Pentium M
Processor (2.00 GHz) and 1 GB RAM. The results are shown
in Table VI. Observe that S-PR is slower than FI-PR when the
sup-mins and Jaccard similarities are not precomputed; however,
they have similar computational cost when precomputations are
possible.

VII. CONCLUSION

In this paper, PR, which is an approximate reasoning method,
has been reviewed. What differentiates PR from other approxi-
mate reasoning methods is the shape of its output FOU, i.e., the
output FOU of PR resembles the three kinds of FOUs in a CWW
codebook, whereas other approximate reasoning methods can-
not achieve this. A new S-PR approach has been introduced and
is compared with FI-PR. A comparative study showed that the
output FOUs from S-PR more closely resemble the codebook
FOUs than those from FI-PR; therefore, our preference is S-PR
for a CWW engine.

APPENDIX I

BRIEF OVERVIEW OF IT-2 FUZZY-LOGIC SYSTEMS

An IT2 FLS is depicted in Fig. 11. For an IT2 FLS, each
input is fuzzified into an IT2 FS, after which, these FSs activate
a subset of rules. The output of each activated rule is obtained
by using an extended sup-star composition [14]. First, an FI is
computed, and then a fired-rule output FOU is computed. Then,
all of the fired-rule output FOUs are blended in some way and
reduced from IT2 FSs to a number. The latter is accomplished
in two steps: type-reduction, which projects an IT2 FS into an
interval-valued set, and defuzzification, which takes the average
of the interval’s two endpoints.

A. Firing Interval

The first step in this chain of computations is to compute an
FI. This can be a very complicated calculation, especially when
the inputs are fuzzified into IT2 FSs, as they would be when
the inputs are words. For the minimum t-norm,5 this calculation
requires computing the sup-min operation between the LMFs of

5The same conclusions that are stated in Appendix I-E can be reached when
the product t-norm is used.
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Fig. 12. IT2 FLS inference. From FI to fired-rule output FOU for a rule that
has two antecedents.

the FOUs of each input and its corresponding antecedent, as well
as the UMFs of these FOUs. The FI propagates the uncertainties
from all of the inputs through their respective antecedents. Note
that when all of the uncertainties disappear, the FI becomes a
crisp value, which is called a firing level.

An example of computing the FI when the inputs are single-
tons (not words) is depicted in the left-hand part of Fig. 12 for a
rule that has two antecedents.6 When x1 = x′

1 , the vertical line
at x′

1 intersects F̃1 everywhere in the interval7[F 1(x′
1), F̄1(x′

1)],
and when x2 = x′

2 , the vertical line at x′
2 intersects F̃2 every-

where in the interval [F 2(x′
2), F̄2(x′

2)]. Two firing levels are then
computed: a lower firing level, which is denoted by f(x′), and
an upper firing level, which is denoted by f̄(x′), where f(x′) =
min[F 1(x′

1), F 2(x′
2)], and f̄(x′) = min[F̄1(x′

1), F̄2(x′
2)]. The

main thing to observe from this figure is that the result of input
and antecedent operations is an interval—the FI F (x′), where
F (x′) = [f(x′), f̄(x′)].

An FI is also obtained when the inputs are words (i.e., IT2
FSs); however, in that case, the calculations of f(X̃) and f̄(X̃)
are more complicated [22] than the ones shown in Fig. 12 (the
sup-min computations in (6) and (7) have to be carried out).
Fortunately, for a given vocabulary, f(X̃) and f̄(X̃) can be
precomputed (because all the word FOUs are known ahead of
time) and stored in a table, and hence, the online computation
of FIs reduces to a table lookup. This is unique to the Per-C,
because the input words can only be selected from a prespecified
vocabulary.

B. Fired-Rule Output FOU

If one abides strictly by the extended sup-star composition,
then the next computation after the FI computation is8 the meet
operation between the FI and its consequent FOU, the result
being a fired-rule output FOU.

An example of computing the meet operation between the
FI and its consequent FOU is depicted on the right-hand part
of Fig. 12. Function f(x′) is t-normed with G, and f̄(x′) is

6A mathematical derivation of the FI that uses T1 FS mathematics is found
in [19].

7In many other publications about IT2 FSs (e.g., see [14] and [22]),
[F 1 (x′

1 ), F̄1 (x′
1 )] is also written as [µ

F̃ 1
(x′

1 ), µ̄F̃ 1
(x′

1 )].
8A mathematical derivation of the fired-rule output FOU that uses T1 FS

mathematics is also found in [19].

Fig. 13. Pictorial descriptions of (a) fired-rule output FOUs for two fired rules
and (b) combined fired output FOU for the two fired rules in (a).

t-normed with Ḡ. When FOU(G̃) is triangular, and the t-norm
is minimum, the resulting fired-rule output FOU (ỸM ) is the
filled-in trapezoidal FOU. Observe that Y M and ȲM are clipped
versions of G and Ḡ, respectively, which is a characteristic
property of using the minimum t-norm.

C. Aggregation of Fired-Rule Output FOUs

There is no unique way to aggregate fired-rule output FOUs.
One way to do this is to use the union operation, the result being
yet another FOU.

An example of aggregating two fired-rule output FOUs that
uses the union operation is depicted in Fig. 13. The union of
two IT2 FSs is another IT2 FS whose LMF is the union of the
LMFs of the two inputs, and whose UMF is the union of the
UMFs of the two inputs. Fig. 13(a) shows the fired-rule output
sets for two fired rules, and Fig. 13(b) shows the union of those
two IT2 FSs. We observe that the union tends to spread out the
domain over which nonzero values of the output occur and that
ỸM does not have the appearance of either Ỹ 1 or Ỹ 2 .

D. Type-Reduction and Defuzzification

From Fig. 11, the aggregated FOU in Fig. 13 is then type-
reduced, i.e., the centroid [14] of the IT2 FS ỸM is computed.
The result is an interval-valued set, which is defuzzified by
taking the average of the interval’s two endpoints.

E. Observations

The following two points describing this chain of computa-
tions are worth emphasizing.

1) Each fired-rule output FOU does not resemble the FOU
of a word in the Per-C codebook: This is because the meet
operation between the FI and its consequent FOU results in
an FOU whose lower and upper MFs are clipped versions
of the respective lower and upper MFs of a consequent
FOU.

2) The aggregated fired-rule output FOU also does not re-
semble the FOU of a word in the Per-C codebook. This is
because when the union operator is applied to all of the
fired-rule output FOUs, it further distorts those already-
distorted FOUs.
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The reason these two points are being restated here is that for
CWW the result of combining fired rules should lead to an FOU
that resembles the three kinds of FOUs in a CWW codebook.

Abiding strictly to the extended sup-star composition does
not let one satisfy this requirement; hence, an alternative that
is widely used by practitioners of FLSs, which is the one that
blends attributes about the fired-rule consequent IT2 FSs with
the firing quantities, is considered next.

F. Different Way to Aggregate Fired Rules by Blending
Attributes

Attributes of a fired-rule consequent IT2 FS include its cen-
troid and the point of symmetry of its FOU (if the FOU is
symmetrical). The blending is accomplished directly by the
kind of type-reduction that is chosen, e.g., center-of-sets type-
reduction makes use of the centroids of the consequents, whereas
height type-reduction makes use of the point of symmetry of
each consequent FOU. Regardless of the details of this kind of
type-reduction-blending,9 the type-reduced result is an interval-
valued set after which that interval is defuzzified as before by
taking the average of the interval’s two endpoints.

It is worth noting that by taking this alternative approach there
is no associated FOU for either each fired rule or all of the fired
rules; hence, there is no FOU obtained from this approach that
can be compared with the FOUs in the codebook. Consequently,
using this alternative to abide strictly to the extended sup-star
composition also does not let one satisfy the requirement that
the output of the CWW engine should lead to an FOU that
resembles the three kinds of FOUs in a CWW codebook.

By these lines of reasoning, the two usual ways in which rules
are fired and combined for use by the Per-C are ruled out.

APPENDIX II

PROOFS

A. Proof of Theorem 1

When all fired rules have the same consequent G̃, (3) simpli-
fies to

ỸS =
∑n

i=1 fiG̃∑n
i=1 fi

= G̃

(∑n
i=1 fi∑n
i=1 fi

)
= G̃. (B.1)

B. Proof of Theorem 2

Theorem 2 is obvious because each of yLl(α), yLr (α),
yRl(α), and yRr (α) is an arithmetic weighted average of the
corresponding quantities on G̃i . Therefore, e.g., from (15), we
observe that

yLl(α) =
∑n

i=1 ail(α)fi∑n
i=1 fi

≥ miniail(α) ·
∑n

i=1 fi∑n
i=1 fi

= min
i

ail(α) (B.2)

9For more details about type-reduction, see [14].

yLl(α) =
∑n

i=1 ail(α)fi∑n
i=1 fi

≤ maxiail(α) ·
∑n

i=1 fi∑n
i=1 fi

= max
i

ail(α). (B.3)

C. Proof of Theorem 3

It follows from (15) and (16) that

yRr (0) − yLl(0) =
∑n

i=1(bir (0) − ail(0))fi∑n
i=1 fi

≥ mini(bir (0) − ail(0)) ·
∑n

i=1 fi∑n
i=1 fi

= min
i

(bir (0) − ail(0)) (B.4)

yRr (0) − yLl(0) =
∑n

i=1(bir (0) − ail(0))fi∑n
i=1 fi

≤ maxi(bir (0) − ail(0)) ·
∑n

i=1 fi∑n
i=1 fi

= max
i

(bir (0) − ail(0)). (B.5)

D. Proof of Theorem 4

Because air (α) ≤ bil(α) (see Fig. 3), it follows from (17)
and (18) that

yLr (hY S
) =

∑n
i=1 air (hY S

)fi∑n
i=1 fi

≤
∑n

i=1 bil(hY S
)fi∑n

i=1 fi

= yRl(hY S
) (B.6)

i.e., yLr (hY S
) ≤ yRl(hY S

). The equality holds if and only if
air (hY S

) = bil(hY S
) for ∀i = 1, . . . , n, i.e., when all Gi are

triangles with the same height hY S
= mini hGi . In this case,

according to Definition 3, Y S is triangle-looking. Otherwise,
yLr (hY S

) < yRl(hY S
), and according to Definition 2, Y S is

trapezoidal-looking.

E. Proof of Theorem 5

Because ail(α) ≤ bir (α) (see Fig. 3), it follows from (15)
and (16) that

yLl(1) =
∑n

i=1 ail(1)fi∑n
i=1 fi

≤
∑n

i=1 bir (1)fi∑n
i=1 fi

= yRr (1) (B.7)

i.e., yLl(1) ≤ yRr (1). The equality holds if and only if ail(1) =
bir (1) ∀i = 1, . . . , n, i.e., when all Gi are normal triangles. In
this case, Y S is triangle-looking according to Definition 3. Oth-
erwise, yLl(1) < yRr (1), and hence, Y S is trapezoidal-looking
according to Definition 2.



WU AND MENDEL: PERCEPTUAL REASONING FOR PERCEPTUAL COMPUTING: A SIMILARITY-BASED APPROACH 1409

Fig. 14. IT2 FS with hY S
= 1.

F. Proof of Lemma 1

According to Definition 4, one only needs to show that
“yLr (1) = 0” and that “yLl(α) = 0 and yLr (α) = 0 ∀α ∈
[0, 1]” are equivalent. When hY S

= 1, yLl(α) ≤ yLr (α) holds
∀α ∈ [0, 1] for an arbitrary FOU (e.g., see Fig. 14); hence, one
only needs to show that “yLr (1) = 0” and that “yLr (α) = 0
∀α ∈ [0, 1]” are equivalent. Because only convex IT2 FSs are
used in PR, yLr (α) ≤ yLr (1) ∀α ∈ [0, 1] (e.g., see Fig. 14);
hence, yLr (1) = 0 is equivalent to yLr (α) = 0 ∀α ∈ [0, 1].

G. Proof of Lemma 2

According to Definition 5, one only needs to show that
“yRl(1) = M” and that “yRl(α) = M and yRr (α) = M ∀α ∈
[0, 1]” are equivalent. When hY S

= 1, yRr (α) ≥ yRl(α) holds
∀α ∈ [0, 1] (e.g., see Fig. 14); hence, one only needs to show that
“yRl(1) = M” and that “yRl(α) = M ∀α ∈ [0, 1]” are equiv-
alent. Because only convex IT2 FSs are used in PR, yRl(α) ≥
yRl(1) ∀α ∈ [0, 1] (e.g., see Fig. 14); hence, yRl(1) = M is
equivalent to yRl(α) = M ∀α ∈ [0, 1].

H. Proof of Lemma 3

1) Because both left shoulder and right shoulder require
hY S

= 1 (see Lemmas 1 and 2), ỸS must be an interior FOU
when hY S

< 1.

2) When hY S
= 1, and yLr (1) > 0, ỸS is not a left shoulder

by Lemma 1. When hY S
= 1, and yRl(1) < M , ỸS is not a right

shoulder by Lemma 2. Consequently, ỸS must be an interior
FOU.

I. Proof of Theorem 6

From Lemma 1, ỸS is a left-shoulder FOU if and only if
hY S

= 1, and yLr (1) = 0 and, similarly, all G̃i are left-shoulder
FOUs if and only if hGi = 1 and air (1) = 0 ∀i. To prove
Theorem 6, one needs to show that 1) “hY S

= 1” and that
“hGi = 1 ∀i” are equivalent and that 2) “yLr (1) = 0” and
“air (1) = 0 ∀i” are equivalent.

The first requirement is obvious from (19). For the second
requirement, it follows from (17) that

yLr (1) =
∑n

i=1 air (1)fi∑n
i=1 fi

(B.8)

Because all fi > 0, yLr (1) = 0 if and only if all air (1) = 0.

J. Proof of Theorem 7

From Lemma 2, ỸS is a right shoulder if and only if hY S
= 1,

and yRl(1) = M and, similarly, all G̃i are right shoulders if and
only if hGi = 1, and bil(1) = M ∀i. To prove Theorem 7, one
only needs to show that 1) “hY S

= 1” and “hGi = 1 ∀i” are
equivalent and that 2) “yRl(1) = M” and “bil(1) = M ∀i” are
equivalent.

The first requirement is obvious from (19). For the second
requirement, it follows from (18) that

yRl(1) =
∑n

i=1 bil(1)fi∑n
i=1 fi

. (B.9)

Because all fi > 0, yRl(1) = M if and only if all bil(1) = M .

K. Proof of Theorem 8

The sufficiency is proved first. Let us first consider the con-
dition 1). Since all shoulders have height 1, it follows from (19)
that hY S

= 1. Without loss of generality, assume that {G̃i |i =
1, . . . , n1} are left shoulders and {G̃i |i = n1 + 1, . . . , n} are
right shoulders, where 1 ≤ n1 ≤ n − 1. For each left shoulder
G̃i , it is true that (see Fig. 3) air (1) = 0 and10 bil(1) < M . For
each right shoulder G̃i , it is true that11 (see Fig. 3) air (1) > 0
and bil(1) = M . In summary

air (1)
{

= 0, i = 1, . . . , n1

> 0, i = n1 + 1, . . . , n
(B.10)

bil(1)
{

< M, i = 1, . . . , n1

= M, i = n1 + 1, . . . , n.
(B.11)

It follows that

yLr (1) =
∑n

i=1 air (1)fi∑n
i=1 fi

=

∑n
i=n1

air (1)fi∑n
i=1 fi

> 0 (B.12)

yRl(1) =
∑n

i=1 bil(1)fi∑n
i=1 fi

<

∑n
i=1 Mfi∑n

i=1 fi
= M. (B.13)

Hence, ỸS is an interior FOU according to part 2) of Lemma 3.
Next, consider the condition 2). Without loss of generality,

assume only G̃1 is an interior FOU, {G̃i |i = 2, . . . , n2} are
left shoulders, and {G̃i |i = n2 + 1, . . . , n} are right shoulders,
where 2 ≤ n2 ≤ n − 1. Two subcases are considered.

1) When hG1 < 1, according to (19), hY S
= hG1 < 1, and

hence, ỸS is an interior FOU according to part 1) of
Lemma 3.

2) When hG1 = 1, it follows from (19) that hY S
= 1, and

from condition 2) of Lemma 3 applied to G̃1 that a1r (1) >
0, and b1l(1) < M , i.e.,

air (1)
{

= 0, i = 2, . . . , n2

> 0, i = 1, n2 + 1, . . . , n
(B.14)

10bil (1) for a left shoulder cannot be M , because otherwise, according to
Lemma 2, G̃i would be a right shoulder.

11air (1) for a right shoulder cannot be 0, because otherwise, according to
Lemma 1, G̃i would be a left shoulder.
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bil(1)
{

< M, i = 1, 2, . . . , n2

= M, i = n2 + 1, . . . , n.
(B.15)

Consequently

yLr (1) =
∑n

i=1 air (1)fi∑n
i=1 fi

=
a1r (1)f 1+

∑n
i=n2 +1 air (1)fi∑n

i=1 fi
> 0 (B.16)

yRl(1) =
∑n

i=1 bil(1)fi∑n
i=1 fi

<

∑n
i=1 Mfi∑n

i=1 fi
= M. (B.17)

Again, ỸS is an interior FOU according to part 2) of
Lemma 3.

Next, consider the necessity. {G̃i |i = 1, 2, . . . , n} can only
take the following four forms.

1) All G̃i are left shoulders.
2) All G̃i are right shoulders.
3) {G̃i |i = 1, 2, . . . , n} is a mixture of both left and right

shoulders.
4) At least one G̃i is an interior FOU.
Assume ỸS is an interior FOU, whereas {G̃i |i = 1, 2, . . . , n}

is not in forms 3) and 4). Then, {G̃i |i = 1, 2, . . . , n} must be in
form 1) or 2). When {G̃i |i = 1, 2, . . . , n} is in form 1) (i.e., all
G̃i are left shoulders), according to Theorem 6, ỸS must also
be a left shoulder, which violates the assumption that ỸS is an
interior FOU. Similarly, when {G̃i |i = 1, 2, . . . , n} is in form
2) (i.e., all G̃i are right shoulders), according to Theorem 7, ỸS

must be a right shoulder, which also violates the assumption.
Hence, when ỸS is an interior FOU, {G̃i |i = 1, 2, . . . , n} must
be a mixture of both left and right shoulders, or at least one G̃i

is an interior FOU.
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